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(+)-proto-Quercitol (1) and (—)-vibo-quercitol (2), both of which could be readily prepared by the biocon-
version of myo-inositol, were successfully converted into the corresponding 4-methylenecyclohex-
5-ene-1,2,3-triol derivatives. These compounds were demonstrated to be suitable precursors, preserving
their configurations, for bioactive carba-aminosugars such as the potent chemical chaperone drug
candidates, N-octyl-4-epi-B-valienamine (NOEV, 3) and N-octyl-B-valienamine (NOV, 4).

© 2011 Elsevier Ltd. All rights reserved.

Deoxyinositols, namely quercitols, are naturally occurring
cyclohexanepentaols. There are 10 possible diastereoisomers (four
meso and six optically active) for a quercitol. Recent extensive
studies on the bioconversion of myo-inositol have provided us with
(+)-proto-quercitol (1), (—)-vibo-quercitol (2) and (+)-epi-quercitol
(Fig. 1).! They have been employed as useful chiral starting mate-
rials for syntheses of various bioactive compounds.> However, the
major synthetic strategies for valienamine-type carbasugars re-
ported so far have not started from quercitols.® For instance, one
of the authors synthesized valienamine derivatives via conjugated
dienes starting from Diels-Alder adducts of furan and acrylic acid.*
These routes have been reliably accepted for the synthesis of car-
basugars but required optical resolution when chiral compounds
were desired.” Thus, a novel synthetic correlation between querc-
itols and chiral diene intermediates would provide a short, concise
route to chiral unsaturated valienamine-type carbasugars while
eliminating the cumbersome optical resolution.

Among some biologically interesting carbasugar derivatives,
much attention has recently focused on N-octyl-4-epi-B-valienamine
(NOEV, 3) and N-octyl-p-valienamine (NOV, 4) because they show
curative activities toward lysosomal storage disorders that are cate-
gorized as rare interactive diseases.® In the present communication,
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the conversion of quercitols to the diene intermediates could be
accomplished with minimum chemical conversion, and they were
shown to be transformed into the valienamine analogs 3 and 4, which
are drug candidates. First, (+)-proto-quercitol (1) obtained by the
bioconversion of myo-inositol was converted to the corresponding
arabino-type 4-methylenecyclohex-5-ene-1,2,3-triol derivative (7).
Next, the diene 7 was transformed into the valienamine derivative
3. On the other hand, (-)-vibo-quercitol (2), similarly derived from
myo-inositol, was employed as a chiral starting material for the
synthesis of 4 via the xylo-type intermediate (12).
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Figure 1. (+)-proto-Quercitol (1), (—)-vibo-quercitol (2), N-octyl-4-epi-p-valien-
amine (NOEV, 3) and N-octyl-p-valienamine (NOV, 4).


http://dx.doi.org/10.1016/j.bmcl.2011.09.067
mailto:kuno-s@hokkochem.co.jp
http://dx.doi.org/10.1016/j.bmcl.2011.09.067
http://www.sciencedirect.com/science/journal/0960894X
http://www.elsevier.com/locate/bmcl

7190 S. Kuno et al./Bioorg. Med. Chem. Lett. 21 (2011) 7189-7192

Isopropylidenation of (+)-proto-quercitol (1) with 2,2-dime-
thoxypropane and a catalytic amount of (+)-10-camphorsulfonic
acid and then  successive Parikh-Doering oxidation
(SO5'py/EtsN/DMSO) gave ketone 5 (53%) (Scheme 1). Treatment
of 5 with a catalytic amount of pyridinium-p-toluenesulfonate in
methanol selectively removed the acetal attached to the trans-diol
to afford a dihydroxy ketone. The ketone could be isolated in pure
form as enol-benzoate 6 (60%) by treatment with benzoyl chloride
in pyridine. Under Wittig reaction conditions with an excess of
methyltriphenylphosphonium bromide and n-Buli, elimination of
the benzoyloxy group and methylenation of 6 successively oc-
curred to give the diene 7 (66%).” Thus, (+)-proto-quercitol (1)
was readily converted to the intermediate 7 in five steps.

The 1,4-addition of a slight excess of bromine to compound 7
gave an 85% yield of ca. 1:1 diastereomeric mixture of the dibromo
compounds 8a and 8p. The mixture was easily converted to the
mono-o,B-bromo compounds 9a and 9p (91%) with sodium benzo-
ate in DMF. Debenzoylation of 9a and 98 under Zemplén condi-
tions afforded an a-bromo?® diol (47%) and an epoxide (26%).° The
two products were first considered to be diastereomeric o- and
B-bromo diols, but the B-bromo compound was likely to undergo
a neighboring attack of the hydroxyl under basic conditions to af-
ford an epoxide. Both the a-bromo and epoxy compounds that
were obtained were expected to generate a single B-diastereomer
through a front-side Sy2 nucleophilic substitution.

The mixture containing o-bromo and epoxy compounds was
treated with n-octylamine in acetonitrile, followed by deprotection
of the acetal group using aqueous acetic acid. Purification of a
crude amine salt on a silica gel column (10:86:4 — 1:6:3 acetic
acid/CHClz/methanol) and a Duolite 20 (H*) resin column (80%
aqueous methanol — 4:1 methanol/25% ammonia) resulted in the
isolation of a single N-octyl p-amine NOEV (3)'° (47% based on
the mixture of the two compounds obtained from 9« and 98).

The synthesis of NOV (4) was accomplished starting from (—)-
vibo-quercitol (2) following a similar strategy to the synthesis of
NOEV (Scheme 2). First, 2 was transformed quantitatively to (—)-
2-deoxy-scyllo-inosose (10) by bio-oxidation according to the
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Scheme 1. Synthesis of NOEV (3) from (+)-proto-quercitol (1) via a diene benzoate
(7). Reagents and conditions: (a) 2,2-dimethoxypropane (10 mol equiv), CSA
(0.2 mol equiv), acetone, 19 h, rt; SO5:py (3 mol equiv), EtzN (2 mol equiv), DMSO,
4.5, 0°C to rt, 53% for two steps; (b) PPTS (0.2 mol equiv), MeOH, 23 h, 4 °C; BzCl
(8 mol equiv), py, 21 h, 0 °C to rt, 60% for two steps; (c) Ph3PCH3Br (6 mol equiv), n-
BulLi (4 mol equiv), THF, 21 h, —78 °C to 4 °C, 66%; (d) Br, (1.1 mol equiv), NaHCO3
(2 mol equiv), CCly, 20 min, rt, 85%; (e) NaOBz (1.2 mol equiv), DMF, 47 h, rt, 91%; (f)
NaOMe (1 mol equiv), MeOH, 2 h, rt, 47% for an o-bromo diol and 26% for an
epoxide; n-octylamine (3.5 mol equiv), MeCN, 16 h, 60-70 °C, and 80% aqueous
AcOH, 4 h, 80 °C, 47%.
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Scheme 2. Synthesis of NOV (4) from (—)-vibo-quercitol (2) via a tri-O-acetylated
diene (12). Reagents and conditions: (a) bacterial bioconversion; (b) BFs/diethyl-
ether complex (2.4 mol equiv), Ac,0, 1.5 h, 0 °C to rt, and AcOH, 2.5 h, reflux, 83%;
(¢) Nysted reagent (3 mol equiv), TiCl4 (2 mol equiv), THF, CH,Cl,, 1 h, —15 °C to rt,
25%; (d) Bry (1 mol equiv), CCls, 15 min, rt, 96%; (e) NaOAc (1.2 mol equiv), DMF,
19h, rt, 53%; (f) n-octylamine (5 molequiv), MeCN, 4h, 50°C, and NaOMe
(1 mol equiv), MeOH, 2 h, rt, 31%.

previously reported procedure.?®> Next, treatment of 10 with a Le-
wis acid, BFz/diethyl ether complex, in acetic anhydride gave the
tetra-O-acetyl derivative of 10. The reaction mixture was, without
separation, diluted with EtOAc and quenched with saturated aque-
ous NaHCOs; the organic layer was successively washed with
water and brine and then dried and co-evaporated with toluene
and ethanol. The residue was refluxed in acetic acid to give the
o,B-unsaturated ketone 11 (83% from 10). It was noteworthy that
the attempted acylation of 10 under basic conditions with pyridine
or triethylamine resulted in a facile elimination of acetoxyl groups
to give a complex mixture containing an aromatic compound.’
Alternatively, the application of other Lewis acids instead of the
BFs/diethyl ether complex gave different results. For example,
treatment of 10 with trimethylsilyl triflate (4 mol equiv) in acetic
anhydride for 19 h between 0 °C and room temperature afforded
ca. a 10:3 mixture of the ketone 11 and the aromatic side-prod-
uct!! in 82% yield. Exomethylenation of 11 with Nysted reagent!2
afforded the triacetyl derivative 12 in 25% yield.® In this methyle-
nation reaction, a basic environment, such as Wittig reaction
conditions, seemed to facilitate the undesirable elimination of
the B-acetoxyl group.

The diene intermediate 12 was similarly treated with bromine,
as mentioned above, to give a mixture of the 1,4-addition products
13a and 13 (96%), which was converted to the isomeric mixture of
bromo compounds 14a and 14p (53%) by treatment with sodium
acetate. The reaction of 14a and 14p with an excess of n-octyl-
amine gave a single protected N-octyl p-amine,'* which was then
subjected to Zemplén conditions to remove the remaining acetyl
groups. After purification on a silica gel column (10:86:4 — 1:8:1
acetic acid/CHClz/methanol) and a column of a Duolite 20 (H") re-
sin (80% aqueous methanol — 4:1 methanol/25% ammonia), NOV
(4) was obtained in 31% yield based on 14a and 14p."°

Using the appropriate quercitols as starting materials, valien-
amine-type unsaturated carba-amino sugars, such as the potent
drug candidates NOEV and NOV, could be conveniently prepared
as optically pure forms via 4-methylenecyclohex-5-ene-1,2,3-triol
derivatives.

Enzyme inhibitory activity: Free amines 3 and 4 were quantita-
tively converted to the hydrochloride salts 15 and 16 with 1 M
HCI (aq) in order to increase their water solubility for biological
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Table 1
Enzyme inhibitory activity of the amine hydrochlorides 15 and 16 against four glycosidases
MO [oH O O _n
-
HO N H N~(CHy),cH
i o _(CH2)7CH3 "o H/ _( 2)7CH3
Cl Cl
15 16
Compound ICs0 (UM)
B-Galactosidase (bovine liver) B-Galactosidase (Aspergillus oryzae) B-Glucosidase (almonds) o-Galactosidase (green coffer beans)
15° 4.5 85 8.1 4.5
16 2.9 NT 47 NI

NI, ICso >1 mM; NT, not tested.

2 This compound did not show any notable inhibitory activity against B-mannosidase (helix pomatia), a-fucosidase (human placenta), or a-mannosidase (jack beans).

assay. 15 was first assayed'® for inhibitory activity against seven
commercially available glycosidases: B-galactosidase (bovine liver
and aspergillus oryzae), B-glucosidase (almonds), B-mannosidase
(helix pomatia), a-fucosidase (human placenta), a-galactosidase
(green coffee beans), and a-mannosidase (Jack beans). On the other
hand, 16 was tested against B-galactosidase (bovine liver), p-gluco-
sidase (almonds), and a-galactosidase (green coffee beans). As
listed in Table 1 and 15 possessed inhibitory activities against
two B-galactosidases, B-glucosidase, and a-galactosidase. Mean-
while, 16 was shown to have a cross-inhibitory activity toward
B-galactosidase (bovine liver) and B-glucosidase. It is interesting
to note that 15, with a B-galacto configuration, inhibited both B-
galactosidase and B-glucosidase,!” moreover, its activity against
B-glucosidase was stronger than that exhibited by B-gluco-type
16. Conversely, 16 inhibited B-galactosidase (bovine liver) more
effectively than B-glucosidase. Although a design of new glycosi-
dase inhibitors has been carried out on the basis of a simple
assumption that potent inhibitors are likely to be good structural
mimics of the related substrates, the present results allow us to
give further consideration to a structure-inhibitory activity
relationship.
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The spectroscopic data of the synthetic NOEV as a free amine was identical to
previously reported data®*; [o]%° +3.0° (¢ 1.0, MeOH); 'H NMR (400 MHz,
CD50D): 4 0.89 (t, 3H, J¢ = 6.9 Hz, H-8'), 1.30-1.37 (10H, H-3', 4, 5/, 6, and
7"), 1.48-1.56 (m, 2H, H-2'), 2.54-2.58, 2.72-2.76 (each m, each 1H, H-1’a and
H-1'b), 3.1 (dd, 1H, J15.=1.8, Ji2=82Hz, H-1), 3.44 (dd, 1H, J34=4.1,
Jo3=10.1 Hz, H-3),3.70 (dd, 1H, J;1 2 = 8.2, Jo3 = 10.1 Hz, H-2), 4.12 (broad s, 2H,
CHa), 4.15 (d, 1H, J5.4 = 4.1 Hz, H-4), 5.71 (d, 1H, J1 52 = 2.3 Hz, H-5a); '>*C NMR
(100 MHz, CD5;0D): ¢ 14.43, 23.71, 28.42, 30.38, 30.60, 30.88, 32.98, 46.87,
61.78, 63.89, 68.13, 70.78, 73.85, 125.13, 140.73. In addition, biological
activities were found to be in accordance with the sample prepared by the
reported procedure.®¢
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11.

12.

13.

14.

The structure of this compound could be assigned as 1,2,4-triacetoxybenzene
on the basis of 'H NMR analysis: 'H NMR (300 MHz, CDCls): 6 2.21 (s, 9H, 3 Ac),
6.95-7.00, 7.13-7.16 (m, 3H, Ph).

(a) Nysted, L. N. U.S. Patent 3,865,848, 1975. This reagent was purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA).; (b) Matsubara, S.; Sugihara, M.;
Utimoto, K. Synlett 1998, 313.

Characterization data for compound 12: [#]%° +110° (¢ 2.0, CHCls); 'H NMR
(400 MHz, CDCls): 6 2.01, 2.03 and 2.10 (3s, each 3H, 3 Ac), 5.02 (br s, 1H, CH5),
5.15 (br d, 1H, J3.cuz = 2.3 Hz, CHy), 5.25 (dd, 1H, J;2 = 7.8, Jo3 = 10.5 Hz, H-2),
5.57-5.62 (2H, H-1 and H-5), 5.67 (dt, 1H, J3.cu2 = 2.1, -3 = 10.5 Hz, H-3), 6.24-
6.26 (m, 1H, H-6), assigned by H-H COSY; >C NMR (100 MHz, CDCl5): & 20.57,
20.66, 20.84, 70.35, 71.58, 72.28, 114.39, 125.71, 129.82, 138.37, 169.89,
170.25; HR-ESI-MS: 291.0833 (C;3H;606Na*, [M+Na]*; calcd 291.0839). The 'H
NMR data corresponds well to that of racemic 12 (Ogawa, S.; Toyokuni, T.;
Omata, M.; Chida, N.; Suami, T. Bull. Chem. Soc. Jpn. 1980, 53, 455).

The formation of the single B-amine through direct amination of o- and p-
bromo compounds was mechanistically explained by presuming a neighboring
group participation (Ref. 6e, and also see: Toyokuni, T.; Ogawa, S.; Suami, T.
Bull. Chem. Soc. Jpn. 1983, 56, 2999). In contrast, without neighboring group

15.

16.

17.
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participation, the amination of the relevant bromo compounds resulted in the
generation of the nonstereospecific products (Cumpstey, I.; Ramstadius, C.;
Borbas, K. E. Synlett, 2011, 12, 1701).

The spectroscopic data of the synthetic NOV as a free amine were shown to be
well similar to that of the acetic acid salt reported previously®?; [a]ff -69° (¢
1.0, MeOH); 'H NMR (400 MHz, CDs;0D): & 0.89 (t, 3H, J & = 6.9 Hz, H-8'),
1.30-1.33 (10H, H-3', 4, 5, 6, and 7’), 1.49-1.53 (m, 2H, H-2'), 2.52-2.57,
2.71-2.76 (each m, each 1H, H-1'a and H-1’b), 3.19-3.20 (m, 1H, H-1), 3.40 (t,
1H, J12 =23 =9.2 Hz, H-2), 3.48 (dd, 1H, J34= 7.6, Jo3 = 9.8 Hz, H-3), 4.10-4.16
(3H, H-4, CH,), 5.63 (s, 1H, H-5a), assigned by H-H COSY; *C NMR (100 MHz,
CD50D): 6 14.41, 23.71, 28.41, 30.38, 30.61, 30.86, 32.98, 47.19, 61.33, 62.99,
73.92, 78.26, 122.82, 141.20. Biological activity was also in accordance with
that of an authentic sample.®

All glycosidases were purchased from Sigma-Aldrich. The glycosidase
inhibitory activities were determined spectrometrically with the
corresponding p-nitrophenyl glycosides (Sigma-Aldrich).

Similar biochemical features were observed in the case of free amine 3 toward
B-galactosidase (bovine liver) and p-glucosidase (almonds).5
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