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ABSTRACT: The first total synthesis of the cytotoxic alkaloid ritterazine B is reported. The synthesis features a unified approach to
both steroid subunits, employing a titanium-mediated propargylation reaction to achieve divergence from a common precursor.
Other key steps include gold-catalyzed cycloisomerizations that install both spiroketals and late stage C−H oxidation to incorporate
the C7′ alcohol.

Ritterazine B (1) is a bis-steroidal pyrazine (BSP) natural
product that was isolated in 1995 from the marine

tunicate Riterella tokioka off of Japan’s Izu Peninsula.1 The
BSPs include some of the most potent anticancer compounds
discovered to date,2 and 1, in particular, has been described as
“among the most potent growth inhibitors ever tested” by the
National Cancer Institute (NCI).3−5 It possesses subnanomo-
lar activity against P388 leukemia cells (0.17 nM IC50)

6 and an
average GI50 of 3.2 nM in the NCI-60 cell line screen.5,7 Given
that the BSPs display distinct activity patterns in NCI-60
COMPARE analyses, they are proposed to act by a distinct
mode of action from existing chemotherapies.4,7,8

Although the BSPs are known to induce apoptosis,3 a lack of
natural material has hampered translational investigations of 1
and related compounds. Landmark studies from Shair and co-
workers implicated BSPs as high-affinity ligands for oxysterol
binding proteins,4 while more recent evidence indicates that
the endoplasmic reticulum-specific heat-shock protein GRP78
may be their efficacious target.9,10 Given these promising
foundational studies, improved synthetic access to 1 is required
to fully evaluate its potential as a chemotherapeutic.2,8 In this
communication, we report the first total synthesis of 1. Our
approach uses a common strategy to prepare both of the
steroid spiroketals from trans-dehydroandrosterone, a com-
mercially available and inexpensive steroid.
In line with prior efforts to the BSPs,5,11 our retrosynthetic

analysis began with scission of the central pyrazine ring,
revealing the “western” and “eastern” steroids 2 and 3,
respectively (Figure 1). To streamline our route development,
we sought to prepare both 2 and 3 from a common starting
material, using the same general tactics for C−C bond
formation and spiroketalization. In this vein, steroids 2 and 3
were simplified to the corresponding alkynes 4 and 5, where
transition metal-catalyzed cycloisomerization12 would be used
to form the respective spiroketals. This retrosynthetic step
shifted the synthetic challenge to the union of differentiated
alkyne fragments with a common steroid core. We envisioned
preparing alkynes 4 and 5 by 1,2-addition of the propargyl-
metal species derived from 6 or 7 to an α-hydroxy ketone
accessible from trans-dehydroandrosterone (8). The choice of

8 as the starting material was seen as strategic: the C5−C6
alkene would provide a handle for late-stage B-ring oxidation.
This tactic has yet to be utilized in synthetic approaches to the
BSPs,11 which could be why BSPs with C7/C7′ oxidation have
not previously been synthesized.7

In the forward sense, known steroid 9 (prepared in two steps
from 8)13 was treated with excess tert-butyldimethylsilyl triflate
and triethylamine (Et3N) to protect the C3 and C12 alcohols
and form the silyl enol ether at C17 (Scheme 1A). Direct
addition of isopropanol and N-bromosuccinimide to the
reaction mixture afforded α-bromoketone 10 in quantitative
yield in one pot. Elimination of the C16 bromide under basic
conditions gave an inconsequential mixture of isomeric enones
(Δ14,15 and Δ15,16 not shown), which converged to dienol ether
11 on treatment with Et3N and trimethylsilyl triflate. Selective
epoxidation of the C16−C17 alkene with dimethyldioxirane
and subsequent addition of tetrabutylammonium fluoride
(TBAF) provided α-hydroxyketone 12 in 92% yield, which
would serve as our divergent intermediate.
At this stage, we turned our attention to preparing the

distinct spiroketals found in the western and eastern steroids 2
and 3, respectively. To this end, titanium-mediated prop-
argylations based on conditions reported by Sato and co-
workers proved uniquely effective (Scheme 1B).14 Deproto-
nation of the C16 alcohol by treatment of 12 with n-
butyllithium, followed by addition of the organotitanium
species derived from either propargyl bromide 6 or 7 resulted
in 1,2-addition to give alkyne 13 in 54% yield or 14 in 56%
yield. These additions occurred with exclusive β-face selectivity
despite the axial methyl group,15 possibly due to the formation
of an α-disposed cyclic chelate between the C16 and C17
oxygens. While excellent diastereoselectivity was obtained at
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C17, 13 and 14 were formed as 1:1 mixtures of epimers at
C20′/C20 (vide inf ra).

While the α-stereoisomer of the C16 alcohol was crucial for
imparting the desired stereocontrol in the propargylation
reactions, we required the β-alcohols to elaborate to the
required spiroketals. For the preparation of the western steroid
(2), stereoinversion was accomplished by oxidation to the
enone followed by cleavage of the p-methoxyphenyl ether16

and hydroxyl-directed 1,2-reduction, which furnished spiroke-
tal precursor 4 in 86% yield (Scheme 2A). After extensive
experimentation,17 treatment of diol 4 with catalytic CyJohn-
Phos·AuCl (10 mol %) and AgBF4 (5 mol %) provided
spiroketal 15 in 68% yield as a single diastereomer.12 To our
delight, this reaction not only provided the correct
configuration at the spiroketal, but also proceeded with
convergence of the C20′ epimers, furnishing 15 with the
required α-disposed methyl group (vide inf ra, Figure 2). The
overall selectivity was found to be dependent on the choice of
dichloroethane solvent, CyJohnPhos ligand, and tetrafluorobo-
rate counterion.
With the western spirocycle in hand, allylic oxidation of 15

at C7′ was achieved with oxochromate (Cr(V)).18 To obtain
the fully saturated B′ ring, the intermediate enone (not shown)
was reduced with SmI2 and 2-naphthalenethiol to furnish 16 in
85% yield as a single diastereomer; low temperatures were
crucial for preventing over-reduction of the C14−C15
alkene.17 Protection of the C7′ alcohol of 16 as the tri-iso-
propylsilyl ether was followed by addition of Et3N·3HF to
selectively reveal the C3′ alcohol in the same pot.
Oxidation of 17 to the ketone and two-step α-bromination

and azidation at C2 using procedures developed by Shair11i

and Fuchs11d provided the western fragment as keto-azide 18
in 63% overall yield. The use of 1-nitropropane as solvent for
the azidation instead of the traditional nitromethane was found
necessary for solubilization of the intermediate bromide.11d,i

This also significantly increased the yield by preventing
undesired elimination of N2 from 18.
The synthesis of the eastern steroid followed a similar

sequence to that described above but was modified slightly to
prepare diol 5 (Scheme 2B). Following deprotection of the
trimethylsilyl ether in 14 and Stahl oxidation, the C17 alcohol
was removed via ketol deoxygenation with SmI2 and H2O.

19

Diastereoselective 1,2-reduction was effected by treatment
with di-iso-butylaluminum hydride to give 5; the four-electron

Figure 1. Retrosynthetic analysis.

Scheme 1. Preparation of the Western and Eastern Alkyne Fragments
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reduction of 19 directly to give 5 could be accomplished with
excess SmI2, though the yield and diastereoselectivity were
greatly reduced relative to the two-step procedure.
As observed for the western fragment, Au(I)-catalyzed

spirocyclization proceeded smoothly to construct the 5/5 ring
system, again as a single isomer. Here, it was found that direct
addition of Et3N·3HF to the reaction mixture resulted in
selective deprotection of the C3 silyl ether, ultimately
providing 20 in 85% yield.
The remaining two stereocenters required for the eastern

fragment were installed in a single step via hydrogen atom
transfer (HAT) reduction of the C5−C6 and C14−C15
alkenes under conditions developed by Shenvi and co-
workers.20 The fully saturated product was obtained with cis-
fusion at the C/D ring-junction; DFT studies supported the
thermodynamic preference for the observed stereochemis-

try.17,20 This reaction proved critical for accessing late-stage
material in the correct oxidation state, as typical alkene
hydrogenation conditions were unable to reduce the C14−C15
double bond. To complete the eastern coupling partner, the
same oxidation/bromination/azidation protocol as described
for the western fragment was followed by ketone condensation
with MeONH2·HCl and Staudinger reduction21 to furnish
amino-methoxime 21 in quantitative yield.11d

Heterodimerization under Lewis-acid catalysis, as originally
reported by Fuchs,11d provided the desired pyrazine (Scheme
2C). Global deprotection with TBAF11i delivered ritterazine B
in 82% yield, representing its first total synthesis. Spectroscopic
characterization data matched that reported for the natural
material.1

The construction of each fragment hinged on the modular
spiroketalization reaction. Given the observed epimerization at

Scheme 2. Total Synthesis of Ritterazine B
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C20/C20′, we hypothesize that the process occurs through an
initial stereoablative monocyclization/isomerization, followed
by a doubly diastereoselective ketal formation.5,12a To probe
the preferential formation of the C20/C20′ stereocenters,
ground-state energies were calculated for DFT-optimized 15
and 22 (Figure 2). Indeed, the observed isomers were found to
be 2.1 and 4.2 kcal/mol lower in energy than their un-natural
C20 and C20′ epimers, respectively.22 Conformational analysis
of the disfavored species 23 and 24 revealed the existence of
syn-pentane-like interactions between the C20/C20′-β-Me and
the axial C13/C13′-Me groups.5,23 These interactions are not
present with the α-disposed C20-Me groups, which appear less
sterically encumbered.
In summary, the first total synthesis of ritterazine B has been

completed starting from the simple steroid trans-dehydroan-
drosterone and using a unified approach to both steroid
fragments. Key features of the strategy include titanium-
mediated propargylations to access differentiated alkynes as
well as gold-catalyzed, diastereoselective spirocyclizations to
forge the spiroketals. Investigations into the biological activity
of 1 and related compounds are currently underway, which will
be reported in due course. It is worth noting that several
multimilligram batches of these materials have been prepared
thus far, and though we have elected to perform the final steps
on small scale for safety, synthesis of the coupling fragments
has proven to be scalable. We expect that our developed route
will provide ample material for biological studies, enabling
further investigation of the BSPs as anticancer therapeutics.
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