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Skeletal editing through direct nitrogen 
deletion of secondary amines

Sean H. Kennedy1, Balu D. Dherange1,2, Kathleen J. Berger1,2 & Mark D. Levin1 ✉

Synthetic chemistry aims to build up molecular complexity from simple feedstocks1. 
However, the ability to exert precise changes that manipulate the connectivity of the 
molecular skeleton itself remains limited, despite possessing substantial potential to 
expand the accessible chemical space2,3. Here we report a reaction that ‘deletes’ 
nitrogen from organic molecules. We show that N-pivaloyloxy-N-alkoxyamides, a 
subclass of anomeric amides, promote the intermolecular activation of secondary 
aliphatic amines to yield intramolecular carbon–carbon coupling products. 
Mechanistic experiments indicate that the reactions proceed via isodiazene 
intermediates that extrude the nitrogen atom as dinitrogen, producing short-lived 
diradicals that rapidly couple to form the new carbon–carbon bond. The reaction 
shows broad functional-group tolerance, which enables the translation of routine 
amine synthesis protocols into a strategy for carbon–carbon bond constructions and 
ring syntheses. This is highlighted by the use of this reaction in the syntheses and 
skeletal editing of bioactive compounds.

Retrosynthetic analysis is the cornerstone of synthesis. As chemical 
transformations are discovered, they can be evaluated in terms of the 
retrosynthetic disconnections that they enable, and the forward pro-
gress of synthesis—broadly speaking—can be assessed by inspection 
of the total set of available disconnections. Accordingly, the identifi-
cation and realization of synthetically attractive transformations that 
represent inaccessible or otherwise underused molecular changes is 
paramount to the continued advancement of the chemical sciences, 
and as such the advancement of all allied fields that design and deploy 
purpose-built molecules. Molecular editing and late-stage function-
alization have emerged as appealing strategies for the identification 
of such ‘missing’ transformations4–7, and represent the ideals of mod-
ern synthesis—including the ability to build and tolerate complexity. 
However, their intellectual deployment has so far largely focused on 
C–H functionalization chemistry (peripheral editing). Conversely, 
modification of the underlying molecular skeleton (skeletal editing) has 
not achieved the same level of refinement, despite receiving increasing 
interest from many laboratories8–12.

In our own assessment, such skeletal transformations represent a 
large untapped pool of potentially transformative chemical reactions, 
should they be realized (Fig. 1a). Among these, single-atom insertions 
and deletions are particularly attractive from the standpoint of ret-
rosynthetic simplicity, in contrast to many known skeletal rearrange-
ments for which complex patterns of reactivity require substantial 
skill and insight to recognize as disconnections. Indeed, many classic 
reactions—especially in the context of carbonyl chemistry—enable 
the insertion or deletion of carbon, nitrogen or oxygen into molecular 
skeletons (for example the Wolff, Favorskii and Bayer–Villiger rear-
rangements)13,14. Nonetheless, broadly speaking, accessible single-step 
skeletal transformations remain limited. Here we report a reaction 
that excises nitrogen atoms from secondary amines, liberating N2 and 
forging a new C–C bond between the remaining molecular fragments.

Our approach was based on the mechanistic hypothesis outlined in 
Fig. 1b. This hypothesis was in turn supported by precedented chemis-
try of anomeric amides, which—in analogy to the anomeric centres of 
carbohydrates—bear two oxygen substituents on the amide nitrogen15. 
Bis-heteroatom-substituted amides have been studied in detail and 
display unusual pyramidalization at nitrogen as well as notable electro-
philic reactivity16. In particular, N-methylaniline was observed to form 
a tetrazene product upon reaction with reagent 1a, which is strongly 
suggestive of an isodiazene intermediate15 (Fig. 1c). These latter species 
piqued our interest owing to their known N2-extrusion reactivity, pro-
viding diradical species that undergo rapid, intramolecular C-C bond 
formation17–19. Classical routes to such intermediates involve multistep 
protocols that use hazardous reagents—one frequently used synthesis 
involves a sequence of N-nitrosation (requiring isolation of carcino-
genic N-nitrosamine compounds), reduction to the 1,1-hydrazine and 
oxidation with stoichiometric mercuric oxide or lead tetraacetate20. We 
reasoned that the combination of anomeric amide reagents with suit-
able secondary amine nucleophiles would enable a single-step protocol 
for nitrogen deletion directly from secondary amines. Crucially, this 
would facilitate the examination of skeletal edits by circumventing the 
laborious and undesirable features of existing protocols21,22.

From a retrosynthetic perspective, this strategy would enable 
aliphatic C–N bond-forming reactions to serve formally as C–C 
bond-forming surrogates. This is advantageous in part because of 
the reliability and broad scope of iminium-based transformations 
that feature prominently among the medicinal chemistry toolbox. 
For example, reductive amination consistently ranks in the top ten 
most-used reactions in drug discovery, and iminium-based cycliza-
tion methods are broadly applied for the synthesis of cyclic amines23. 
These methods have led to the proliferation of amines as feedstock 
chemicals, and thousands of derivatives are now commercially  
available24,25.
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Our investigation began with the N-benzyloxy-N-acetoxybenzamide 
1a (ref. 15) (Fig. 2a). Reaction with the model substrate 2a in tetrahy-
drofuran solution at 45 °C resulted in a 35% yield of nitrogen deletion 
product 3a. However, acetamide 4a was observed as a major side 
product, which probably formed through competitive substitution 
at the acyl carbon. To ameliorate this, we synthesized the N-pivaloxy 
derivative 1b. When used under identical conditions, none of the 
corresponding pivalamide side product 4b could be detected and 
3a was produced in an improved yield of 57%. Further evaluation of 
substituent effects revealed that para-trifluoromethyl-substituted 
reagent 1c reacted more rapidly, leading to complete conversion of 2a 
within 5 h, in comparison to the 18-h reaction time required for 1b. This 
was representative of a general trend: a competition Hammett study 
revealed a slope of 0.60 (corresponding to the reaction constant ρ)  
when rate data were plotted against the electrophilic substituent 
constant (σ+)26 (Fig. 2b). However, the preparation of reagents that 
are more electron-poor than 1c failed using our standard procedure. 
Anomeric amide 1c is straightforward to prepare on a multigram 
scale: a three-step sequence from commercially available reagents 

furnishes 28 g of material in 78% overall yield with no chromatographic 
purification.

With reagent 1c in hand, we endeavoured to explore the scope and 
limitations of this process in terms of both the functional-group com-
patibility and the structural diversity. To address the former, we evalu-
ated a series of substituted dibenzylamines and their heteroaromatic 
analogues, all of which were prepared through reductive amination and 
bore various medicinally relevant functionality. As shown in Fig. 3, the 
functional-group tolerance of this methodology is high, and includes 
both basic nitrogen heterocycles (3j–3m), unprotected protic function-
ality (3h, 3i), and reducing or Lewis basic functionality (3c, 3f, 3g, 3l). 
This is particularly notable considering the presence of several highly 
reactive intermediates in our proposed mechanism, and highlights the 
chemoselectivity of the anomeric amide reagents.

With respect to structural variation, cyclic amines offer a unique 
opportunity to promote ring contractions that give access to new 
molecular skeletons. Although atom deletion might ostensibly be 
considered to be a simplifying transformation, ring contractions high-
light the power of these transformations to instead build molecular 
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complexity, wherein the nitrogen atom can serve as a traceless linch-
pin for the initial ring synthesis, yielding the (n − 1) carbon framework 
after nitrogen deletion. Contractions of azetidines to cyclopropanes, 
pyrrolidines to cyclobutanes, piperidines to cyclopentanes, azepanes 
to cyclohexanes, and azocanes to cycloheptanes—as well as their het-
erocyclic analogues—can all be achieved using reagent 1c. It should be 
noted that steric effects can preclude reactivity altogether: whereas 2n 
and 2o react smoothly, acyclic bis(α-secondary)amines and α-tertiary 

amines are typically inert to the present conditions27. Notably, conju-
gated radicals are not a strict requirement on both substituents for 
efficient reactivity, as demonstrated by 2p, 2s, 2v, 2w, 2ab and 2ad, 
for which benzylic substitution is present on only one of the two react-
ing aliphatic substituents; in acyclic systems a single benzylic centre 
is sufficient, whereas for cyclic systems, two stabilizing elements are 
necessary for productive C–C bond formation, either one on each 
terminus or both on the same reactive centre. In cases in which the 
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requisite stabilizing elements are lacking, side reactions can predomi-
nate, including rearrangement of the isodiazene to a hydrazone. For a 
more detailed analysis of limitations, see Supplementary Fig. 2 and its 
associated analysis in the Supporting Information.

As noted above, connecting this methodology to existing amine 
syntheses enables fundamentally new retrosynthetic logic: [3+2] 
cycloaddition can be used to construct pyrrolidines 2x and 2y, and 
subsequent nitrogen deletion affords cyclobutanes 3x and 3y28. 3y 
can be further elaborated to the histamine H3 receptor modulator 5 
through stepwise, formal hydroamination, highlighting the potential 
for this method to benefit medicinal chemistry29,30. This method also 
enables the synthesis of the folate antimetabolite pemetrexed (6, via 
the protected precursor 3z), which is used as a chemotherapeutic in the 
treatment of lung cancer31. In this synthesis, reductive amination unites 
the two functional-group-laden halves of the molecule, and nitrogen 
deletion subsequently forges the central C–C bond, again highlighting 
the functional-group compatibility of this method. We have further 
used our method to provide an accelerated synthesis of the atropoi-
someric marine metabolite polysiphenol, 7, intercepting the known 
synthetic intermediate 3aa32. The previously reported preparation of 
3aa relies on hydrogenation of a stilbene, the preparation of which—via 
olefination—requires diverging a common aldehyde intermediate to 
prepare the corresponding ylide over 3 steps. By contrast, our synthe-
sis enables conversion of the aldehyde to the bibenzyl dimer (via an 
amine linchpin) without the need to divert half of the material through 
a phosphonium synthesis. Finally, we performed skeletal editing on 
several bioactive compounds, including the tyrosine kinase inhibi-
tor lapatinib33, the nicotinic alkaloid anatabine34, and the advanced 
glycation end product inhibitor tenilsetam35. The chemoselective 
nitrogen deletion of lapatinib in particular exemplifies the merits of 
a skeletal-editing approach, as preparation of derivative 3ab would 
otherwise require repetition of the entire synthetic sequence for the 
preparation of lapatinib from the beginning, starting from a des-amino 
analogue of the sidearm.

Mechanistically, we anticipated that this transformation would 
follow the pattern outlined in Fig. 1b, namely: bimolecular nucleo-
philic substitution of the pivaloxy group of 1c by the amine; formal 

reductive elimination of the benzoate ester to afford an isodiazene 
intermediate36,37; N2 loss to generate a geminate radical pair; and C–C 
bond-forming radical recombination. However, because we are using 
more-electron-rich amine nucleophiles and have modified several 
features of the anomeric amide, this expected pathway might not be 
operative. Nonetheless, we have garnered preliminary evidence for 
this proposed mechanism.

With respect to the first step, a minimal solvent effect was observed. 
Initial rates were only slightly perturbed across solvents whose Reich-
ardt polarity index E T

N ranged from 0.309 (dichloromethane) to 0.099 
(toluene); this suggests that the initial nucleophilic substitution is 
probably SN2-like, in line with the ρ value measured in the Hammett 
study discussed above. A crossover experiment using reagents with 
distinct benzoyl and alkoxy substituents (Supplementary Fig. 12) led 
to the exclusive formation of benzoate esters corresponding to intra-
molecular C–O bond formation, and no crossover products were 
detected. This indicates that the second step of the transformation is 
an intramolecular process. Although we cannot conclusively rule out 
an ionic mechanism that involves fast intramolecular recombination, 
previous computational studies have demonstrated concerted, formal 
reductive elimination to be an accessible pathway in N-alkoxyhydrazine 
thermolyses36,37. The involvement of an isodiazene intermediate is 
supported by the formation of the rearranged 1,2-diazine product 8 
from allylamine 2ae, arising from [2,3]-sigmatropic rearrangement of 
the intermediate isodiazene38 (Fig. 4a).

Evidence for the subsequent extrusion process comes from an analy-
sis of product distributions in asymmetric substrates (Fig. 4b). The 
formally intramolecular products (3) for non-symmetric substrates are 
favoured in all cases—well above the statistically anticipated 1:2:1 ratio 
that would arise from a free-radical process, as was recently observed 
for a Ni-catalysed deamination of benzylic ammonium salts—which sug-
gests a largely in-cage recombination process39. The variable amounts 
(1–10% yield depending on the substrate used) of the corresponding 
symmetric (‘intermolecular’) products (9, 10) are effectively scavenged 
by the addition of 2,2,6,6-tetramethylpiperidin-1-yl-oxyl (TEMPO), 
whereas the intramolecular coupling product shows minimal pertur-
bation by such scavengers.
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Radical clock experiments were conducted using (cyclopropyl)
methyl-substituted amines to gain further insight into the radical 
recombination process (Fig. 4c). The parent compound (2ag) under-
goes nitrogen deletion without detectable rearrangement, whereas 
a phenyl-substituted analogue (2ah) yields products both with and 
without rearrangement of the cyclopropane. Despite the poor mass 
balance in these reactions (see Supplementary Fig. 17 for identified side 
products), the results are nonetheless consistent with predominantly 
in-cage recombination (rate of rearrangement, kr, is around 108 s−1 for 
the cyclopropyl methyl radical)40, with partial rearrangement of 2ah 
suggesting that the in-cage C–C bond-forming mechanism involves 
radical species. Although estimates of cage-escape rates differ, the 
rate of rearrangement of the intermediate cyclopropylmethyl radical 
derived from substrate 2ah (kr ≈ 1011 s−1) is roughly similar to that of such 
processes41. However, we cannot categorically exclude a competitive 
non-radical pathway for the formation of 3ah. Given the high-energy 
species involved in this reaction, it is likely that dynamic effects strongly 
influence the partitioning of the isodiazene intermediate. This is further 
evidenced by the exclusive formation of cis-3o from cis-2o, in contrast 
to the trans product diastereomer that is predicted by a Woodward–
Hoffman analysis of the putative ortho-quinodimethane intermediate, 
which suggests that the initially formed diradical intermediate never 
relaxes to a fully planar conformation42.

In summary, we have developed an anomeric amide reagent that ena-
bles straightforward nitrogen deletion of secondary amine substrates. 
The reaction relies on the facile in situ generation of an isodiazene 
intermediate, which extrudes N2 and forms a new C–C bond. We have 
demonstrated the high functional-group tolerance of this method and 
its application to ring contractions of cyclic amines. This transforma-
tion should serve as a valuable tool for structural optimization in a 
variety of contexts, adding to the growing catalogue of skeletal-editing 
technologies.
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