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ABSTRACT: Single-site supported organometallic catalysts bring together the favorable aspects of homogeneous and heterogeneous 

catalysis while offering opportunities to investigate the impact of metal-support interactions on reactivity. We report a 

(dmPhebox)Ir(III) (dmPhebox = 2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl) complex chemisorbed on sulfated zirconia, the 

molecular precursor for which was previously applied to hydrocarbon functionalization. Spectroscopic methods such as diffuse re-

flectance infrared Fourier transformation spectroscopy (DRIFTS), dynamic nuclear polarization (DNP)-enhanced solid-state nuclear 

magnetic resonance (SSNMR) spectroscopy, and X-ray absorption spectroscopy (XAS) were used to characterize the supported spe-

cies. Tetrabutylammonium acetate was found to remove the organometallic species from the surface, enabling solution-phase analyt-

ical techniques in conjunction with traditional surface methods. Cationic character was imparted to the iridium center by its grafting 

onto sulfated zirconia, imbuing high levels of activity in electrophilic C–H bond functionalization reactions such as the stoichiometric 

dehydrogenation of alkanes, with density functional theory (DFT) calculations showing a lower barrier for β–H elimination. Catalytic 

hydrogenation of olefins was also facilitated by the sulfated zirconia-supported (dmPhebox)Ir(III) complex, while the homologous 

complex on silica was inactive under comparable conditions. 

Introduction  

The ability to stereoelectronically modulate the local environment 

of a catalytic metal center is paramount to enhancing chemical re-

activity and selectivity for desired mechanistic pathways. Hetero-

geneous catalysts are employed in an estimated 90% of industrial 

chemical processes,1 due to their ease of separation, recyclability, 

and robustness. However, these catalysts generally lack the activity 

and selectivity associated with homogeneous catalysts.  Recently, 

the use of single-site supported organometallics has emerged as a 

promising strategy for combining the positive attributes of hetero-

geneous and homogeneous catalysts.1-5 Studies have focused on 

transition metal complexes grafted on unmodified metal oxides, 

such as silica and alumina, for hydrocarbon functionalizations in-

cluding alkane dehydrogenation,6-9 olefin hydrogenation,10-14 ole-

fin polymerization,15-24 and olefin metathesis.25-30 The relatively 

high Lewis basicity of these surfaces after chemisorption of an or-

ganometallic complex generally leads to strong catalyst-surface in-

teractions, decreasing the propensity for electrophilic bond activa-

tion mechanisms. More recently, modified acidic metal oxide sup-

ports, in particular sulfated zirconia (SO4/ZrO2), have been used to 

imbue electrophilic character to both transition metal and main 

group catalysts, analogous to noncoordinating counterions in ho-

mogeneous catalysis, such as triflate or perfluorotetraphenyl-

borate.31 Sulfated zirconia has been proposed to contain Brønsted 

acid sites stronger than 100% H2SO4,32 although the nature and 

strength of the acid sites remain debated in the literature.32-35 This 

solid acid has also previously been shown to exhibit interesting re-

dox activity that facilitates the isomerization of alkanes.36-40 The 

application of this material as a support for organotransition metals 

(such as Zr and Hf) was pioneered by Marks and coworkers, result-

ing in the generation of single-site supported catalysts active for 

selective arene hydrogenation and olefin polymerization (Figure 

1A).41-47 Conley and coworkers have also reported olefin polymer-

ization catalysts using late transition metal Ni(II) and Pd(II) α-

diimine species48,49 (Figure 1B) as well as SiR3
+ supported on 

SO4/ZrO2 for C–F bond activation.50 

Recently, our group reported the chemisorption of 

Cp*(PMe3)IrMe2 on SO4/ZrO2 and SO4/Al2O3 to create a highly  
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Figure 1. (A) Examples of Zr and Hf complexes supported on sul-

fated zirconia studied by Marks and coworkers.41-47 (B) Ni(II) and 

Pd(II) α-diimine complexes supported on sulfated zirconia studied 

by Conley and coworkers.48,49 

electrophilic Ir(III) metal center for catalytic H/D exchange of me-

thane under mild conditions.51 We envisioned expanding this meth-

odology to pincer-ligated iridium complexes, thereby generating 

thermally-robust organometallic species that could facilitate hydro-

carbon functionalization via enhanced electrophilicity at the metal 

center.52,53 Previously, organometallic iridium complexes such as 

the (tBu4PCP)Ir(I) system (tBu4PCP = κ3-C6H3-2,6-(CH2PtBu2)2)52,53 

have been studied, which can facilitate highly endothermic trans-

formations such as non-oxidative alkane dehydrogenation52-56 un-

der mild conditions with high levels of selectivity.52,53 For this set 

of catalysts, C–H activation of the alkane occurs via oxidative ad-

dition to a reactive Ir(I) fragment, which is inhibited by N2, H2O, 

and the alkene product.52,53  Consequently, significant effort has 

also been devoted to the development of catalysts proceeding 

through alternative alkane activation pathways such as the con-

certed-metalation-deprotonation (CMD) mechanism.57 In this sce-

nario, C–H activation at the Ir(III) center58 is facilitated by an in-

ternal base at the metal center, such as a carboxylate, through a six- 

membered transition state, as shown in Scheme 1.57,59 CMD-type  

Scheme 1. CMD-type Activation of Alkanes with 1 

 

bond activation has been investigated extensively with 

(dmPhebox)Ir systems (dmPhebox = 2,6-bis(4,4-dimethyloxazoli-

nyl)-3,5-dimethylphenyl) (Scheme 1).59-61 Previously, it was re-

ported that the activation of n-octane occurred in the presence of a 

base at 160 °C using (dmPhebox)Ir(OAc)2(OH2) (1), generating 

(dmPhebox)Ir(OAc)(n-octyl) in 78% yield after 70 h.59,60 Goldberg 

and coworkers showed that β–H elimination occurs in the absence 

of a base at 200 °C, generating (dmPhebox)Ir(OAc)(H) (2) and the 

corresponding olefin.59 It was later shown that Lewis acid additives 

such as NaBArF
4 could be used to enhance the rate of β–H elimina-

tion, aiding in the opening of a coordination site on the metal cen-

ter.62 The electrophilicity of the metal center could also be in-

creased through the addition of a Lewis acid. Computational inves-

tigation demonstrated that more electrophilic (dmPhebox)Ir metal 

centers, generated via modulation of the pincer ligand backbone 

could decrease the barrier for C–H activation by several kcal/mol, 

affording more active alkane activation systems, though variation 

of the X-type carboxylates did not result in this effect.63 When mod-

ulation of the carboxylates ligated to the metal center was studied, 

the results were in agreement with previous experimental and com-

putational studies, in that variation of the carboxylates affected the 

barrier for β–H elimination, similar to Lewis acids, whereas that of 

C–H activation was unaffected.64  

While Goldman, Celik, and coworkers have investigated the chem-

isorption of phosphine-ligated iridium systems onto silica and alu-

mina via a linkage on the pincer-ligand backbone and their subse-

quent proclivity for C–H activation via Ir(I),65,66 the catalytic activ-

ity observed was similar to that obtained with the molecular pre-

cursor. Mezzetti and coworkers were able to graft similar com-

plexes via the metal center onto SBA-15, resulting in supported cat-

alysts more active for olefin hydrogenation than the analogous ho-

mogeneous reaction.11-13 We envisioned that grafting 1 onto 

SO4/ZrO2 by acetate protonolysis would offer an opportunity not 

only to heterogenize this system but also to study the effect on ele-

mentary steps in alkane dehydrogenation, in particular C–H activa-

tion and β–H elimination. We hypothesized that an increase in rate 

may occur through the increase in electrophilicity at the metal cen-

ter imparted by the weakly coordinating surface. The propensity for 

stoichiometric alkane dehydrogenation with the supported 

(dmPhebox)Ir complexes was investigated in addition to the cata-

lytic activity for olefin hydrogenation, the microscopic reverse of 

alkane dehydrogenation.  

 

Results and Discussion 

Synthesis and Characterization of the Supported Ir(III)-Pincer 
Complex on Sulfated Zirconia. The chemisorption of 1 onto sul-

fated zirconia (sieved to 125 µm, 120 mesh, with a surface area of 

140 m2/g and sulfur loading of 1.58% w/w51) was initially investi-

gated in order to establish the viability of this material as a weakly-

coordinating support for the Ir center through protonolysis of an X-

type67 acetate ligand, forming (dmPhebox)Ir(OAc) on SO4/ZrO2 (3) 

(Scheme 2). Following addition of sulfated zirconia to a solution of 

1 in benzene-d6, resonances corresponding to 1 began to decrease 

in intensity as referenced to an internal standard by 1H nuclear mag-

netic resonance (NMR) spectroscopy (Figure S1). 93% of the final 

saturation loading of 1 was chemisorbed at approximately 1 h, with 

the remaining 7% deposited over the next 15 h, after which no fur-

ther changes were observed and 3 could be isolated by filtration. 

Evolution of acetic acid, typically associated with protonolysis of 

an X-type acetate ligand by a Brønsted-acidic surface site was not 

detected over time by 1H NMR spectroscopy, likely due to phy-

sisorption of acetic acid on the surface. The iridium fragment could, 

in principle, bind the surface through either an L-type bonding in-

teraction67 by displacement of water at the labile sixth coordination 

site,63 or by an X-type interaction via protonolysis of an acetate 

group (Scheme 2). To investigate the possibility of L-type binding, 

3 was washed with tetrahydrofuran (THF), a donating solvent, to 

displace any datively-bound complexes from the surface (Scheme 

2). Inductively coupled plasma-atomic emission spectroscopy 

(ICP-AES) of 3 prior to THF washing showed 2.26% Ir deposited 

on the surface by weight. Analysis of the THF-washed 

A                Marks and coworkers

B               Conley and coworkers
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Scheme 2. Grafting experiment of 1 onto SO
4
/ZrO

2
 resulting in a mixture of X-type and L-type bound species, the latter of which 

can be washed away with THF to give 4 

 

(dmPhebox)Ir(OAc) on SO4/ZrO2 (4) by ICP-AES revealed a de-

crease in deposited surface Ir from 2.26% to 1.32%.68 Further 

washing with THF did not remove any additional iridium, suggest-

ing that the material immediately after chemisorption and benzene 

washes constituted a mixture of L- and X-type binding modes, 

while that after washing with THF was constituted by only the X-

type species. Suspension of 3 in THF-d8 also led to desorption of 

complex (dmPhebox)Ir(OAc)2(THF) (~79% of expected iridium 

from ICP analysis), corroborating the X-type binding mode of the 

species left on the surface post-washing (Figure S2, see the Sup-

porting Information for further discussion). 

Diffuse reflectance infrared Fourier transform spectroscopy 

(DRIFTS) was employed to provide structural insight into the na-

ture of the surface-supported iridium fragment. C–H stretching vi-

brations around 3000 cm-1 were observed in 4, which were qualita-

tively similar to those found in the pincer ligand manifold for aro-

matic and aliphatic C–H stretches. Other C–H stretching vibrations 

corresponding to the pincer ligand were also observed at lower fre-

quencies between 1000 cm-1 and 1700 cm-1, though these over-

lapped with stretching vibrations associated with sulfated zirconia  

(see Figure S3 for full DRIFTS spectrum of 4).  

Dynamic nuclear polarization (DNP)-enhanced cross-polarization 

magic-angle spinning (CPMAS) NMR spectroscopy was next used 

to obtain detailed structures of the supported iridium species.69-73 

The DNP-enhanced 13C CPMAS NMR spectrum of 3 yielded res-

onances with chemical shifts in agreement with those of the molec-

ular precursor 1, suggesting that the iridium center had maintained 

its pincer ligand during the chemisorption process (Figure 2A,B). 

To further confirm this structure and gain additional details con-

cerning the spatial arrangement of the complex's ligands we addi-

tionally performed 2D 13C{1H} heteronuclear correlation 

(HETCOR) spectroscopy. A spectrum acquired using a CP contact 

time of 100 µs shows predominantly one-bond C-H correlations, as 

expected, as well as two weaker two-bond correlations to quater-

nary carbon 'H' (Figure 2A). With a contact time lasting 1000 µs, a 

number of new through-space correlations appeared (Figure 2B). 

Notably, the sole correlation to the rather isolated carbon 'B' is to 

the methyl protons of the acetate ligand ('J'). This confirms that 

both ligands are simultaneously coordinated to Ir and further pro-

vides conformational information about the complex, namely that 

the acetate ligand is bent over the pincer ligand, possibly due to 

steric interactions with the support surface. No correlation between 

the acetate carboxyl moiety (‘A’) and an acidic hydrogen could be 

detected, strongly suggesting that the acetate is non-protonated and 

thus remains an X-type ligand post-grafting. Once the complex was  

 

Figure 2. DNP-enhanced 13C CPMAS (top traces) and HETCOR 

spectra of 3 acquired with CP contact times of 100 µs (A) and 1000 

µs (B), and of 4 acquired with a contact time of 1000 µs (C). On 

the right-hand side of (A) and (B), the observed through-space cor-

relations for 3 are indicated with dashed red lines. The peak labels 

are assigned to the structure shown in (C). An asterisk denotes the 

solvent resonance from TCE-d2. In (C) 'x' symbols are placed in the 

spectrum to indicate new correlations to THF not seen in (B), while 

some new intensity, which may originate from THF, is also circled. 
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This can be more clearly seen in Figure S8 in the Supporting Infor-

mation, which shows the enlarged views of (B) and (C) for 0 ≤ 

δ(13C) ≤ 100 ppm. 

washed with THF to form species 4 we observed a new 13C reso-

nance (‘L’) as well as an increase in intensity which we attributed 

to carbon 'M' of THF. Again, 2D 13C{1H} HETCOR NMR spec-

troscopy was performed to decipher the location of the THF mole-

cule. Cross-peaks between the 'L' protons of the THF and the 'K' 

and 'C' carbon sites of the pincer ligand were observed (Figure 2C) 

suggesting that, like the acetate, the THF molecule is adjacent to 

the pincer ligand in the iridium coordination sphere. The 2D NMR 

spectroscopy thus provided compelling evidence that the pincer lig-

and adopts a coordination that is trans to that of the support. Alt-

hough this differs from what was observed in the homogeneous 

complex, it is unsurprising from both a steric and electronic point 

of view, given the repulsion between the bulky pincer ligand and 

the surface, as well as the favorability of positioning the weakly 

donating surface coordination trans to the strongly donating pincer-

carbon. The steric demand of the surface similarly plays a role in 

enforcing the close proximity of the pincer ligand and the THF and 

acetate ligands on either side, as evidenced by the observed 

through-space cross-peaks. This proximity between the acetate and 

the pincer ligands was not observed in the molecular complex 

where such sterics are absent.61 We note that such precise confor-

mational details on catalytic surfaces are difficult to obtain by other 

surface characterization techniques.  Similar studies utilizing DNP 

have also been able to characterize the three dimensional spatial 

orientation of ligands around a metal.72-73 

X-ray absorption spectroscopy (XAS) was also used to further in-

terrogate the structural integrity of the iridium-pincer after chemi-

sorption. Complete fitting of the X-ray absorption spectra was not 

possible due to the difficulty in deconvoluting the scattering pat-

terns obtained for the supported Ir samples. Nonetheless, similar 

qualitative features were observed in the extended X-ray absorption 

fine structure (EXAFS) for 1 and 4, supporting the presence of the 

intact iridium-pincer on the surface after chemisorption. Addition-

ally, X-ray absorption near-edge structure (XANES) analysis sug-

gested that the Ir(III) was the predominant oxidation state (Figure 

S9). Moreover, no evidence of iridium nanoparticle formation was 

observed. To further characterize the bonding between the iridium 

center and the sulfated zirconia surface as a polarized X-type ligand 

interaction, 4 was suspended in a solution of tetrabutylammonium 

acetate (NBu4OAc) in methylene chloride-d2 (see the Supporting 

Information for stripping procedure) in an attempt to displace the 

iridium complex from the surface (Figure 3). Monitoring the reac-

tion by 1H NMR spectroscopy revealed that after 10 min, 1 is ob-

served in solution. Minor asymmetric species were also detected by 
1H NMR as doublet of doublets around δ 4.65 ppm. One of these 

may be consistent with the κ1/κ2 asymmetric analog of 1 being pre-

sent in solution, in which one acetate can bind in κ2 fashion, dis-

placing the L-type ligand (Figure 3B). When the stripping experi-

ment was performed in the presence of residual THF, only the sym-

metric κ1/κ1 analog was observed.  The other minor species was 

assigned as (dmPhebox)Ir(Ph) on SO4/ZrO2 (5), generated after sur-

face activation of benzene over the course of the grafting  reaction, 

vide infra. The appearance of 1 following treatment with NBu4OAc 

was significant as it demonstrated the possibility of removing the 

organometallic species from the surface for characterization via so-

lution-phase techniques such as 1H NMR, the employment of 

which is complementary to surface analytical techniques.74,75 The 

resultant solid material was analyzed by DRIFTS following isola-

tion by filtration (Figure 3A). C–H stretching vibrations around 

3000 cm-1 as well as the C=O and C=N 

 

Figure 3. Tetrabutylammonium acetate can be used to strip 1 from 

the surface, leaving behind tetrabutylammonium bound to the sur-

face acidic sites. (A) This was confirmed by DRIFTS. Bottom spec-

trum shows 4 as prepared with associated IR stretches of 4 indi-

cated (*). Top spectrum shows the material post-stripping with as-

sociated IR stretches of tetrabutylammonium indicated (ǂ). (B) 1H 

NMR spectrum of stripping experiment with 4 over time in meth-

ylene chloride-d2 with characteristic peaks highlighted. A mixture 

of asymmetric and symmetric 1 and (dmPhebox)Ir(OAc)(Ph) (6) 

come off the surface, the latter from room temperature activation 

of benzene solvent during loading. “L” may represent a labile site 

with THF or aquo bound to the metal center. 

stretches from 1200 to 1700 cm-1 associated with the pincer ligand 

backbone became attenuated, replaced with tNBu4
+ C–H stretches 

(Figure 3A). This was further confirmed by comparison to a 

DRIFTS spectra of 1 diluted with KBr, NBu4OAc diluted with 

KBr, and NBu4OAc physisorbed onto SO4/ZrO2 (Figure S20). ICP-

AES analysis of the support material after stripping with NBu4OAc 

also provided evidence of removal of the Ir from the surface as only 

0.156% iridium by weight was remained after acetate stripping, 

representing a minority of strongly-bound surface sites where ace-

tate could not facilitate removal.  
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Figure 4. (A) Reaction of 4 with neat benzene at 80 °C for 24 h 

generates Ir-Ph on the surface. (B) Reaction of 4 with neat nonane 

at 120 °C for 24 h generates Ir-H on the surface. 

Stoichiometric Reactivity of Supported Ir(III)-Pincer Complex 

on Sulfated Zirconia Towards Aryl and Alkyl. By recapitulating 

the stoichiometric reactivity first described by Nishiyama and 

coworkers61 and Goldberg and coworkers,59 further insight could 

be gained regarding the impact of the support on reactivity of the 

metal center. First, 4 was suspended in benzene at 80 °C for 24 h 

in order to assess whether the supported material could effect CMD 

C–H activation of the solvent to form 5 by analogy to the homoge-

neous precedent (dmPhebox)Ir(OAc)(Ph) (6); see Figure 4A.59,61 

DRIFTS of the isolated material post-benzene-treatment revealed 

new aromatic C–H stretching vibrations between 3000 cm-1 and 

3100 cm-1 consistent with new Csp2–H bonds expected upon gener-

ation of 5 (Figure 5A). Furthermore, stripping of the organometal-

lic species from the surface with NBu4OAc in methylene chloride-

d2 resulted in the appearance of resonances associated with 6 by 1H 

NMR spectroscopy,59,61 along with 1 (Figure 5B). Analysis of 5 by 

DNP-enhanced 13C CPMAS NMR spectroscopy76 revealed the ap-

pearance of two new aromatic resonances from Carom-H (“P”) and 

Carom-Ir (“N”) sites from a phenyl ligand.  This assignment was then 

confirmed by the appearance of a new correlation between carbon 

“B” and the 1H aromatic region in the corresponding HETCOR 

spectrum (Figure 6). An attenuated acetate signal in the solid state 
13C NMR spectrum further substantiated the loss of acetate associ-

ated with CMD-type C–H activation.  

When 4 was suspended in neat n-nonane for 72 h at 120 °C (Figure 

4B), analysis of the recovered supported material by DRIFTS re-

vealed a new IR stretching vibration at approximately 2220 cm-1 

(Figure 5A), similar in wavenumber to the stretching frequency ob-

served for authentically prepared hydride 2 (2194 cm-1), suggesting 

formation of iridium-hydride in the supported complex. In contrast, 

the formation of 2 in 96% yield was observed upon heating 1 in a 

neat solution of n-octane at 200 °C for 72 h,59 but when the temper-

ature was lowered to 180 °C, only a small amount of iridium-hy-

dride was observed after five days and at 150 °C no reaction was 

observed even after heating for six days.59 To confirm the charac-

terization of the IR stretch at 2220 cm-1 as an iridium-hydride, an 

authentic sample of (dmPhebox)Ir(H) on SO4/ZrO2 (7) was prepared 

by grafting 2 onto sulfated zirconia (see the Supporting Infor-

mation). A similar IR signal at 2220 cm-1 was observed upon direct 

chemisorption of 2, supporting the formation of an iridium-hydride 

after treatment with n-nonane under relatively mild conditions. 

Solid-state 1H NMR spectroscopy also revealed a resonance around 

-35 ppm consistent with an iridium hydride signal,59 with a  

 
Figure 5. (A) Infrared absorbance spectra of materials following 

reaction of 4 (blue, as prepared), with benzene for 24 h (black, IR 

stretches associated with aromatic C–H stretches indicated with *) 

and with nonane for 72 h (red, IR stretch associated with Ir–H in-

dicated with ǂ) (B) 1H NMR spectra enlarged to show the aryl and 

hydride regions of post C–H activation materials treated with tet-

rabutylammonium acetate after 20-24 h in CD2Cl2. The aromatic 

proton resonances for Ir-Ph are indicated with * and the resonance 

associated with Ir–H is indicated with ǂ. 

 

similar chemical shift to that observed in the 1H NMR spectrum of 

the iridium-hydride complex 2 (Figure S24, S26). The DNP-

enhanced 13C CPMAS NMR spectrum also featured a weakened 

iridium acetate signal consistent with the dissociation of acetic acid 

following C–H activation. To further determine organometallic 

speciation and quantify the amount of iridium-hydride formed, the 

iridium species present after treatment with n-nonane were stripped 

from the surface with NBu4OAc in methylene chloride-d2 (Figure 

5B). After 10 min, resonances associated with 2 were observed by 
1H NMR spectroscopy, which continued to increase in intensity un-

til approximately 40 min.77 Of the product mixture subsequently 

obtained, 70% corresponded to 2 by 1H NMR spectroscopy based 

on the CAr–H signal integration.78 Formation of the iridium-hydride 

by the putative C–H activation, β–H elimination mechanism was 

also observed at shorter reaction times, representing 58% of the 

product mixture after 24 h at 120 °C,79 and 34% of the product mix-

ture after2 h at 120 °C.80 The diacetate starting material (1) was 

also present in the product mixtures.77 The formation of iridium-

hydride in appreciable yield under these conditions is notable in  

A

B
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Figure 6. DNP-enhanced 13C CPMAS (top trace) and HETCOR 

NMR spectrum of 5.  An asterisk denotes the solvent resonance 

from TCE-d2. 

comparison to the activity observed with molecular precursor 1 for 

stoichiometric n-octane dehydrogenation. For 1, C–H activation 

proceeded at 160 °C and higher temperatures (200 °C) were re-

quired in order to observe appreciable amounts of β–H elimination 

to form the iridium-hydride.59 The effect of the surface on the metal 

center, in particular its tuning of electrophilicity, is similar in nature 

to what may occur when a Lewis acid interacts with a chelated ac-

etate or if the carboxylate contains electronegative moieties as in 

the case of the homogeneous reactions,62,64 which may offer sup-

port for the observed rate enhancement in β–H elimination. 

In order to gain further insight into the experimentally observed 

rate enhancement in the activation and functionalization of nonane 

with 4, a computational investigation was undertaken (see the Sup-

porting Information regarding methods). The catalytic pathways of 

ethane dehydrogenation were calculated for three systems: 

(dmPhebox)Ir(OAc)2 1, the supported complex 4 on a cluster model 

of SO4/ZrO2, and (dmPhebox)Ir(OAc)(OTf), which was used as a 

homogeneous analog for the weakly-donating nature of the sulfated 

zirconia X-type coordination mode (Figure 7). A SZr cluster model 

was used for the SZr supported Ir complex. The SZr cluster (See 

Figure S27 in SI), was cleaved from a periodic model that was de-

veloped in a previous study. The cluster consists of 3 Zr and 10 O 

atoms for the ZrO2 support and a tripodal SO4
2-. The O atoms in the 

ZrO2 cluster were terminated by protons and one extra proton was 

added to charge balance the negative charge of SO4
2-(the other pos-

itive charge comes from the Ir center). During geometry optimiza-

tion, the three Zr atoms were frozen while the other atoms in the 

cluster were allowed to relax.46 The calculated reaction pathway of 

ethane dehydrogenation undergoes a C–H activation, followed by 

a β-H elimination. β-H elimination was found to be the rate-limit-

ing step of the reaction for all three iridium catalysts.  Both the 

cluster model of 4 and the triflate complex had a lower apparent 

barrier than the bis-acetate molecular analog 1 (∆∆G‡ = 5.1 and 3.7 

kcal/mol respectively, Figure 7). The relative acceleration of the 

isolated β-H elimination step was even more extreme, with 4 and 

the triflate complex undergoing β-H elimination with an intrinsic 

barrier of 18.9 and 16.9 kcal/mol as compared to 31.0 kcal/mol for 

1, however this effect is partially obscured by the increased relative 

energy of the iridium-alkyl intermediate for 4 and the triflate com-

plex. 

The calculated barriers for the C−H activation step were also found 

to be decreased in the presence of the more weakly-donating spec-

tator ligands, albeit to a lesser extent than the β-H elimination, how-

ever this energetic barrier is kinetically irrelevant to the overall sys-

tem due the endergonic and reversible nature of this step prior to 

the rate controlling transition state of β-H elimination. 

 

 

 

Figure 7. Calculated reaction pathways of C-H activation and β-H elimination using an ethylene model. The values in the figure are relative 

free energies in kcal/mol at 120 °C using the PBE0 functional with CEP-121G basis set. Computations where carried out using the Gauss-

ian09 software.
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Catalytic Hydrogenation of Propylene and 1,3-Butadiene with 
Supported Ir(III)-Pincer Complexes on Sulfated Zirconia. Hav-

ing investigated the stoichiometric reactivity of 4, studies were un-

dertaken to determine its performance under catalytic conditions. 

At temperatures required to thermodynamically-enable observable 

dehydrogenation (>300 °C), extrusion of SO2 and SO3 from sul-

fated zirconia can occur,81 thus low temperature acceptorless dehy-

drogenation of nonane under vigorous reflux (T = 151 °C) and gas-

phase transfer dehydrogenation of propane with ethylene as a sac-

rificial olefin (T = 50 °C to 300 °C) were undertaken. In the case of 

acceptorless dehydrogenation, no olefins were observed after heat-

ing nonane with 4, possibly due to deleterious reactions with resid-

ual Brønsted acid sites on sulfated zirconia.75 Similarly, upon at-

tempting gas-phase transfer dehydrogenation of propane in a plug 

flow reactor, turnover was too slow to achieve appreciable conver-

sion under conditions compatible with the catalyst. Thus, in lieu of 

dehydrogenation, hydrogenation of propylene was used as the 

model transformation, representing the microscopic reverse of the 

dehydrogenation of propane. In addition to 4, 1 was also grafted 

onto silica dehydroxylated at 700 °C (SiO2-700) and then washed 

with THF (see the Supporting Information for details) to form 

(dmPhebox)Ir(OAc) on SiO2-700 (8; %Ir w/w by ICP-AES = 0.48%). 

In contrast to 4, this silica-supported species is stereoelectronically 

more similar to 1 due to the lack of significantly enhanced electro-

philicity created at the metal center by sulfated zirconia. Spectro-

scopic characterization of 8 (see Supporting Information) was also 

consistent with deposition of the intact iridium-pincer fragment alt-

hough with decreased iridium surface density after THF washing, 

presumably due to a minority of the silanol sites having sufficient 

reactivity to displace an acetate ligand (see the Supporting Infor-

mation for details).   

In an initial series of experiments, 4 (2.5 mg, 0.00017 mmol Ir, 5 

mg, 0.00034 mmol Ir, and 10 mg, 0.00069 mmol Ir) and 8 (30 mg, 

0.00075 mmol Ir) were evaluated for propylene hydrogenation in a 

plug flow reactor with silica as a diluent (propylene/H2 = 1/4.5, see 

the Supporting Information for further details). Sulfated zirconia 

supported catalyst 4 was found to display significantly higher hy-

drogenation activity than the silica-supported analog (8).  At 100 

°C and 120 °C, an induction period could be observed for 4 in gen-

eration of the active catalyst species, with complete conversion ob-

served for higher catalyst loadings (Figure 8). No deactivation of 4 

was observed from 100 °C to 120 °C after approximately 52 hours 

on stream, while slight deactivation was observed at 150 °C (Figure 

8). With 2.5 mg (0.00017 mmol) of 4, over 20,000 turnovers were 

observed after 52 h at 120 °C. Negligible C-C bond cleavage and/or 

oligomerization were observed during catalysis. In addition, under 

these conditions, the sulfated zirconia support is inactive towards 

the hydrogenation of olefin. 

Conversely, for 8, little to no activity was observed at 100 °C and 

only marginal activation at 120 °C (Figure 8). At 150 °C, the cata-

lyst began to show more significant activity, and propylene conver-

sion was observed (Figure 8). As nanoparticle formation from or-

ganometallic iridium precursors is well-explored in the literature,82-

84 the possibility of in-situ nanoparticle formation was then evalu-

ated by analysis of the post-catalysis materials. 4 and 8 were sub-

jected to catalytic conditions and then isolated for characterization 

by high-angle annular dark-field (HAADF) scanning transmission 

electron microscopy (STEM) to determine whether iridium nano-

particle formation had occurred. For catalyst 4, no iridium nano-

particles were observed by STEM in post-catalysis samples at 120 

°C (Figure 9A) and single ions could be observed (Figure 9A, cir-

cled in red), offering further support for the presence of single-site 

organoiridium species. In contrast, for catalyst 8 exposed to reac-

tion conditions at 120 °C, at which it is minimally active, no iridium 

nanoparticles were observed by STEM (Figure S44). However, for 

the higher temperature post-catalysis sample of 8, for which the 

temperature was raised to 200 °C, STEM revealed formation of 

iridium nanoparticles on the surface (Figure 9B).  

 

Figure 8. Hydrogenation of propylene with 4 (2.5 mg = green, 5 mg = blue, 10 mg = red) and 8 (30 mg = black). Iridium catalyst 4 is active 

from 100 °C to 150 °C whereas iridium catalyst 7 is not active until at least 150 °C. Conditions: 100, 120, and 150 °C, propylene/H2 ratio = 

1/4.5, 5% propylene/Ar = 1 mL/min, 5.188% H2/Ar = 4.34 mL/min per flow reactor (see the Supporting Information for more details on 

conditions and experimental setup). 
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Figure 9. STEM images of (A) post-catalysis sample of 4 at 120 

°C and (B) post-catalysis sample of 8 with temperature ramped 

from 150 °C (held for 7 h) to 200 °C (held for 7 h) then back down 

to 100 °C (held for 10 h). 

The presence of nanoparticles may explain the onset of activity of 

the silica-supported samples at higher temperatures, as iridium na-

noparticles are known to be very efficient hydrogenation cata-

lysts.82-84 This provides some evidence that a supported organome-

tallic species was catalytically active at those temperatures on sul-

fated zirconia, whereas the onset of catalytic activity of the silica 

supported material correlated with the appearance of nanoparticles, 

suggesting that the molecular species on the electronically-neutral 

support is relatively inactive. As achieving product selectivity in 

complex or multi-step processes is a benefit of supported organo-

metallic species relative to traditional heterogeneous catalysts, the 

hydrogenation of 1,3-butadiene was then investigated (Table 1). 

When 4 was treated with 1,3-butadiene and H2 in flow (see the Sup-

porting Information for discussion of experimental setup and cata-

lytic data), conversion of 1,3-butadiene to butenes and n-butane oc-

curred following activation at 120 °C. Approximately 94% selec-

tivity for butenes was observed at 80 °C (initial conversion = 55%, 

Table 1) with catalyst 4. In contrast, with catalyst 8, 29% selectivity 

for butenes was observed at 80 °C, following activation at 200 °C 

(initial conversion = 3.8%, Table 1). In both cases, catalyst deacti-

vation was observed over time possibly due to coke and/or polymer 

formation. The higher selectivity with 4, were indicative of a sup-

ported organometallic complex as the active species, as lower prod-

uct selectivity values are expected with Ir nanoparticles generated 

with 8 under reducing conditions. 

 

Table 1. Hydrogenation of 1,3-Butadiene at 80 °C 

Ir Cat. 
Ir loading 

(%w/w)a 

Initial conv. 

(%) 

Sel. for 

Butenes 

(%) 

4 1.32 55 94 

8 0.481 3.8 29 

Conditions: 5 mg of each catalyst, 1.01% 1,3-butadiene/Ar = 5.5 

mL/min, 4.008% H2/Ar = 6.3 mL/min, activation of 4 at 120 °C for 

6 h and activation of 9 at 200 °C for 6 h then temperature is dropped 

to 80 °C. Deactivation of the catalyst is observed over time thus 

initial conversions are presented. aBy ICP-AES. Selectivity = (con-

centration of butenes / sum of product concentrations) * 100. 

 

Mechanistic Studies into Propylene Hydrogenation Using Sup-
ported Ir(III)-Pincer Complexes. Having established the bench-

mark for hydrogenation reactivity of 4, our subsequent efforts fo-

cused on gaining mechanistic insight into this catalytic process. 

First, the role of the ancillary ligands on the Ir center in 4 was as-

sessed. To determine the necessity of the acetate moiety on the 

metal center, (dmPhebox)Ir(OAc)(Cl) was grafted onto SO4/ZrO2 

and washed with THF (9), leading to an iridium-chloride species 

on the sulfated surface, which would be incapable of CMD-type 

activation. Notably, the activity of 9 (TOF = 62 ± 2 h-1) for propyl-

ene hydrogenation was similar to that of 4 (TOF = 75 ± 2 h-1) (Table 

2), indicating that the acetate is not necessary for hydrogenation 

and that both may be converging to the same active intermediate 

over the course of the reaction.85  

 

Table 2. Effect of Ancillary Ligand Modification on Turno-

ver Frequency (TOF) for Hydrogenation of Propylene at 50 

°C. 

Ir/ZrS Catalyst 
Ir loading 

(%w/w) 
TOF (hr-1) 

4 1.32 75 ± 2 

9 1.82 62 ± 2 

Conditions: 5 mg of each catalyst, 5% propylene/Ar = 2 mL/min, 

3.573% H2/Ar = 12.6 mL/min, activation at 120 °C for 6 h then 

temperature is dropped to 50 °C. TOFs are an average of three in-

dependent runs with standard deviations listed. 

 

In order to obtain further information regarding the active iridium 

species, more detailed kinetic analyses were performed. Following 

activation of 4 at 120 °C for 24 hours, catalytic hydrogenation was 

studied over a range of temperatures (50 °C, 60 °C, 70 °C, and 80 

°C) to gain insight into the activation energy (see the Supporting 

Information for catalytic data). From the resulting Arrhenius plot, 

an activation energy of 29.8 kcal/mol was found for the reaction 

(Figure 10). When varying the H2 concentration at 50 °C following 

activation at 120 °C, a first-order rate dependence on H2 was ob-

served (Figure 11), confirmed by a double log plot with a slope of 

1.02 (Figure S31, S32).86 Conversely, when varying the propylene 

concentration at 50 °C, a fractional kinetic dependence between 

A 

B 
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9 

 

zero and first order was observed (Figure 11, S34, S35). This ki-

netic dependence was consistent with a catalytic resting state where 

the iridium sites are partially saturated with olefin as an iridium- 

alkyl or an iridium olefin π-complex. Alternatively, the olefin could 

be incorporated after the rate-determining step of the reaction.  

 

 

Figure 10. Elucidation of activation energy in propylene hydro-

genation with 4 (1.5 mg). Activation conditions: 120 °C for 24 

hours, propylene/H2 ratio = 1/4.5, 5.001% propylene/Ar = 1 

mL/min, 5.188% H2/Ar = 4.34 mL/min per flow reactor. Tempera-

tures screened were 50 °C, 60 °C, 70 °C, and 80 °C at 2 mL/min 

5.001% propylene/Ar and 8.7 mL/min 5.188% H2/Ar. See the Sup-

porting Information for individual data points and standard devia-

tions and discussion of error. 

 

Figure 11. Dependence of H2 and olefin in the hydrogenation of 

propylene with 4 (5 mg). Activation conditions: 120 °C for 6 hours, 

propylene/H2 ratio = 1/4.5, 5% propylene/Ar = 1 mL/min, 5.188% 

H2/Ar = 4.34 mL/min per flow reactor. H2 dependence ratios 

screened propylene/H2 = 1/6 (2/11.58 mL/min), 1/5 (2/9.64 

mL/min), 1/4 (2/7.72 mL/min), 1/2 (2/3.68 mL/min). Propylene de-

pendence ratios screened propylene/H2 = 0.5/4 (1/7.72 mL/min), 

1/4 (2/7.72 mL/min), 1.5/4 (3/7.72 mL/min), 2/4 (4/7.72 mL/min). 

See the Supporting Information for individual data points and 

standard deviations and discussion of error. 

 

To interrogate these possibilities, the reaction of supported iridium-

hydride 7 with flowing propylene was monitored by DRIFTS (Fig-

ure 12, see the Supporting Information for experimental setup). 

Upon exposure of 7 to propylene at room temperature, a weakening 

of the characteristic iridium-hydride IR stretch for 7 was observed 

concomitant with the appearance of a new signal at 2120 cm-1 (Fig-

ure 12A). This new species persists at approximately the same ratio 

under flowing propylene. The in situ DRIFTS cell was then purged 

with N2, which resulted in the gradual disappearance of the new 

peak at 2120 cm-1 and the restoration of the original absorption in-

tensity of the hydride stretch associated with 7 (Figure 12B). When 

the gas flow was cycled back to propylene, the iridium-olefin spe-

cies once again increased in intensity while that of iridium-hydride  

 

 

 

 
  

 

Figure 12. Infrared absorbance spectra of iridium-hydride 7 reversibly reacting with propylene to form an iridium-olefin species. (A) pro-

pylene flow cycle 1, 3% propylene/Ar = 51.8 mL/min, black = initial no flow, red = 2 min under propylene flow, blue = 5 min under 

propylene flow, green = 10 min under propylene flow. (B) N2 flush, N2 = 51.5 mL/min, black = initial 10 min propylene flow, red = 2 min 

N2 flush, blue = 5 min N2 flush, green = 10 min N2 flush, orange = 83 min N2 flush. (C) propylene flow cycle 2, 3% propylene/Ar = 51.8 

mL/min, black = initial 83 min N2 flush, red = 2 min under propylene flow, blue = 5 min under propylene flow, green = 10 min under 

propylene flow, orange = 30 min under propylene flow. 
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7 decreased (Figure 12C). The species formed in the presence of 

gaseous propylene may correspond to the olefin binding at the la-

bile sixth coordination site on the metal center, forming an Ir-olefin 

π complex on the surface, potentially explaining the partial kinetic 

order in propylene. The binding of the olefin is in dynamic equilib-

rium under these conditions and can reversibly occur as evidenced 

by peak intensity changes when alternating between flowing pro-

pylene and N2 atmosphere. 

 

Figure 13. DNP-enhanced 13C CPMAS NMR spectrum of post-

hydrogenation Ir on sulfated zirconia at 200 °C and 120 °C. An 

asterisk denotes the solvent resonance from TCE-d2. § indicates lo-

cation of the attenuated signal for an acetate resonance. 

Further spectroscopic characterization of the post-catalysis samples 

of 4 was undertaken using DNP-enhanced 13C CPMAS NMR to 

gain structural insight. The resonance corresponding to the acetate 

carboxyl is absent in the CPMAS spectrum (Figure 13) thus indi-

cating its removal during the catalysis. No resolvable alkyl reso-

nances were observed by 13C solid-state NMR spectroscopy.  The 

organometallic species were then removed from the surface of 4 

post-catalysis by stripping with NBu4OAc (vide supra).  Treatment 

of the post-catalysis material with acetate resulted in the desorption 

of iridium hydride 2, indicating that it is likely present in the resting 

state of the catalyst (Figure S46)87 The post-catalysis samples were 

also examined by XAS, revealing a qualitatively similar EXAFS 

region and XANES when compared to catalyst 4 as prepared (Fig-

ure S47). 

 

Conclusions  

The ability to modulate the reactivity of a metal center through tai-

lored metal-support interactions aids in the design of supported or-

ganometallic complexes with catalytic activity for industrially-rel-

evant processes. Dehydrogenation of alkanes is one such challeng-

ing transformation, hence the development of strategies for alkane 

conversion to alternative chemical building blocks such as olefins 

remains ongoing. In this study, (dmPhebox)Ir organometallic com-

plexes grafted onto sulfated zirconia proved competent for hydro-

carbon functionalization in stoichiometric and catalytic processes, 

showing a heightened propensity toward bond activation and elim-

ination reactions in comparison to their molecular precursors. Sul-

fated zirconia-supported samples showed increased reactivity in the 

stoichiometric dehydrogenation of n-nonane, demonstrating the 

rate-enhancing impact of the surface for β-H elimination, with DFT 

calculations also confirming the lower barrier. Organometallic spe-

ciation can also be assessed and quantified using solution-phase 

NMR techniques by removal of generated species from the surface, 

providing a powerful tool for the characterization of surface organ-

ometallic complexes in this system. Moreover, these materials were 

shown to effect olefin hydrogenation, the microscopic reverse of 

alkane dehydrogenation, with an organometallic species as the ac-

tive catalyst on sulfated zirconia whereas iridium nanoparticles 

were likely the active species in silica-supported samples. Tuning 

the electrophilicity of metal centers to bolster the activation of al-

kanes is a concept widely applied in homogeneous catalysis. The 

application of this concept by grafting onto a highly acidic oxide 

surface offers advantages through the coalescence of properties in-

herent to homogeneous and heterogeneous catalysis. 
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