

How to cite:

International Edition: doi.org/10.1002/anie.202102769 German Edition: doi.org/10.1002/ange.202102769

Nickel-Catalyzed Asymmetric Reductive Carbo-Carboxylation of Alkenes with CO₂

Xiao-Wang Chen, Jun-Ping Yue, Kuai Wang, Yong-Yuan Gui, Ya-Nan Niu, Jie Liu, Chuan-Kun Ran, Wangqing Kong,* Wen-Jun Zhou, and Da-Gang Yu*

Dedicated to Professor Peter Kündig and Professor Gerhard Erker on the occasion of their 75th birthdays

Abstract: Reductive carboxylation of organo (pseudo)halides with CO_2 is a powerful method to provide carboxylic acids quickly. Notably, the catalytic reductive carbo-carboxylation of unsaturated hydrocarbons via CO₂ fixation is a highly challenging but desirable approach for structurally diverse carboxylic acids. There are only a few reports and no examples of alkenes via transition metal catalysis. We report the first asymmetric reductive carbo-carboxylation of alkenes with CO₂ via nickel catalysis. A variety of aryl (pseudo)halides, such as aryl bromides, aryl triflates and inert aryl chlorides of particular note, undergo the reaction smoothly to give important oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter. This transformation features mild reaction conditions, wide substrate scope, facile scalability, good to excellent chemo-, regio- and enantioselectivities. The method highlights the formal synthesis of (-)-Esermethole, (-)-Physostigmine and (-)-Physovenine, and the total synthesis of (-)-Debromoflustramide B, (-)-Debromoflustramine B and (+)-Coixspirolactam A; thereby, opening an avenue for the total synthesis of chiral natural products with CO₂.

Introduction

Carbon dioxide (CO₂) has been regarded as an ideal C1 synthon in organic synthesis because of its abundance, non-toxicity, and renewability.^[1] In the past decades, CO₂ chemistry has rapidly developed for transferring waste to treasure.^[2] As carboxylic acids are ubiquitous motifs that do not only exist widely in drug molecules and natural products but also act as bulk feedstocks in the synthesis of fine chemicals and materials,^[3] the generation of carboxylic acids from CO₂ is particularly attractive and a variety of strategies have been

developed.^[4-7] Particularly, the transition metal-catalyzed reductive carboxylation of organo (pseudo)halides with CO₂ attracts much attention because of its high step economy, easy operation and good compatibility by avoiding pregeneration and handing moisture-sensitive organometallic reagents.^[8,9] Besides the widely-investigated ipso-carboxylation of carbon-(pseudo)halides,^[9,10] the transition metal-catalyzed reductive carbo-carboxylation of unsaturated hydrocarbons via remote CO₂ fixation has become a highly desirable approach to generate structurally diverse carboxylic acids with complex structure.^[11,12] As it is much more challenging considering the rate competition in reactions of organometallic intermediates, which are generated via oxidative addition of carbon-(pseudo)halide to low-valent transition metals, with unsaturated bond and CO₂, the reported methods are still limited to the use of highly reactive alkynes or allenes.^[11] For example, in 2015 Martin realized the first nickel-catalyzed divergent cyclization/carboxylation of alkyl halides-tethered alkynes with CO₂ to give tetrasubstituted acrylic acids with carbocyclic skeletons (Figure 1 A, top).^[11a,b] More recently, the same group has also reported a highly selective remote carboxylation of C(sp²)-H bonds via catalytic 1,4-Ni migration with alkynes (Figure 1 A, middle).^[11d] Besides, Sato also realized an elegant palladium-catalyzed intramolecular arylative carboxylation of allenes with Et₂Zn as a reductant (Figure 1A, bottom).^[11c] However, there is no report on transition metalcatalyzed reductive carbo-carboxylation of alkenes with CO₂, which might arise from a more facile reaction of nucleophilic organometallic intermediate with CO₂ than alkenes. With our continuous interest in the carboxylation of unsaturated bonds with CO2,^[12b,13] we aim to resolve such a challenge by developing an efficient transition metal-catalytic system for reductive carbo-carboxylation of alkenes with CO₂. If suc-

 [*] XW. Chen, JP. Yue, Dr. YY. Gui, YN. Niu, J. Liu, CK. Ran, Prof. Dr. WJ. Zhou, Prof. Dr. DG. Yu Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road, Chengdu 610064 (P. R. China) E-mail: dgyu@scu.edu.cn K. Wang, Prof. Dr. W. Kong The Center for Precision Synthesis Institute for Advanced Studies 	Dr. YY. Gui College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 (P. R. China) Prof. Dr. WJ. Zhou College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 (P. R. China)	
Wuhan University Wuhan 430072 (P. R. China) E-mail: wqkong@whu.edu.cn	Prof. Dr. DG. Yu Beijing National Laboratory for Molecular Sciences Beijing 100190 (P. R. China)	
	 Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202102769. 	

Wiley Online Library

These are not the final page numbers!

Figure 1. Transition metal-catalyzed reductive carbo-carboxylation of unsaturated hydrocarbons with CO_2 .

cessful, we could construct structurally diverse carbo/heterocyclic skeletons bearing carboxylic acids functional groups. More significantly, we might be able to synthesize high valueadded enantiomerically pure carboxylic acids through chiral ligands-induced asymmetric reductive alkene carbo-carboxylation reaction, which has not been disclosed yet.^[14,15]

Indoline- and oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter are not only widely found in bioactive molecules and natural products but also serve as key precursors to construct complex molecules (Figure 2).^[16] Although some approaches,^[17] such as Pd-catalyzed asymmetric carbonylation with CO as the carbonyl source,^[17a,f,g] have been reported to obtain these core structures, it is highly desirable to seek more cost-efficient catalysts and userfriendly carbonyl source. Inspired by recent great progress on reductive cross couplings,^[18–21] we hypothesized whether we could synthesize these structures via asymmetric reductive

Figure 2. Bioactive indoline- and oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter.

Angew. Chem. Int. Ed. 2021, 60, 2-10

carbo-carboxylation of aryl (pseudo)halides-tethered acrylamides using inexpensive transition-metal catalyst and nontoxic CO₂ as carboxyl source. To realize this transformation, several challenges need to be resolved. First, the transition metal-catalyzed reductive ipso-carboxylation of aryl halides has been widely studied in good efficiency,^[8–10] which is highly competitive to the desired insertion of alkenes into reactive carbon-transition metal species, thus arising a chemoselectivity issue. Second, the insertion of alkenes into carbon-metal bonds must be achieved in high regio- and enantioselective fashion. Third, as CO₂ is a relatively inert electrophile, the final capture of the alkyl-metal species by CO₂ should be efficient to prevent side reactions,^[20a,b] including protonation and homopolymerization. Herein, we report the first nickelcatalyzed asymmetric reductive carbo-carboxylation reaction of aryl halides-tethered alkenes and CO2 under mild reaction conditions (Figure 1B). Notably, as the oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter, which are generated in high chemo-, regio-, enantioselectivities, could transform into pyrroloindolines and spirolactam, privileged scaffolds widely existing in bioactive alkaloids, this strategy opens an avenue for the CO2-involved enantioselective synthesis of biologically active natural products, including formal synthesis of (-)-Esermethole, (-)-Physostigmine and (-)-Physovenine, as well as the total synthesis of (-)-Debromoflustramide B, (-)-Debromoflustramine B and (+)-Coixspirolactam A.

Results and Discussion

Our study was initiated by employing the N-benzyl-N-(2-bromophenyl)methacrylamide 1a as the model substrate, NiBr₂·DME as nickel-precatalyst, zinc power as reductant, LiO'Bu as the base and MgCl₂ as Lewis acid to activate inert CO₂ (Table 1). We hypothesized that ligands might play an important role in achieving selective cyclo over ipso carboxvlation. Several chiral ligands were first investigated at room temperature (entries 1-8). The reaction using electron-deficient (S)-CF₃-^{*i*}Pr-Pyrox (L1) gave the 5-*exo* product 2a-Me in 27% yield and 51% ee; however, the ratio of 5-exo- (2a-Me), 6-endo- (2a'), to ipso-carboxylation (2a") was low to 47:18:35 (entry 1). Replacing L1 with relatively more electron-rich (S)-*P*r-Phox (L2) could afford the product with higher enantioselectivity than L1 (entry 2). Bisoxazoline ligand L3 did not show any activity in this reaction (entry 3). Moreover, the reaction using bipyridyl ligand L5 with central and axial chirality character afforded 2a with 74% ee and 73:7:20 ratio (entry 5). To our delight, when a chiral phosphine-oxazoline ligand linked with ferrocene scaffold L4 was employed, the undesired ipso carboxylation and 6-endo cyclization were suppressed, the enantioselectivity dramatically elevated to 91% and showed 95% 5-exo cyclo-selectivity (entry 4). Other diphosphine ligands L6-L8 also exhibited higher cycloselectivity than electron-deficient ligand L1, albeit with low enantioselectivity (entries 6-8). The investigation of nickel pre-catalysts showed that Ni(COD)₂ (entry 11) gave a slightly higher yield than NiBr₂·DME and Ni(acac)₂ (entry 10). When 15 mol% of L4 was used, the desired product 2a was isolated

© 2021 Wiley-VCH GmbH

These are not the final page numbers!

www.angewandte.org

Table 1: Optimization of the reaction conditions.[a]

[a] Conditions: **1a** (0.2 mmol), NiBr₂·DME (5 mol%), chiral ligand L* (10 mol%), Zn (2 equiv), LiO^tBu (2 equiv), MgCl₂ (2 equiv) in solvent (4 mL) at room temperature (RT) for 48 h. [b] The isolated yields of **2a-Me** after column chromatography purification on silica gel. [c] Enantiomeric excess (*ee*) values were determined by chiral high performance liquid chromatography (HPLC) analysis. [d] Determined with gas chromatography (GC). [e] 15 mol% of **L4** was used. Isolated as acid after treating with 2 M HCl. [f] Without Zn. [g] Without LiO^tBu. [h] Without MgCl₂. DME = Dimethoxyethane. COD = 1,5-cyclooctadiene. N.R. = No reaction. DMSO = Dimethyl Sulfoxide.

in 94% *ee* and 88% yield (entry 12). Further systematical investigation of bases and solvents failed to give superior results than entry 12 (see the Supporting Information for details). Control experiments showed that Ni-catalyst, ligand and Zn were all indispensable in this reductive transformation (entries 13–15). Furthermore, the basic LiO'Bu and Lewis acidic MgCl₂ additive were also important for this transformation to achieve high yield (entries 16–17).

After establishing the optimal reaction conditions, we first examined several *N*-protecting groups of acrylamides. As shown in Table 2, various kinds of *N*-alkyl groups with different electronic properties could be well tolerated. Notably, acrylamides with *N*-allyl groups, such as 2-methyl propenyl (**1i**), prenyl (**1j**), cinnamyl (**1k**), which might undergo potential competitive 5-*exo* cyclization, also showed comparable reactivity and selectivity (55–89% yields, 84–94% *ee*).

Angewandte

al Edition Chemie

Next, the diversity of alkene motifs was also explored. Comparing with the alkenes bearing methyl group, those with more hindered alkyl groups, such as ethyl (11), prenyl (1m), benzyl (1n-1o), 1-naphthalene methyl (1p), silyl ether (1q) and alkyl ether (1r) groups, could also react well to give desired products 2l-2q in good yields (62–98%) and excellent enantioselectivities (90–96% *ee*). When the *ent*-L4 was used as ligand, *ent*-2m can be obtained with a 96% yield and 93% *ee*. When the methyl group on the alkene moiety was replaced with phenyl group, only 6-*endo* product was detected.

Furthermore, we investigated the scope of aryl bromides. The substrate with 1-bromonaphthalene (1s) afforded the product 2s in distinct yield (87%) and near optical purity (>99.8% ee). The methyl group at meta and para position (1t-1u) did not affect the reaction. However, the methyl group (1v) and carbon-fluoro bond (1w) at ortho position induced slightly lower ee value (85-85.5% ee), which might arise from the steric hindrance. Besides, substrates bearing methoxy (1x-1z), trifluoromethoxy (1aa) groups and oxygenated heterocycles (1ab) reacted well to give good to excellent cyclo-selectivity and enantioselectivities. But the bromoarene bearing strong electron-withdrawing groups, such as CN, CO₂Me and CF₃ groups, led to poor selectivity. The chemical structure and absolute configuration of (R)-2g (CCDC 2030840) and (R)-2n (CCDC 2030841) were further assigned by single-crystal X-ray diffraction analysis.^[22] The stereochemistry of other compounds was assigned by analogy.

Considering the similar reactivity of aryl sulfonates to halides, we further tested aryl triflates in this transformation (Table 3). Indeed, the desired products 2 could be obtained with high enantiopurities. The moderate yields arise from competitive protonation.

Encouraged by these results, we further explored more accessible but challenging aryl chlorides, which show lower reactivity and have been rarely investigated in asymmetric reductive difunctionalization of unsaturated bonds.^[20a,g] To our delight, these aryl chlorides-tethered acrylamides reacted smoothly with CO_2 under the same reaction conditions (Table 4). Moreover, the reaction of aryl chloride 4a gave 2a in a higher yield of 96% and a slightly better ee value of 95% than the result (88% yield, 94% ee) of corresponding bromide 1a. Changing the N-protecting group with methyl (4b) and geranyl (4c) also gave the product with high yields and enantioselectivities. An array of aryl chlorides with different functional groups, such as methyl (4d–4f), methoxy (4g-4h), fluoro (4i), trifluoromethyl (4j) reacted well to generate the desired products in good to excellent yields and enantioselectivities (85-95% ee). Swapping the methyl group on the alkene motif with the benzyl group (41, 4m) provided the carbo-carboxylation products with commendable yields and enantioselectivities (90% yield, 94-95% ee). A challenging substrate 4k, in which the C-Cl bond is deactivated with electron-donating methoxyl group at the ortho position, could

These are not the final page numbers!

Research Articles

Table 2: Substrate scope of aryl bromides.^[a]

[a] Conditions: substrate 1 (0.3 mmol), Ni(COD)₂ (5 mol%), L4 (15 mol%), Zn (2 equiv), LiO⁶Bu (2 equiv), MgCl₂ (2 equiv) in 6 mL DMSO at RT. Isolated yields are given and *ee* values were determined by chiral HPLC analysis. [b] Ni(COD)₂ (10 mol%), L4 (30 mol%). [c] NiBr₂·DME (10 mol%), L4 (30 mol%).

Table 3: Substrate scope of aryl triflates.^[a]

[a] Conditions: substrate **3** (0.3 mmol), Ni(COD)₂ (5 mol%), **L4** (15 mol%), Zn (2 equiv), LiO'Bu (2 equiv), MgCl₂ (2 equiv) in 6 mL DMSO at RT. Isolated yields are given and *ee* values were determined by chiral HPLC analysis.

also react well to give the desired product in 74% yield albeit with 80% *ee.*

The synthetic utility of this protocol was first demonstrated by the scale-up reaction of 1 m in a 3 mmol scale. With (R,R_p) -Pr-FOXAP as the ligand, the desired product *ent-2* m could be obtained in 72 % yield and 93 % *ee* along with 18 % starting material recovery (Scheme 1 A). Additionally, selective C5- bromination of **2a** took place smoothly to give **6** in 94 % yield and 91 % *ee*. Moreover, **2a** could be reduced by BH₃·SMe₂ in high efficiency to generate useful chiral indoline **7** with a C3 quaternary stereocenter, which is a key intermediate for MNKS inhibitors synthesis (Scheme 1 B).^[23]

To highlight the utility of this methodology, we sought to employ it in the synthesis of bioactive natural products. As (-)-Debromoflustramine B, (-)-Esermethole, (-)-Phys-

Angew. Chem. Int. Ed. 2021, 60, 2-10

[a] Conditions: substrate 3 (0.3 mmol), Ni(COD)₂ (5 mol%), L4 (15 mol%), Zn (2 equiv), LiO^tBu (2 equiv), MgCl₂ (2 equiv) in 6 mL DMSO at RT. Isolated yields are given and ee values were determined by chiral HPLC analysis.

To gain more insight into this selective reductive carbocarboxylation, stoichiometric reactions using equivalent

Scheme 1. Synthetic utility. A) Scale-up reaction of 1 m. B) Facile transformations of 2a. C) Synthesis of (-)-Debromoflustramide B and (-)-Debromoflustramine B. D) Synthesis of the key intermediate for (-)-Esermethole and (-)-Physovenine. E) Synthesis of (+)-Coixspirolactam A. a) TMSCHN₂ (4 equiv), MeOH/Et₂O, 0°C-RT; b) MeNH₂ (33 wt% in EtOH), 60°C; c) LiAlH₄ (10 equiv), THF, 0°C-RT; d) LiAlH₄ (10 equiv), THF, reflux. e) NaH (2.5 equiv), THF, 0°C-RT; then LiAlH₄ (4 equiv), 0°C-RT. f) TBAF (4 equiv), THF, 0°C-RT. g) TFA (1 drop), DCM, 0°C-RT. h) TfOH (15 equiv), toluene, 120°C.

www.angewandte.org

© 2021 Wiley-VCH GmbH

These are not the final page numbers!

Research Articles

Table 5: Control experiments.[a]

CI O N Bn 4a (0.1	mmol)	Ni(COD) ₂ (1 (S,S _p)- ^j Pr-FOXAP n (x equiv), MgCl ₂ (2 equ DMSO (2 mL), N then H ₂	equiv) (1.1 equiv) iiv), Lio'Bu (2 equiv) I ₂ , RT, 4 h O	4aa 0 N Bn 4ac	Level of the second sec
Entry	x	4 aa [%]	4 ab [%]	4ac [%]	4 ad [%]
1	0	6	36	< 5	17
2	2	8	38	< 5	< 5
3	3	13	34	< 5	< 5
4	5	52	23	< 5	< 5
5	10	56	31	< 5	< 5

[a] GC yields.

Ni(COD)₂ were conducted under N₂ to determine the possible intermediates (Table 5). In the absence of Zn, 36% of 6-*endo* product **4ab** was obtained along with 17% of β-H elimination product **4ad** and <5% of **4ac** formation. Interestingly, the expected 5-*exo* product **4aa** was formed in just only 6% yield. By increasing the loading of Zn reductant from 0 to 10 equivalents, we observed the yield of 5-*exo* product **4aa** improved a lot. These control experiments indicated that Ar-Ni^{II}L* generated from oxidative addition might favor 6-*endo* cyclization but the Ar-Ni^{II}L*, which is formed in situ through single-electron reduction of Ar-Ni^{II}L* by Zn, might favor a 5-*exo* cyclization. This investigation provides new insight into the Ni-catalyzed reductive cyclization.

Based on the experimental observation and previous reports, the possible mechanism was proposed in Figure 3. First, the oxidative addition of carbon–(pseudo)halides bonds to Ni⁰L* I gave Ar-Ni^{II}L* species II, which might undergo a Zn-mediated single electron reduction to give a Ar-Ni^IL* species III (path A). The following enantioselective 5-*exo* cyclization would afford an alkyl-Ni^IL* intermediate IV.^[20d] Meanwhile, Ar-Ni^{II}L* species II might also go through 5-*exo*

cyclization to afford alkyl-Ni^{II}L* intermediate **V**, which could be reduced by Zn to yield the intermediate **IV** (path B). Subsequent nucleophilic attack of **IV** to CO₂ gave Ni^Icarboxylate **VI**. Further reduction and transmetalation could yield the carboxylate **VII** and regenerate reactive Ni⁰L* **I**. Final workup of the reaction with hydrolysis of **VII** gave the desired product **VIII**. Additionally, Ar-Ni^{II}L* species **II** might proceed 6-*endo* cyclization to form relative stable Ni^{II}L* enolate species **IX**, which could form the byproduct **X**. The *ipso*-carboxylation byproduct **XI** might result from the nucleophilic attack of Ar-Ni^IL* species **III** to CO₂ according to previous reports.^[9b,10b]

Conclusion

In conclusion, we have developed the first nickelcatalyzed asymmetric reductive carbo-carboxylation of alkenes using sustainable CO₂ as the carboxyl source, which provides an efficient approach to the synthesis of versatile oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter. Aside from aryl bromides, other aryl electrophiles, such as triflates and chlorides, are also amenable in this reaction. This transformation features mild reaction conditions, wide substrate scope, facile scalability, with good chemo-, regio- and enantioselectivity. The utility of this methodology is highlighted by the formal synthesis of (-)-Esermethole, (-)-Physostigmine and (-)-Physovenine, as well as the total synthesis of (-)-Debromoflustramide B, (-)-Debromoflustramine B and (+)-Coixspirolactam A, opening an avenue for the total synthesis of chiral natural products with CO₂.

Acknowledgements

Financial support provided by the National Natural Science Foundation of China (91956111, 21822108, 21702149),

Figure 3. Proposed mechanism.

www.angewandte.org

Angew. Chem. Int. Ed. 2021, 60, 2-10

Sichuan Science and Technology Program (20CXTD0112), Fundamental Research Funds from Sichuan University (2020SCUNL102), and the Fundamental Research Funds for the Central Universities. We thank Xiaoyan Wang from the Analysis and Testing Center of Sichuan University and the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University for compound testing. We also thank Wen-Hao Yu from College of Chemistry and Materials Science, Sichuan Normal University for single-crystal X-ray diffraction analysis.

Conflict of interest

On March 29, 2021, a Chinese Patent on this work was applied for with the number (202110330170.6).

Keywords: alkenes \cdot carbo-carboxylation \cdot carbon dioxide \cdot nickel

- [1] M. Aresta, *Carbon Dioxide as Chemical Feedstock*, Wiley-VCH, Weinheim, **2010**.
- [2] a) M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed. 2013, 52, 9620–9633; Angew. Chem. 2013, 125, 9798–9812; b) C. Maeda, Y. Miyazaki, T. Ema, Catal. Sci. Technol. 2014, 4, 1482–1497; c) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; d) C. Martín, G. Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353–1370; e) J. Luo, I. Larrosa, ChemSusChem 2017, 10, 3317–3332; f) Q.-W. Song, Z.-H. Zhou, L.-N. He, Green Chem. 2017, 19, 3707–3728; g) S. Dabral, T. Schauba, Adv. Synth. Catal. 2019, 361, 223–246; h) M. D. Burkart, N. Hazari, C. L. Tway, E. L. Zeitler, ACS Catal. 2019, 9, 7937–7956; i) B. Grignard, S. Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 342–404; k) L. Song, Y.-X. Jiang, Z. Zhang, Y.-Y. Gui, X.-Y. Zhou, D.-G. Yu, Chem. Commun. 2020, 56, 8355–8367.
- [3] H. Maag, Prodrugs of Carboxylic Acids, New York, Springer, 2007.
- [4] For selected reviews on transition metal-catalyzed CO₂ fixation, see: a) L. Ackermann, Angew. Chem. Int. Ed. 2011, 50, 3842–3844; Angew. Chem. 2011, 123, 3926–3928; b) K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435–2452; c) Y. Tsuji, T. Fujihara, Chem. Commun. 2012, 48, 9956–9964; d) L. Zhang, Z. Hou, Chem. Sci. 2013, 4, 3395–3403; e) D. Yu, S. P. Teong, Y. Zhang, Coord. Chem. Rev. 2015, 293, 279–291; f) K. Sekine, T. Yamada, Chem. Soc. Rev. 2016, 45, 4524–4532; g) A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed. 2018, 57, 15948–15982; Angew. Chem. 2018, 130, 16178–16214; h) S.-S. Yan, Q. Fu, L.-L. Liao, G.-Q. Sun, J.-H. Ye, L. Gong, Y.-Z. Bo-Xue, D.-G. Yu, Coord. Chem. Rev. 2018, 374, 439–463; i) L. Zhang, Z. Li, M. Takimoto, Z. Hou, Chem. Rec. 2020, 20, 494–512.
- [5] For selected reviews on organo-catalyzed CO₂ fixation, see:
 a) M. Cokoja, M. E. Wilhelm, M. H. Anthofer, W. A. Herrmann, F. E. Kuhn, *ChemSusChem* 2015, *8*, 2436–2454; b) J. Hu, H. Liu, B. Han, *Sci. China Chem.* 2018, *61*, 1486–1493.
- [6] For selected reviews on electrochemical CO₂ fixation, see: a) H. Senboku, A. Katayama, *Curr. Opin. Green Sustainable Chem.* 2017, *3*, 50–54; b) M. Yan, Y. Kawamata, P. S. Baran, *Chem. Rev.* 2017, *117*, 13230–13319; c) Y. Cao, X. He, N. Wang, H.-R. Li, L.-N. He, *Chin. J. Chem.* 2018, *36*, 644–659.
- [7] For recent reviews on photochemical CO₂ fixation, see: a) C. S. Yeung, *Angew. Chem. Int. Ed.* **2019**, *58*, 5492–5502; *Angew. Chem.* **2019**, *131*, 5546–5556; b) Z. Zhang, L. Gong, X.-Y. Zhou,

S.-S. Yan, J. Li, G.-G. Yu, Acta Chim. Sinica 2019, 77, 783–793;
c) Z. Zhang, J.-H. Ye, T. Ju, L.-L. Liao, H. Huang, Y.-Y. Gui, W.-J. Zhou, D.-G. Yu, ACS Catal. 2020, 10, 10871–10885; d) X. He,
L.-Q. Qiu, W.-J. Wang, K.-H. Chen, L.-N. He, Green Chem. 2020, 22, 7301–7320; e) Z. Fan, Z. Zhang, C. Xi, ChemSusChem 2020, 13, 6201–6218; f) G. Zhang, Y. Cheng, M. Beller, F. Chen, Adv. Synth. Catal. 2021, 363, 1583–1596; g) I. Chatterjee, S. Pradhan,
S. Roy, B. Sahoo, Chem. Eur. J. 2021, 27, 2254–2269; h) B. Cai,
H. W. Cheo, T. Liu, J. Wu, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202010710; Angew. Chem. 2021, https://doi.org/10.1002/anie.202010710; j) J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Acc. Chem. Res. 2021, https://doi.org/10.1021/acs. accounts.1c00135.

- [8] For selected reviews on transition metal-catalyzed reductive carboxylation of organic (pseudo)halides with CO₂, see: a) W. Zhang, C. Guo, X. Lu, *Chin. J. Catal.* 2016, *37*, 215–217; b) M. Börjesson, T. Moragas, D. Gallego, R. Martin, *ACS Catal.* 2016, *6*, 6739–6749; c) Y.-G. Chen, X.-T. Xu, K. Zhang, Y.-Q. Li, L.-P. Zhang, P. Fang, T.-S. Mei, *Synthesis* 2018, *50*, 35–48.
- [9] For selected examples via transition metal-catalysis, see: a) A. Correa, R. Martin, J. Am. Chem. Soc. 2009, 131, 15974–15975;
 b) T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 2012, 134, 9106–9109; c) T. León, A. Correa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1221–1224; d) H. Tran-Vu, O. Daugulis, ACS Catal. 2013, 3, 2417–2420; e) S. Zhang, W.-Q. Chen, A. Yu, L.-N. He, ChemCatChem 2015, 7, 3972–3977; f) T. Moragas, M. Gaydou, R. Martin, Angew. Chem. Int. Ed. 2016, 55, 5053–5057; Angew. Chem. 2016, 128, 5137–5141; g) F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature 2017, 545, 84–88.
- [10] For selected examples via photo/electro-chemistry, see: a) K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 9467–9470; b) Q.-Y. Meng, S. Wang, B. Konig, Angew. Chem. Int. Ed. 2017, 56, 13426–13430; Angew. Chem. 2017, 129, 13611–13615; c) K.-J. Jiao, Z.-M. Li, X.-T. Xu, L.-P. Zhang, Y.-Q. Li, K. Zhang, T.-S. Mei, Org. Chem. Front. 2018, 5, 2244–2248; d) L.-L. Liao, G.-M. Cao, J.-H. Ye, G.-Q. Sun, W.-J. Zhou, Y.-Y. Gui, S.-S. Yan, G. Shen, D.-G. Yu, J. Am. Chem. Soc. 2018, 140, 17338–17342.
- [11] For selected examples via transition metal-catalysis, see: a) X. Wang, Y. Liu, R. Martin, J. Am. Chem. Soc. 2015, 137, 6476–6479; b) M. Börjesson, T. Moragas, R. Martin, J. Am. Chem. Soc. 2016, 138, 7504–7507; c) Y. Higuchi, T. Mita, Y. Sato, Org. Lett. 2017, 19, 2710–2713; d) M. Börjesson, D. Janssen-Muller, B. Sahoo, Y. Duan, X. Wang, R. Martin, J. Am. Chem. Soc. 2020, 142, 16234–16239.
- [12] a) H. Wang, Y. Gao, C. Zhou, G. Li, J. Am. Chem. Soc. 2020, 142, 8122–8129; b) W.-J. Zhou, Z.-H. Wang, L.-L. Liao, Y.-X. Jiang, K.-G. Cao, T. Ju, Y. Li, G.-M. Cao, D.-G. Yu, Nat. Commun. 2020, 11, 3263.
- [13] a) J.-H. Ye, M. Miao, H. Huang, S.-S. Yan, Z.-B. Yin, W.-J. Zhou, D.-G. Yu, Angew. Chem. Int. Ed. 2017, 56, 15416-15420; Angew. Chem. 2017, 129, 15618-15622; b) T. Ju, Q. Fu, J. H. Ye, Z. Zhang, L. L. Liao, S. S. Yan, X. Y. Tian, S. P. Luo, J. Li, D. G. Yu, Angew. Chem. Int. Ed. 2018, 57, 13897-13901; Angew. Chem. 2018, 130, 14093-14097; c) L. Song, D.-M. Fu, L. Chen, Y.-X. Jiang, J. H. Ye, L. Zhu, Y. Lan, Q. Fu, D.-G. Yu, Angew. Chem. Int. Ed. 2012, 59, 21121-21128; Angew. Chem. 2020, 132, 21307-21314; d) H. Huang, J.-H. Ye, L. Zhu, C.-K. Ran, M. Miao, W. Wang, H. Chen, W.-J. Zhou, Y. Lan, B. Yu, D.-G. Yu, CCS Chem. 2020, 2, 1746-1756.
- [14] For selected reviews on asymmetric synthesis with CO₂, see:
 a) N. Kielland, C. J. Whiteoak, A. W. Kleij, *Adv. Synth. Catal.* 2013, 355, 2115–2138; b) J. Vaitla, Y. Guttormsen, J. Mannisto, A. Nova, T. Repo, A. Bayer, K. H. Hopmann, *ACS Catal.* 2017, 7, 7231–7244; c) C.-K. Ran, X.-W. Chen, Y.-Y. Gui, J. Liu, L. Song, K. Ren, D.-G. Yu, *Sci. China Chem.* 2020, 63, 1336–1351;

www.angewandte.org

© 2021 Wiley-VCH GmbH

These are not the final page numbers!

d) X. Guo, Y. Wang, J. Chen, G. Li, J.-B. Xia, *Chin. J. Org. Chem.* **2020**, *40*, 2208–2220; e) Y. Shi, B. W. Pan, Y. Zhou, J. Zhou, Y. L. Liu, F. Zhou, *Org. Biomol. Chem.* **2020**, *18*, 8597–8619.

- [15] For selected examples of asymmetric catalytic synthesis with CO₂ involving C–C bonds formation, see: a) M. Takimoto, Y. Nakamura, K. Kimura, M. J. Mori, J. Am. Chem. Soc. 2004, 126, 5956–5957; b) L. Dian, D. S. Müller, I. Marek, Angew. Chem. Int. Ed. 2017, 56, 6783–6787; Angew. Chem. 2017, 129, 6887–6891; c) Y.-Y. Gui, N. Hu, X.-W. Chen, L.-L. Liao, T. Ju, J.-H. Ye, Z. Zhang, J. Li, D.-G. Yu, J. Am. Chem. Soc. 2017, 139, 17011–17014; d) X.-W. Chen, L. Zhu, Y.-Y. Gui, K. Jing, Y.-X. Jiang, Z.-Y. Bo, Y. Lan, J. Li, D.-G. Yu, J. Am. Chem. Soc. 2019, 141, 18825–18835; e) J. Qiu, S. Gao, C. Li, L. Zhang, Z. Wang, X. Wang, K. Ding, Chem. Eur. J. 2019, 25, 13874–13878; f) M.-Y. Wang, X. Jin, X. Wang, S. Xia, Y. Wang, S. Huang, Y. Li, L.-N. He, X. Ma, Angew. Chem. Int. Ed. 2021, 60, 3984–3988; Angew. Chem. 2021, 133, 4030–4034.
- [16] For selected reviews: a) F. zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381-1407; b) R. Dalpozzo, G. Bartoli, G. Bencivenni, Chem. Soc. Rev. 2012, 41, 7247-7290; c) K. Shen, X. Liu, L. Lin, X. Feng, Chem. Sci. 2012, 3, 327-334; d) L. M. Repka, S. E. Reisman, J. Org. Chem. 2013, 78, 12314-12320; e) J. Song, D.-F. Chen, L.-Z. Gong, Natl. Sci. Rev. 2017, 4, 381-396; f) X.-Y. Liu, Y. Qin, Acc. Chem. Res. 2019, 52, 1877-1891; g) C. Zheng, S.-L. You, Nat. Prod. Rep. 2019, 36, 1589-1605; h) Y. Ping, Y. Li, J. Zhu, W. Kong, Angew. Chem. Int. Ed. 2019, 58, 1562-1573; Angew. Chem. 2019, 131, 1576-1587; i) A. D. Marchese, E. M. Larin, B. Mirabi, M. Lautens, Acc. Chem. Res. 2020, 53, 1605-1619; j) A. J. Boddy, J. A. Bull, Org. Chem. Front. 2021, 8, 1026-1084; k) G.-J. Mei, W. L. Koay, C. X. A. Tan, Y. Lu, Chem. Soc. Rev. 2021, https://doi.org/10.1039/ D0CS00530D; For selected examples on oxindoles synthesis via intramolecular Mizoroki-Heck reaction with C=X: 1) Y. X. Jia, D. Katayev, E. P. Kundig, Chem. Commun. 2010, 46, 130-132; m) J. X. Hu, H. Wu, C. Y. Li, W. J. Sheng, Y. X. Jia, J. R. Gao, Chem. Eur. J. 2011, 17, 5234-5237; n) P. Tolstoy, S. X. Y. Lee, C. Sparr, S. V. Ley, Org. Lett. 2012, 14, 4810-4813; o) I. Shin, S. D. Ramgren, M. J. Krische, Tetrahedron 2015, 71, 5776-5780; p) A. Burke, C. Marques, S. Lawrence, Synlett 2017, 29, 497-502.
- [17] For selected examples, see: a) T. Matsuura, L. E. Overman, D. J. Poon, J. Am. Chem. Soc. 1998, 120, 6500-6503; b) A. Pinto, Y. Jia, L. Neuville, J. Zhu, Chem. Eur. J. 2007, 13, 961-967; c) S. Ma, X. Han, S. Krishnan, S. C. Virgil, B. M. Stoltz, Angew. Chem. Int. Ed. 2009, 48, 8037-8041; Angew. Chem. 2009, 121, 8181-8185; d) X. Liu, B. Li, Z. Gu, J. Org. Chem. 2015, 80, 7547-7554; e) H.-F. Tu, X. Zhang, C. Zheng, M. Zhu, S.-L. You, Nat. Catal. 2018, 1, 601-608; f) H. Hu, F. Teng, J. Liu, W. Hu, S. Luo, Q. Zhu, Angew. Chem. Int. Ed. 2019, 58, 9225-9229; Angew. Chem. 2019, 131, 9323-9327; g) M. Chen, X. Wang, P. Yang, X. Kou, Z.-H. Ren, Z.-H. Guan, Angew. Chem. Int. Ed. 2020, 59, 12199-12205; Angew. Chem. 2020, 132, 12297-12303; h) A. D. Marchese, M. Wollenburg, B. Mirabi, X. Abel-Snape, A. Whyte, F. Glorius, M. Lautens, ACS Catal. 2020, 10, 4780-4785.
- [18] For selected reviews, see: a) Metal catalyzed reductive C-C bond formation (Ed.: M. J. Krische), Springer, Heidelberg, 2007; b) "Cross-Electrophile Coupling: Principles and New Reactions": M. J. Goldfogel, L. Huang, D. J. Weix in Nickel Catalysis in Synthesis: Methods and Reactions (Ed.: S. Ogoshi), Wiley-VCH, Weinheim, 2020, p. 352; c) C. E. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828-6842; d) T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242-8258; e) X. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 2016, 374, 43; f) J. Moran, E. Richmond, Synthesis 2017, 50, 499-513; g) E. L. Lucas, E. R. Jarvo, Nat. Rev. Chem. 2017, 1, 0065-0071; h) M. Holmes, L. A.

Schwartz, M. J. Krische, *Chem. Rev.* 2018, *118*, 6026–6052;
i) R. S. Doerksen, C. C. Meyer, M. J. Krische, *Angew. Chem. Int. Ed.* 2019, *58*, 14055–14064; *Angew. Chem.* 2019, *131*, 14193–14202;
j) J. Liu, Y. Ye, J. L. Sessler, H. Gong, *Acc. Chem. Res.* 2020, *53*, 1833–1845; k) C. C. Meyer, E. Ortiz, M. J. Krische, *Chem. Rev.* 2020, *120*, 3721–3748.

- [19] For recent asymmetric catalytic reductive difunctionalization of alkenes, see: a) Y. Jin, C. Wang, *Synlett* 2020, *31*, 1843–1850;
 b) K. E. Poremba, S. E. Dibrell, S. E. Reisman, *ACS Catal.* 2020, *10*, 8237–8246; c) J. Diccianni, Q. Lin, T. Diao, *Acc. Chem. Res.* 2020, *53*, 906–919; d) Y. Ping, W. Kong, *Synthesis* 2020, *52*, 979–992.
- [20] For recent examples on catalytic asymmetric reductive functionalization of alkenes, see: a) X. Qin, M. W. Y. Lee, J. S. Zhou, Angew. Chem. Int. Ed. 2017, 56, 12723-12726; Angew. Chem. 2017, 129, 12897-12900; b) K. Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018, 140, 12364-12368; c) D. Anthony, Q. Lin, J. Baudet, T. Diao, Angew. Chem. Int. Ed. 2019, 58, 3198-3202; Angew. Chem. 2019, 131, 3230-3234; d) Y. Jin, C. Wang, Angew. Chem. Int. Ed. 2019, 58, 6722-6726; Angew. Chem. 2019, 131, 6794-6798; e) Z.-X. Tian, J.-B. Qiao, G.-L. Xu, X. Pang, L. Qi, W.-Y. Ma, Z.-Z. Zhao, J. Duan, Y.-F. Du, P. Su, X.-Y. Liu, X.-Z. Shu, J. Am. Chem. Soc. 2019, 141, 7637-7643; f) J. He, Y. Xue, B. Han, C. Zhang, Y. Wang, S. Zhu, Angew. Chem. Int. Ed. 2020, 59, 2328-2332; Angew. Chem. 2020, 132, 2348-2352; g) H.-Y. Tu, F. Wang, L. Huo, Y. Li, S. Zhu, X. Zhao, H. Li, F.-L. Qing, L. Chu, J. Am. Chem. Soc. 2020, 142, 9604-9611; h) X. Wei, W. Shu, A. Garcia-Dominguez, E. Merino, C. Nevado, J. Am. Chem. Soc. 2020, 142, 13515-13522; i) X. Wu, J. Qu, Y. Chen, J. Am. Chem. Soc. 2020, 142, 15654-15660; j) Y. Ping, K. Wang, Q. Pan, Z. Ding, Z. Zhou, Y. Guo, W. Kong, ACS Catal. 2019, 9, 7335-7342; k) Y. Li, Z. Ding, A. Lei, W. Kong, Org. Chem. Front. 2019, 6, 3305-3309; 1) T. Ma, Y. Chen, Y. Li, Y. Ping, W. Kong, ACS Catal. 2019, 9, 9127-9133.
- [21] For selected examples on direct catalytic asymmetric reductive cross-coupling reaction, see: a) A. H. Cherney, N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2013, 135, 7442-7445; b) Z. Tan, X. Wan, Z. Zang, Q. Qian, W. Deng, H. Gong, Chem. Commun. 2014, 50, 3827-3830; c) N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2015, 137, 10480-10483; d) Y. Zhao, D. J. Weix, J. Am. Chem. Soc. 2015, 137, 3237-3240; e) B. P. Woods, M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc. 2017, 139, 5688-5691; f) H. Qiu, B. Shuai, Y.-Z. Wang, D. Liu, Y.-G. Chen, P.-S. Gao, H.-X. Ma, S. Chen, T.-S. Mei, J. Am. Chem. Soc. 2020, 142, 9872-9878; g) P. Zhou, T. Xu, Chem. Commun. 2020, 56, 8194-8197; h) Z. Zuo, R. S. Kim, D. A. Watson, J. Am. Chem. Soc. 2021, 143, 1328-1333.
- [22] Deposition Numbers 2030840 (for 2g), and 2030841 (for 2n) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/ structures.
- [23] J. J. Winter-Holt, E. G. Mciver, M. Ambler, S. Lewis, J. Osborne, K. K. Webb-Smith, WO 2017085484, 2017.
- [24] a) A. Brossi, J. Med. Chem. 1990, 33, 2311–2319; b) Q.-S. Yu, H. W. Holloway, T. Utsuki, A. Brossi, N. H. Greig, J. Med. Chem. 1999, 42, 1855–1861; c) E. Rivera-Becerril, P. Joseph-Nathan, V. M. Perez-Alvarez, M. S. Morales-Ríos, J. Med. Chem. 2008, 51, 5271–5284.

Manuscript received: February 23, 2021 Accepted manuscript online: April 1, 2021 Version of record online:

© 2021 Wiley-VCH GmbH

www.angewandte.org

Research Articles

Research Articles

Asymmetric Synthesis

X.-W. Chen, J.-P. Yue, K. Wang, Y.-Y. Gui, Y.-N. Niu, J. Liu, C.-K. Ran, W. Kong,* W.-J. Zhou, D.-G. Yu* _____

Nickel-Catalyzed Asymmetric Reductive Carbo-Carboxylation of Alkenes with CO₂

A strategy is presented for nickel-catalyzed asymmetric reductive carbo-carboxylation of alkenes with CO₂. A variety of aryl (pseudo)halides react to produce oxindole-3-acetic acid derivatives bearing a C3-quaternary stereocenter. Notably, synthesis of a range of bioactive pyrroloindolines was achieved.