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HDAC1=1.8 + 0.2 nM; HDAC2 =3.6 = 0.3 nM
HDAC3 = 3.0 £ 0.8 nM

Antiproliferative IC;s = 10-45 nM

F =353.52% rats
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Abstract

In this study, a series of novel HDAC inhibitors, sing
1,2,4-oxadiazole-containing as the cap group, \wgnthesized and evaluated in vitro.
Compound 14b,
N-hydroxy-2-(methyl ((3-(1-(4-methyl benzyl)pi peridin-4-yl)-1,2,4-oxadiazol-5-yl )meth
yh)amino)pyrimidine-5-carboxamide, displayed the most potent histone deacetylase
(HDAC) inhibition, especially against HDAC1, 2, aBdwith IG5 values of 1.8, 3.6
and 3.0 nM, respectively. In vitro antiproliferagistudies confirmed thdt4b was
more potent than SAHA, with Kgvalues against 12 types of cancer cell lines rangi
from 9.8 to 44.9 nM. The results of Western blatags showed that compoutdb
can significantly up-regulate the acetylation o¢ thiomarker his-Eland molecular
docking analyses revealed the mode of action ofpcamd14b against HDAC1. The
results of flow-cytometry analysis suggested thanhpoundl4b induces cell cycle
arrest at the G1 phase and has apoptotic effaatthdf investigation of the activity of
14b on the primary cells of three patients, showeg) i@lues of 21.3, 61.1, and 77.4
nM. More importantly, an oral bioavailability of up 53.52% was observed fb4db.
An in vivo pharmacodynamic evaluation demonstratedt compoundl4b can
significantly inhibit tumor growth in a Daudi Butks lymphoma xenograft model,
with tumor inhibition rates of 53.8 and 46.1% obser at 20 and 10 mg/kg when
administered p.o. and i.v., respectively. Thesalteéndicate that compouridib may
be a suitable lead for further evaluation and dgwalent as an HDAC inhibitor and a

potent anticancer agent.

Keywords: HDAC,; 1,2,4-oxadiazole; antiproliferative; anticanc
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Introduction

Histone deacetylases (HDACs) are responsible ferdibacetylation of lysine
residues in histone or non-histone substrates][1he epigenetic targeting of which
has shown clinical benefits, especially for theatmgent of cancer.[3] To date, 18
HDAC isoforms have been identified that are clasgifin four groups: classes |
(HDAC1, 2, 3, and 8); Il (HDAC4, 5, 6, 7, 9, and)10ll (SIRT1-7); and IV
(HDAC11), depending on their sequence similaritgllidar localization, tissue
expression patterns, and enzymatic mechanism.[#{PAC inhibitors can mediate
cancer cell death by promoting reduced cell mugifiigration, invasion,
angiogenesis, proliferation, induction of apoptpaisd inhibition of DNA repair.[6-9]
Currently, five HDAC inhibitors, vorinostat (SAHA)LQO] romidepsin (FK-228),[11]
belinostat (PXD-101),[12] panobinostat (LBH589)]J1&d chidamide, have been
approved for the treatment of cutaneous T-cell lyarpa (CTCL), peripheral T cell
lymphoma (PTCL), or multiple myeloma (MM).[14] Irddition, many inhibitors are
currently in clinical trials for the treatment oéfmatological and/or solid tumors.[15]
However, these drugs still have a number of probldror instance, LBH589 has a
“Highlights of prescribing information” boxed wang due to severe diarrhea
occurring in 25% of LBH589-treated patients, widvere and fatal cardiac ischemic
events, severe arrhythmias, and ECG changes algimghaccurred in patients
receiving LBH589 treatment.[16] Due to decades witlsetic efforts, more than
twenty candidates have entered clinical trialsdorariety of disease treatments.[17]
Although the use of unselective HDAC inhibitors ©idé of oncology is limited due
to their side effects,[18-20] the benefit of isaferor class-selective HDAC inhibitors
in cancer therapy is still under debate. To dderet is no clear clinical evidence that
isoform-selective HDAC inhibitors have sufficienffieacy while causing fewer
adverse effects.[18-20] However, it is particulamgportant to develop a novel

HDAC inhibitors with lower toxic side effects andtter efficacy for cancer therapy.
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Figure 1. Licensed HDAC inhibitors

The pharmacophore models of most HDAC inhibitovgagls have three parts: a
cap group used as a selective vector, a ZBG groupnd with the Zf" ion, and a
linker region that traditionally allows the ZBG g stretch into the catalytic binding
zone.[21-23] To date, modifications of the cap h#&een introduced that cause
changes in HDAC potency and selectivity profile4:9] In our previous study, we
designed and synthesized a series of selective HD#bitors by introducing
different heterocyclic groups as the cap group,hsas purine and quinoline
groups.[30-32] Importantly, in 2014, Prof Antonelldai et al reported a type of
1,3,4-oxadiazole-containing HDAC inhibitors with eromole antiproliferative
activities against a panel of cancer cell lined.[8ided by the results of previous
studies and available X-ray crystal structuresf@], or homology models generated
by our lab[31], in this study, we describe the bwsis, biological evaluation, and
modeling studies of a series of novel HDAC inhiksto that use
1,2,4-oxadiazole-containing derivatives as a capugr and exhibit nanomole

antiproliferative activities and remarkable bioda&hility as potent anticancer agents.

2. Results and Discussion

2.1 Chemistry

The synthetic route is presented inScheme 1-3 t-Butyl



96 4-cyanopiperidine-1-carboxylate 1)( was first reacted with hydroxylamine
97 hydrochloride to generate compouRdThen, compoun@ and chloroacetyl chloride
98 was reacted in the presence of triethylamine anrtemperature, and without further
99 purification, the crude compound was heated indlogane under reflux to obtain the
100 intermediate compound The linker group was introduced by coupling coonub3
101 with methyl 4-hydroxycinnamate to obtain compoudd which was further
102  de-protected of the Boc group to yield compodn&ubsequently, we used different
103 R-CIl or R-Br compounds to react with compousndo obtain compound6, which

104  were directly converted to hydroxamic acid compaindith NH,OH.

105
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107 Scheme 1Reagents and conditions: (a)NOH-HCI, NaHCQ, EtOH/HO (v/v, 5/1),
108  reflux, overnight; (b) CICKHCOCI, TEA, CHCl,, 0°C to rt, 2 h; Dioxane, reflux, 2 h;
109  (c) Methyl 4-hydroxycinnamate, CsGXI, MeCN, reflux, overnight; (d) GEOOH,
110 CHCly, rt, 4 h; (e) R-Cl or R-Br, BCOs;, Kl, MeCN, rt, 4 h; (f) NHOH, NaOH,
111 MeOH/CHCI; (viv, 2/1), rt, 2 h.

112

113 To evaluate the influence of linker groups on HDAghibition, we also

114  synthesized a series of compounds using differ@mincercially available compounds
5
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that were reacted with the intermediate compa®inthe resulting compoundswere

further treated as previous describe@aneme 1to yield compound8 (Scheme 2.
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Scheme 2Reagents and conditions: (a) CsC®I, MeCN, reflux, overnight; (b) i.
CRCOOH, CHCIy, rt, 4 h; ii. R-Cl or R-Br, KCO;s, KI, MeCN, rt, 4 h; iii NHOH,
NaOH, MeOH/CHCI; (v/v, 2/1), rt, 2 h.

For the pyrimidine structure used as the linkeiaiegcompound4.3a13b and
14a14] were synthesized to modify the SARScheme 2). Compoundl1l0 was
synthesized by reacting compouBdwith methylamine, after which compourid
was coupled with  ethyl-2-chloropyrimidine-5-carbtatg = and  ethyl
(E)-3-(2-chloropyrimidin-5-yl)acrylate to yield compnods 11 and 12, respectively.
Subsequently, compound& and12 were treated as describedScheme 1to yield

compoundd 3a13b andl4a14j, respectively.
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Scheme 3.Reagents and conditions: (a) Methylamine, EtOH2rh; (b) DIPEA,
MeOH, rt, 8 h; (c) i. CECOOH, CHCly, rt, 4 h; ii. BnBr, KCOs;, KI, MeCN, rt, 4 h;
iii NH,OH, NaOH, MeOH/CHECI; (v/v, 2/1), rt, 2 h.
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2.2 Evaluation of the vitro activities evaluation 6 synthesized compounds

The synthesized compounds were initially evalu&edheir inhibitory activities
toward HDAC1 and HDACG6 at a concentration of 100, e results of which are
presented iables 1, 2 and3. As shown inTable 1, at 100 nM, compound&a-7p all
caused less than 50% inhibition of HDAC1, whereasenthan 50% inhibition of
HDACG6 was observed. Compouf@, which had am-propyl chain introduced into
the cap group, showed 40 and 69% inhibition of HDA&hd HDACG6 at 100 nM
respectively. However, the introduction of an uosated alkyl chain allyl group in
compoudn7b caused a decrease in HDAC inhibition. Since the graup promotes
the ability of compounds to achieve selective irtloh of HDACs, a series
substituted benzyl group were introduced. Compolmdisplayed 71% inhibition of
HDACG6 at 100 nM, whereas the inhibition of HDACInm&ined unchanged. When
introducing substituted groups to the benzyl graime, inhibitory activities showed
para- > meta- > ortho-position trend, such as camgs 7f>7e>7d, in which a
methyl groups were introduced, arti>7h>7g, in which fluorine atoms were
introduced. These results confirmed that para-ositsubstitutions in these
compouds could increase their inhibition of HDACIhda HDAC6. When
di-substituted benzyl groups were introduced, ttieas and para- position-substituted
compound 7] was more effective than the meta- and para- posgubstituted
compoundrk, with 35 and 17% inhibition of HDAC1 and 74 an@P6 inhibition of
HDACG6 observed, respectively. In contrast with coompds7g and 7i, introducing
the larger halogen chlorine (compouriyi and bromine atom (compouid) caused
significant decreases in HDAC inhibition. Compounds and 7p, which had
electron-withdrawing groups introduced, showedducgon in HDAC1 and HDAC6

inhibition.
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Table 1.Inhibition of HDAC1 and HDACG6 by compounds-7p (100 nM)?

o)

R.
N N AN OH
N-O

% Inhibition % Inhibition
Compounds R Compounds R
HDAC1 HDACG6 HDAC1 HDACG6
7a Propyl 40 69 7i 4-F-Bn 38 75
7b Allyl 34 66 7] 2,4-difluoro-Bn 35 74
7c Bn 35 71 Tk 3,4-difluoro-Bn 17 60
7d 2-Me-Bn 14 68 71 2-Cl-Bn 8 59
e 3-Me-Bn 25 73 m 4-Br-Bn 6 58
7f 4-Me-Bn 32 76 m 4-MeO-Bn 36 75
79 2-F-Bn 31 68 70 2-CN-Bn 36 65
7h 3-F-Bn 35 73 m 2-NO»-Bn 19 63




164  ®Values are the averages of at least two indepémdg@eriments, SD < 10%.
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To evaluate the influence of the linker group, slyathesized compoun®s-9f
(100 nM) were also assessed for their ability tbibit HDAC1 and HDAC6. As
shown inTable 2, when the ethylene linkage was replaced by a atdralkyl chain
(compoundsQa and 9b) their inhibitory activities were significantly desased, in
contrast with the activities of compoundsand7b, which have the same cap groups.
The inhibitory activities of compounddc and 9d, in which benzyl groups were
introduced to the cap groups, showed the samedrdin inhibitory activities of the
compounds were significantly decreased, introdubeigzyl groups to the cap groups
was more favorable with respect to the inhibition HDAC1 and HDAC6. The
inhibitory activities of9e and 9f were effectively increased with the decrease in
carbon chain length. Taken together, these resulggest that the linker group is
important for the inhibition of HDACs.

Table 2. Inhibition of HDAC1 and HDAC6 by compoun@s-9f (100 nM)#

N_
% inhibitory at 100 nM
compounds R n
HDAC1 HDACG6

9a Propyl 2 5 13
9b Allyl 2 4 15
9c Bn 2 11 22
9d 4-Me-Bn 2 12 28

9e Bn 1 18 35

10
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of Bn 0 29 66

#Values are the averages of at least two indepérd@eriments, SD < 10%.

Based on the SAR analysis, the synthesized comgal@e13b and 14a14j,
which had pyrimidine introduced into the linker i@y were evaluated for their
inhibitory activities toward HDAC1 and HDACG6 at amentrations at 100 nM and for
their antiproliferative activities toward the Rajell line, the results of which are
presented iffable 3. In contrast with compound& and7f, which have vinyl groups
in their linker regions, the inhibitory activitiesf compoundsl3a and 13b toward
HDAC1 were significantly improved, by 65% and 61&spectively. When the vinyl
group was removed, compounti$éa and 14b showed increased inhibitory activities
toward HDAC1 at 100 nM, both 96%, and the antifeodtive 1G, values toward B
cell ymphoma Raji cell line were 27.6 and 12.1 nigpectively. Based on this result,
we further explored the effect of different suhgitd benzyl groups on the HDAC
inhibitory activity. The inhibition of HDAC1 and HBC6 as well as the
antiproliferative activity of compound4c was reduced after shifting the methyl
substitution to the meta position. Compoufidd and14eexhibit a similar SAR, with
the F atom being the better substitution. A congmariof the activities of compounds
14f and 14d shows that the CI substitution is better than ', when F and Cl are
simultaneously introduced into the molecule, theldgical activity of 14) was
significantly reduced. When a 2,4-difluoro subgitin was introduced, compourdi
exhibited better antiproliferative activity, witmdCs, value 34.3 nM, although its
activity against HDAC1 and HDACG6 decreased. Whea #hectron-withdrawing
groups CN {49 or CR (14h) were introduced in the para position, the HDAC
inhibition and antiproliferative activities decreds Based on the results of the SAR
analysis, compount4b was selected as a seed compound for further rsear
Table 3. Inhibition of HDAC1 and HDAC6 and antiproliferaé activity toward the
Raji cell line of compound$3a-13b and14a14j (100 nM)?

11
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N-O
13a-13b 14a-14j
Compounds R % Inhibition Raji
HDAC1 HDAC6 IC 50 (NM)

13a H 65 55 547.3+121.8
13b 4-Me 61 60 292.5+79.4
1l4a H 96 63 27.6 +3.8
14b 4-Me 96 71 121 +1.9
1l4c 3-Me 93 54 47.3+3.1
14d 2-F 84 44 98.6 + 8.6
14e 4-F 92 65 22.0+3.2
14f 2-Cl 93 55 48.3 +5.7
14g 4-CN 68 38 116.6 £10.9
14h 4-Ch 62 30 207 £32.3
14i 2,4-F 88 66 34.3+2.38
14 2-Cl-4-F 73 49 115.7 £ 15.7

Values are the averages of at least two indepémdg@eriments, SD < 10%.
2.3 Compound 14b inhibitory activity toward HDAC1-11

Compoundl14b was further evaluated for its activity toward tbner HDAC
isoforms, the results of which are summarizedTable 4 Compoundl4b was
effective toward class | HDAC1, 2, and 3, withsd@alues of 1.8, 3.6, and 3.0 nM
respectively, which were more effective than SAHA. contrast, the activity of
compound14b toward class Il and IV HDACs were relatively lowerspecially

toward HDAC11, with an observeddgvalue of more than 10M.

Table 4. HDAC inhibitory activity of compound4b

Isoform IC 50" (NM)

12



14b SAHA

Class | HDAC1 1.8+0.2 20+6
HDAC2 3.6+0.3 29+4
HDAC3 3.0+0.8 33+2
HDACS 260 + 40 682 + 87
Class lla HDAC4 473 + 30 >10000
HDACS 540 + 12 >10000
HDAC7 392 +18 >10000
HDAC9 441 + 21 >10000
Class llb HDACG6 56+1 27+ 2
HDAC10 102 +8 208 £ 19
Class IV HDAC11 >10000 >10000

216 % Compounds were tested in the 10-dosg I8ode in duplicate with 3-fold serial
217  dilutions starting at 1QM. The 1G values are the means of at least two experiments.
218

219 2.4 In vitro antiproliferative activity of 14b toward multiple tumor cell lines

220 To evaluate the antiproliferative activity of conypal 14b, the 1Gy values
221 toward 12 tumor cell lines were measured, includsodid tumors (colon cancer
222 HCT116, ovarian cancer A2780s, SKOV3, breast cahtefF-7, MDA-MB-231, and
223 liver cancer HepG2 cells) and hematological tunmoul{iple myeloma ARD, MML1S,
224 RPMI-8226, B cell lymphoma Raji, Jeko-1, and Raroels), by MTT, with SAHA
225 used as the positive control. As presentedable 5 compoundl4b possessed more
226  potent inhibitory activity than SAHA. The lgvalues of compounti4b ranged from
227 9.8 to 44.9 nM, whereas SAHA was weakly active talmhe tumor cell lines, with
228  ICs0s > 500 nM. Remarkably, compouddb was equally effective toward the solid
229 and hematological tumor cell lines, whereas thditicmal HDAC inhibitors such as
230 SAHA are only effective toward hematological tumorfiose results confirmed that
231 compoundl4bis a potent antitumor agent that could be usdretd solid tumors.

232 To determine the antiproliferative efficacy @#ib toward primary cells, we

13



233  obtained PB blasts from three AML patients (Sup@etaryTable S1) and evaluated
234  the antiproliferative activity ofl4b toward these cells. Compouridib effectively
235 inhibited cell proliferation, with 16 values of 21.2, 77.4, and 61.13 nM observed.
236  These results prompted us to further study compddid

237

238 Table 5 The activity of compound4b against various human tumor cell lines and

239  three primary AML cell lines.

IC50 % SD? (nM)
Tumor type Cell line
14b SAHA
Colon HCT116 16.0 +3.3 720.0 +£45.3
Ovarian A2780s 40.0 £ 195 5541.0 £ 833.0
SKOV3 205+54 1130.0 £ 236.5
Breast MCF-7 14.4+3.5 637.2 +56.4
MDA-MB-231 25.6+4.2 1710.0 £ 230.8
Liver HepG2 13.0+ 28 514.5+93.1
Multiple myeloma ARD 449+1.8 630.1 £177.5
MM1S 98+1.1 590.3+1254
RPMI-8226 15.6+4.4 585.8 + 116.5
B cell ymphoma  Raji 121+1.9 867.4 +£105.9
Jeko-1 72+x1.7 638.6 + 137.4
Ramos 17.8+0.5 514.6 + 66.0
Patient #1 21.2+34 ND
Primary AML
Patient #1 77.4+82 ND
cells
Patient #1 61.13 +13.7 ND

240 % ICso = concentration of the compound required to irtHilnnor cell proliferation by
241 50%. The data are expressed as the means = SDilidpse-response curves of at
242  least three independent experiments. ND: Not deteun

243

244 2.5 Upregulation of the acetylation of the histonél; and a-tubulin.

14
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Upregulation of the acetylation of histong t$ubstrate for HDAC 1, 2 and 3)
and o-tubulin (substrate for HDACG6) are biomarkers of AD inhibition. To
investigate the ability of compount4b in this context, western blot analysis of
a-tubulin and histone Hacetylation in the MM1S cell line after 6 h ofdtment with
compoundl4b or SAHA at 40, 200, 1000, and 5000 nM was perfatntiee results of
which are shown ifrigure 2. Compoundl4b could induce the formation of AcsH
and Ace-tubulin in a concentration-dependent manner, re@gent with the effects
of SAHA. Notably, compound4b could significantly upregulate the acetylation of
histone H at 40 nM, whereas the acetylation level wefubulin could only be
increased at high concentrations. This result co@d the compound4b is an

effective HDAC inhibitor.

A +14b +SAHA
0 40 200 1000 5000 0 40 200 1000 5000 nM

Ac-a-tubulin

Ac-Hj

GAPDH
B
257 Bl Ac-a-tubulin W Ac-Hj
S 2.0- 5 .
w
w
W
Tt
=
bl
@
)
2
—
~
S
[~4

= = =
= = =
o~ = =4

- uw

+14b (nM) +SAHA (nM)

Figure 2. Western blot analysis af-tubulin and histone H3 in the MM1S cell line
after 6 h of treatment with compouddb or SAHA at 40, 200, 1000, and 5000 nM.

GAPDH was used as a loading control.
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2.6 Cell cycle and apoptotic induction assay

Previous studies have shown that the class | HDAl@bitors promote the
induction of apoptosis, cell differentiation, anellcgrowth arrest. We further
evaluated compountib for its ability effect on cell cycle arrest anatimduction of
apoptosis in B cell lymphoma Jeko-1 cells. The wssaere performed at four
different doses (0, 10, 100 and 1000 nM) for 24 48dh, the results of which are
summarized irFigure 3. Consistent with previous reports, compourb induced
G1 cell cycle arrest in Jeko-1 cells after 24 tatimeent in a dose-dependent manner
(Figure 3A and 3B). In addition, after 48 h of treatmerit4b displayed a clear
dose-dependent apoptotic effect in Jeko-1 cellsh whe percentages of apoptosis
cells increasing from 6.41 up to 73.1%gure 3C and3D). Thus, compound4b can
block tumor cells in the Gl-phase and induce tuncetl apoptosis in a

dose-dependent manner.

A 10 nM 100 oM 1000 oM B
ol i 14 s 10 W= Control
1% 12, ERUEA G2M 10.77%,. 4 UM 452%
5 80 G 10 nM
5] + =\= &3 100 nM
& 604 1 1000 nM
] =z 404
- {-‘ ‘ U
=) I = 204 ]
E \ ™
© Args & SR 0 ' HH 'r’l.mﬁ
S G2M
C Control 10 nM 100 nM 1000 nM D s
= 604
5
3
-
T 40
g
z
=)
= 204

P o
Aannexin-V-FITC Control  10nM  100nM 1000 nM

Figure 3. (A) and (B) Jeko-1 cells were cultured withb (0, 10, 100, and 1000 nM)
for 24 h and the cell cycle distribution of thesixwas analyzed. (C) and (D) Jeko-1
cells were cultured withil4b (0, 10, 100, and 1000 nM) for 48 h, and the cell

apoptosis induction of these cells was analyzed.

2.7 Molecular docking

To identify potential interactions, compourddib was docked into a crystal

16
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structure of HDAC1 (PDB code 4BKX) [36] using a yiusly reported method [30,
32, 37, 38]. In the predicted docking pose (showkigure 4), the hydroxyl group of
the hydroxamic tail transferred a proton to a nleaing basic residue and formed a
penta-coordination bond to a catalytic ?Zrion with the carbonyl group of the
hydroxamic tail, that involved residues, His178p264, and Asp176. Simultaneously,
the NH of hydroxamic tail formed a hydrogen bondwthe Gly149 residue. In the
linker region, the pyrimidine and methyl groups &vdormed three weak hydrogen
bonds with Gly149 and Asp99, with Asp99 also forgnan pi-anion interaction with
1,2,4-oxadiazole. The piperidine ring allows thieiéme ring to occupy a hydrophobic
pocket on the surface of the HDAC1 protein. In &ddi to this hydrophobic
interaction, the toluene formed a pi-donor hydrogending interaction with His28,
while there is no such interaction in the dockimgugation result of HDAC6 with
14b (Supplementaryigure S1). This result may explain the observed differeirce

activity of compoundl4b for HDAC1 over HDACG6. Therefore, these interaction

appeared to enhance the binding affinity4b for HDACL1.

Figure 4. The binding models df4bin HDAC1 crystal structure (PDB code 4BKX).

2.8 Pharmacokinetic studies

HDAC inhibitors are well known to be limited by thdow bioavailability,
which limits the administration of these compouriisinvestigate the bioavailability
of compoundLl4b, it was administered to SD rats at 5 mg/kg bothawgnously (i.v.)

and orally (p.o.), with blood samples subsequeatiglyzed for the concentration of
17



308 14busing an LC-MS/MS system. As shownTiable 6, the oral bioavailability o14b
309 was excellent in rats, up to 53.52%, suggesting 14k is suitable both for i.v. and
310 p.o. dosing as a potent anticancer agent.

311

312 Table 6. Pharmacokinetic parameters tested in vivo

Route 14b
LV. p.o.

N2 6 6
Dose (mg/kg) 5 5
Cl (Lhkg™)® 11.87 22.31
Vs (L/kg)© 6.33 29.13
AUCo. (ng/L*h) ¢ 433.26 231.89
Crax (ng/L)® 954.91 240.96
Tir (n) 0.39 1.01
F (%) 53.52

a

313 : Numbers of rats® Systemic clearance’: Volume of distribution following
314 intravenous dosind" Area under the curve following intravenous dosiimgegrated
315 drug concentration with respect to time and integtalrug concentration with respect
316 to time following oral dosing.®. Maximum plasma concentration following
317  intravenous dosind. Plasma half-life%: Percent of bioavailability.

318

319 2.9 Antitumor activity in a Daudi xenograft model.

320 To determine the antitumor potency of compoandd, we established a Burkitt's
321 lymphoma Daudi xenograft model. Compoubdb was administrated three times
322 over the cours of a week (10 mg/kg i.v. and 20 mglo.). After the experiment was
323 completed, the organ tissues and tumors of therempstal animals were collected,
324 and the safety and effectiveness of compoisid were evaluated by H&E staining

325 and immunohistochemistry analysis. As showkigure 5A and5B, 14b promoted a

326 remarkable reduction in tumor growth, with 46.19%0 (hg/kg, i.v.) and 53.8% (20

18
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339

mg/kg, p.o.) TGI observed. It is worth noting tlatl administration had a better
effect than intravenous administration, which mag belated to a higher
bioavailability of compoundl14b. Immunohistochemical analysis showed that
compared with the control group, the administratgmoup exhibited significantly
increased expression of Acshih tumor tissues, inhibited the proliferation ofrtor
cells, and caused DNA damage of tumor cells, whth oral administration group
being more effective than the intravenous groudadition, all treated groups did not
exhibit obvious abnormal behavior or significantitoside effects, and H&E staining
of organ tissues showed that compouidb did not cause organ damage in
experimental animals (SupplementafFygure S2). These findings suggest that

compoundl4b can be used as a potential oral anticancer drug.
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Figure 5. Antitumor effect ofl4b on the Daudi xenograft model. (A) Changes in
tumor volume. (B) Tumor weight results. (c) H&E anmimunohistochemistry results

of tumor tissues.

3. Conclusion

In summary, in this study we developed a noveleseof HDAC inhibitors with
containing 1,2,4-oxadiazole as cap group and hyadmx acid as ZBG group. The
inhibitory activities of the synthesized compouasthe HDAC1 and 6 isoforms and
a SAR analysis were performed. The most potent commgb (L4b) displayed optimal
HDAC inhibitory activity, especially toward HDACZ2, and 3, with IG, values 1.8,
3.6 and 3.0 nM, respectively, with the antiprolifieve 1G;, values ranging from 9.8 to
44.9 nM against 12 diverse cancer cell lines frarthhematological and solid tumors.
Importantly,14b also showed excellent antiproliferative activigaast primary AML
cells. The results of western blot analyses indatdahat compound4b can increase
the level of Ac< -tubulin and Ac-H4 in a concentration-dependent mean and
molecular docking analysis showed the mode of actd compoundl4b with
HDACL1. Further assays confirmed that compoiild could promote cell cycle arrest
and induce apoptosis, while pharmacokinetic studresved an up to 53.52% oral
bioavailability of 14b. In vivo pharmacodynamics experiments showed that
compoundl4b achieved 46.1 and 53.8% inhibition at 10 and 2Gkmahen i.v. and
p.o. administered, respectively, with no significarde effects. These results show
that compoundL4b represents a new scaffold to target HDAC for ncaatitumor

drug discovery.

4. Experimental section
4.1 Chemistry

All the chemical solvents and reagents, which wemmalytically pure without
further purification, were commercially availablELC was performed on 0.20 mm
Silica Gel 60 B4 plates (Qingdao Ocean Chemical Factory, ShandQgna).

Hydrogen nuclear magnetic resonanéel (NMR) and carbon nuclear magnetic
20
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resonance{C NMR) spectra were recorded on a Bruker Avance gf¥ktrometer
(Bruke Company, Germany) or Varian spectrometerrigvia Palo Alto, CA).

Chemical shifts are given in ppm relative to tetetimylsilane (TMS) as an internal
standard, where TMS = 0.00 ppm. Mass spectra (M&kwneasured by Q-TOF
Priemier mass spectrometer (Micro mass, Manchdgker, Room temperature (rt) is

within the range 20-25C.

4.1.1. t-Butyl-4-(N'-hydroxycarbamimidoyl)piperidine-1-carboxyld&)

Thet-butyl-4-cyanopiperidine-1-carboxylaie(2.0 g, 9.51 mmol) was dissolved
in ethanol (25 mL) and hydroxylamine hydrochlor{@®91 g, 14.27 mmol), water (5
mL) and sodium bicarbonate (1.6 g, 19.02 mmol) waetded. The reaction mixture
was stirred 1 h at ambient temperature and thetetteavernight at reflux. After
cooling to room temperature, the EtOH was remowedaicuo, and the aqueous layer
was extracted with EtOAc (3 x 60 mL). The orgamaxcfions were combined, washed
with water (3 x 80 mL), then brine, and dried {8&). Removal of the sovent in
vacuo afforded t-butyl-4-(N'-hydroxycarbamimidoyl)piperidine-1-carboxylate.
White solid, yield: 81.3%'H NMR (400 MHz, DMSQdg) &: 8.79 (s, 1H), 5.31 (s,
2H), 4.01-3.87 (m, 2H), 2.80-2.58 (m, 2H), 2.14Jtt 11.7, 3.5 Hz, 1H), 1.72-1.62
(m, 2H), 1.49-1.40 (m, 2H), 1.39 (s, 9H). MS (ESi)jz: 244.2 [M + H].

4.1.2. t-Butyl-4-(5-(chloromethyl)-1,2,4-oxadiazol-3-yl)mpdine-1-carboxylaté3)

To a solution of the compouritd(1.5 g, 6.17 mmol) in dichloromethane (25 mL)
was added triethylamine (1.7 mL, 12.33 mmol) arel rhixture was cooled to 0 °C.
Chloroacetyl chloride (0.69 mL, 9.25 mmol) was dipadded dropwise over 5 min.
The reaction was stirred at 0 °C for 10 min anchtateroom temperature for 2 h. The
solvent was removed under vacuum and then thei@4ude solution was added and
heated to reflux for 2 h. After completion of theaction, the solvent was extracted
with EtOAc, washed with water and brine, and dmath anhydrous Ng&0Oy. Then
the solvent was removed under reduced pressurepifueict was purified by Flash

Chromatography eluting with 1/5 EtOAC/PE (petrolewther) to give the title
21
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compound3. Light yellow solid, yield: 79.2%'H NMR (400 MHz, DMSQds) 5:
5.08 (s, 2H), 3.99-3.88 (m, 2H), 3.06 (it 11.3, 3.8 Hz, 1H), 2.99-2.85 (m, 2H),
1.97-1.87 (m, 2H), 1.61-1.46 (m, 2H), 1.40 (s, M$ (ESI), m/z: 302.2 [M + H]

41.3.
t-Butyl-4-(5-((4-(3-methoxy-3-oxoprop-1-en-1-yl)phety)methyl)-1,2,4-oxadiazol-3
-yl)piperidine-1-carboxylaté4)

Preparation of the compour®i(1 g, 3.31 mmol), methyl 4-hydroxycinnamate
(0.65 g, 3.65 mmol), caesium carbonate (1.62 g7 #m#nol) and potassium iodide
(54.8 mg, 0.3 mmol) were dissolved in acetonit(#® mL) and heated overnight at
reflux. Reaction mixture was cooled and the solvesimoved under vacuum.
Extracted with EtOAc, washed with solution of sadigarbonate (N&£0O3) and brine,
and dried with anhydrous B&O,. Then the solvent was removed under reduced
pressure to provide the title compouhdWhite solid, yield: 90.2%'H NMR (400
MHz, CDCk) §: 7.64 (d,J = 16.0 Hz, 1H), 7.50 (d] = 8.7 Hz, 2H), 7.00 (d] = 8.8
Hz, 2H), 6.34 (dJ = 16.0 Hz, 1H), 5.29 (s, 2H), 4.21-4.06 (m, 2HBO3(s, 3H),
3.04-2.96 (m, 1H), 2.96-2.87 (m, 2H), 2.06—1.95%H), 1.84—1.71 (m, 2H), 1.47 (s,
9H). MS (ESI), m/z: 444.4 [M + H]

4.1.4.
Methyl-3-(4-((3-(piperidin-4-yl)-1,2,4-oxadiazol@)methoxy)phenyl)acrylate-2,2,2-
trifluoroacetate)

To a solution of intermedia# (1.25 g, 6.3 mmol) dissolved in dichloromethane
(10 mL) was added TFA (2.34 mL) and the solutiomesd at room temperature for 4
h. After completion of the reaction, the solventowved under vacuum afforded an
oily liquid which was added to a diethyl ether dmn to precipitate a white solid.
The white solid formed was collected by filtratiand dried under vacuum to give the
title compounds. White solid, yield: 95.1%H NMR (400 MHz, DMSOs) &: 8.62 (s,
1H), 8.36 (s, 1H), 7.72 (d,= 8.8 Hz, 2H), 7.63 (d] = 16.0 Hz, 1H), 7.09 (dl = 8.8

Hz, 2H), 6.54 (dJ = 16.0 Hz, 1H), 5.58 (s, 2H), 3.71 (s, 3H), 3.3283(m, 2H),
22
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3.27-3.18 (m, 1H), 3.10-2.98 (m, 2H), 2.17-2.05 2#), 1.91-1.77 (m, 2H). MS
(ESI), m/z: 344.2 [M + H]

4.1.5. General procedure for synthesis of compolGaip

To a solution of the compourtd(2.27 mmol) in acetonitrile (10 mL) was added
potassium carbonate (4.53 mmol) and potassium éo@d2 mmol). Halide (2.49
mmol) was then added to the reaction mixture. Tdeetion mixture was stirred at
room temperature for 4 h. The solvent removed umdenum, extracted with EtOAc,
the organic layers were combined, washed with waer brine, dried with MgSQ
and concentrated in vacuo. Flash chromatographyH&9Ac/petroleum ether to 30%

EtOAc/petroleum ether) afforded the title compoadp.

4.15.1.
Methyl-3-(4-((3-(1-propylpiperidin-4-yl)-1,2,4-ox&kol-5-yl)methoxy)phenyl)acryla
te (6a). Pale yellow solid, yield: 83%4H NMR (400 MHz, CDCJ) &: 7.64 (d,J =
16.0 Hz, 1H), 7.49 (d] = 8.7 Hz, 2H), 7.00 (d] = 8.8 Hz, 2H), 6.34 (d] = 16.0 Hz,
1H), 5.28 (s, 2H), 3.80 (s, 3H), 3.05-2.96 (m, 2&89-2.78 (m, 1H), 2.43-2.31 (m,
2H), 2.19-1.87 (m, 6H), 1.62—1.50 (m, 2H), 0.9 &,7.3 Hz, 3H).

4.15.2.
Methyl-3-(4-((3-(1-allylpiperidin-4-yl)-1,2,4-oxadreol-5-yl)methoxy)phenyl)acrylate
(6b). White solid, yield: 87%'H NMR (400 MHz, CDCJ) &: 7.64 (d,J = 16.0 Hz,
1H), 7.49 (d,J = 8.8 Hz, 2H), 7.00 (dJ = 8.8 Hz, 2H), 6.34 (d) = 16.0 Hz, 1H),
5.96-5.83 (m, 1H), 5.28 (s, 2H), 5.25-5.15 (m, 2480 (s, 3H), 3.10-3.03 (m, 2H),
3.02-2.95 (m, 2H), 2.90-2.79 (m, 1H), 2.25-2.034Hht), 2.00-1.88 (m, 2H).

4.15.3.
Methyl-3-(4-((3-(1-benzylpiperidin-4-yl)-1,2,4-ox&ol-5-yl)methoxy)phenyl)acryla
te (6¢). White solid, yield: 88%. 1H NMR (400 MHz, DMS@) 6: 7.71 (d,J = 8.8

Hz, 2H), 7.63 (dJ = 16.0 Hz, 1H), 7.35-7.28 (m, 4H), 7.27—7.21 (id),17.09 (d,J
23
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= 8.8 Hz, 2H), 6.54 (dJ = 16.0 Hz, 1H), 5.55 (s, 2H), 3.71 (s, 3H), 3.48 ZH),
2.87-2.75 (m, 3H), 2.14-2.03 (m, 2H), 1.97-1.87 2i), 1.78-1.61 (m, 2H). MS
(ESI), m/z: 434.19 [M + H]

4.15.4.
Methyl-3-(4-((3-(1-(2-methylbenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methoxy)ph
enyl)acrylate §d). White solid, yield: 88%'H NMR (400 MHz, CDC})) &: 7.64 (d,J

= 16.0 Hz, 1H), 7.49 (dl = 8.8 Hz, 2H), 7.30-7.26 (m, 1H), 7.23-7.10 (m),36499
(d, J = 8.8 Hz, 2H), 6.33 (d] = 16.0 Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H), 3.472H),
2.97-2.90 (m, 2H), 2.88-2.78 (m, 1H), 2.36 (s, 3H)8—2.09 (m, 2H), 2.03-1.95 (m,
2H), 1.94-1.81 (m, 2H).

4.15.5.
Methyl-3-(4-((3-(1-(3-methylbenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methoxy)ph
enyl)acrylate §e). White solid, yield: 81%'H NMR (400 MHz, CDG}) §: 7.64 (d,J
=16.0 Hz, 1H), 7.49 (d] = 8.6 Hz, 2H), 7.21 (] = 7.4 Hz, 1H), 7.16 (s, 1H), 7.12 (d,
J=7.5Hz, 1H), 7.07 (d] = 7.3 Hz, 1H), 6.99 (d] = 8.6 Hz, 2H), 6.33 (d] = 16.0
Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H), 3.51 (s, 2Bl1-2.90 (m, 2H), 2.88-2.76 (m,
1H), 2.35 (s, 3H), 2.20-2.07 (m, 2H), 2.03-1.87 4i).

4.1.5.6.
Methyl-3-(4-((3-(1-(4-methylbenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methoxy)ph
enyl)acrylate f). White solid, yield: 85%'H NMR (400 MHz, CDCJ) &: 7.64 (d,J
=16.0 Hz, 1H), 7.49 (dl = 8.7 Hz, 2H), 7.21 (d] = 7.8 Hz, 2H), 7.13 (d] = 7.7 Hz,
2H), 6.99 (d,J = 8.6 Hz, 2H), 6.33 (dJ = 16.0 Hz, 1H), 5.27 (s, 2H), 3.80 (s, 3H),
3.49 (s, 2H), 2.98-2.89 (nd,= 11.4 Hz, 2H), 2.87-2.75 (m, 1H), 2.34 (s, 3H)L62
2.06 (M, 2H), 2.03-1.96 (m, 2H), 1.96-1.84 (m, 2H).

4.1.5.7.

Methyl-3-(4-((3-(1-(2-fluorobenzyl)piperidin-4-yl};2,4-oxadiazol-5-yl)methoxy)phe
24
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nyl)acrylate 6g). White solid, yield: 76%'H NMR (400 MHz, CDC}) &: 7.64 (d,J =
16.0 Hz, 1H), 7.49 (d] = 8.8 Hz, 2H), 7.43-7.37 (m, 1H), 7.26-7.20 (m),1H13—
7.08 (m, 1H), 7.04 (d] = 8.8 Hz, 1H), 6.99 (d] = 8.8 Hz, 2H), 6.33 (d] = 16.0 Hz,
1H), 5.28 (s, 2H), 3.80 (s, 3H), 3.61 (s, 2H), 3P92 (m, 2H), 2.86-2.77 (m, 1H),
2.23-2.14 (m, 2H), 2.04-1.98 (m, 2H), 1.97—1.887Ht).

4.15.8.
Methyl-3-(4-((3-(1-(3-fluorobenzyl)piperidin-4-yl};2,4-oxadiazol-5-yl)methoxy)phe
nyl)acrylate 6h). White solid, yield: 80%'H NMR (400 MHz, CDCJ) &: 7.64 (d,J =
16.0 Hz, 1H), 7.49 (d] = 8.7 Hz, 2H), 7.32-7.27 (m, 1H), 7.14-7.07 (m),ZH0O0 (d,
J = 8.8 Hz, 2H), 6.98-6.90 (m, 1H), 6.33 (d, J 018z, 1H), 5.28 (s, 2H), 3.80 (s,
3H), 3.54 (s, 2H), 2.99-2.79 (m, 3H), 2.27—1.84 6i1).

4.1.5.9.
Methyl-3-(4-((3-(1-(4-fluorobenzyl)piperidin-4-yl};2,4-oxadiazol-5-yl)methoxy)phe
nyl)acrylate 6i). White solid, yield: 82%'H NMR (400 MHz, CDC}) §: 7.64 (d,J =
16.0 Hz, 1H), 7.49 (d] = 8.7 Hz, 2H), 7.32—7.26 (m, 2H), 7.03—6.95 (m),46433 (d,
J = 16.0 Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H), 3.482H), 2.95-2.88 (m, 2H), 2.87—
2.77 (m, 1H), 2.15-2.07 (m, 2H), 2.04—1.97 (m, 2HY5-1.85 (m, 2H).

4.1.5.10
Methyl-3-(4-((3-(1-(2,4-difluorobenzyl)piperidin-yB-1,2,4-oxadiazol-5-yl)methoxy)
phenyl)acrylatej). White solid, yield: 86%'H NMR (400 MHz, CDGJ) &: 7.64 (d,
J=16.0 Hz, 1H), 7.49 (dl = 8.8 Hz, 2H), 7.37 (dd] = 15.1, 8.4 Hz, 1H), 6.99 (d,

= 8.8 Hz, 2H), 6.89-6.75 (m, 2H), 6.33 {c= 16.0 Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H),
3.56 (s, 2H), 2.95-2.90 (m, 2H), 2.86-2.77 (m, 32-2.12 (m, 2H), 2.07-1.97 (m,
2H), 1.96-1.87 (m, 2H).

4.1.511.
Methyl-3-(4-((3-(1-(3,4-difluorobenzyl)piperidin-yB-1,2,4-oxadiazol-5-yl)methoxy)
25
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phenyl)acrylate@k). White solid, yield: 89%'H NMR (400 MHz, CDCJ) &: 7.64 (d,

J = 16.0 Hz, 1H), 7.50 (d] = 8.8 Hz, 2H), 7.23-7.16 (m, 1H), 7.13-7.05 (m),1H
7.05-7.02 (m, 1H), 7.00 (d,= 8.8 Hz, 2H), 6.34 (dJ = 16.0 Hz, 1H), 5.29 (s, 2H),
3.80 (s, 3H), 3.46 (s, 2H), 2.94-2.87 (m, 2H), 2879 (m, 1H), 2.18-2.08 (m, 2H),
2.06-1.98 (m, 2H), 1.96-1.84 (m, 2H).

41512
Methyl-3-(4-((3-(1-(2-chlorobenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methoxy)phe
nyl)acrylate 6l). Pale yellow solid, yield: 79%H NMR (400 MHz, CDC)) &: 7.64
(d, J = 16.0 Hz, 1H), 7.50 (d} = 8.7 Hz, 2H), 7.35 (d] = 7.6 Hz, 1H), 7.25-7.14 (m,
3H), 7.00 (d,J = 8.7 Hz, 2H), 6.34 (dJ = 16.0 Hz, 1H), 5.29 (s, 2H), 3.80 (s, 3H),
3.66 (s, 2H), 3.14-2.94 (m, 2H), 2.91-2.76 (m, 1438-2.18 (m, 2H), 2.13-1.84 (m,
4H).

41513
Methyl-3-(4-((3-(1-(4-bromobenzyl)piperidin-4-yl):4,4-oxadiazol-5-yl)methoxy)ph
enyl)acrylate §m). Yellow solid, yield: 81%*H NMR (400 MHz, CDC}) &: 7.64 (d,
J=16.0 Hz, 1H), 7.49 (d] = 8.6 Hz, 2H), 7.44 (d] = 8.1 Hz, 2H), 7.21 (d] = 8.1
Hz, 2H), 7.00 (dJ = 8.5 Hz, 2H), 6.33 (d] = 16.0 Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H),
3.48 (s, 2H), 2.94-2.88 (m, 2H), 2.87-2.78 (m, )8—2.07 (m, 2H), 2.05-1.97 (m,
2H), 1.96-1.83 (m, 2H).

4.15.14.
Methyl-3-(4-((3-(1-(4-methoxybenzyl)piperidin-4-yl),2,4-oxadiazol-5-yl)methoxy)p
henyl)acrylate §n). White solid, yield: 86%'H NMR (400 MHz, CDC}) &: 7.64 (d,

J = 16.0 Hz, 1H), 7.49 (d] = 8.7 Hz, 2H), 7.30-7.22 (m, 2H), 6.99 (t= 8.7 Hz,
2H), 6.86 (d,J = 8.5 Hz, 2H), 6.33 (dJ = 16.0 Hz, 1H), 5.28 (s, 2H), 3.80 (s, 3H),
3.80 (s, 3H), 3.52 (s, 2H), 3.02-2.92 (m, 2H), 2898 (m, 1H), 2.24-1.88 (m, 6H).

4.1.5.15.
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Methyl-3-(4-((3-(1-(2-cyanobenzyl)piperidin-4-yl)A 4-oxadiazol-5-yl)methoxy)phe
nyl)acrylate 6r). Pale yellow solid, yield: 75%H NMR (400 MHz, CDC}) &: 7.66
(d,J = 4.5 Hz, 1H), 7.63 (d] = 3.5 Hz, 1H), 7.61-7.53 (m, 2H), 7.49 (ds 8.7 Hz,
2H), 7.35 (tJ = 7.4 Hz, 1H), 7.00 (d] = 8.7 Hz, 2H), 6.33 (d] = 16.0 Hz, 1H), 5.28
(s, 2H), 3.80 (s, 3H), 3.73 (s, 2H), 2.99-2.91 i), 2.90-2.81 (m, 1H), 2.32-2.21
(m, 2H), 2.06-1.99 (m, 2H), 1.98-1.87 (m, 2H).

4.1.5.16.
Methyl-3-(4-((3-(1-(2-nitrobenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methoxy)phen
ylacrylate 6p). Yellow solid, yield: 71%’H NMR (400 MHz, CDC}) &: 7.83 (d,J =
7.7 Hz, 1H), 7.68=7.61 (m, 2H), 7.58-7.52 (m, 1HK0 (d,J = 8.7 Hz, 2H), 7.42—
7.36 (m, 1H), 7.00 (d] = 8.7 Hz, 2H), 6.34 (d] = 16.0 Hz, 1H), 5.28 (s, 2H), 3.86—
3.76 (m, 5H), 2.91-2.78 (m, 3H), 2.27-2.14 (m, 221P3-1.95 (m, 2H), 1.94-1.82
(m, 2H).

4.1.6. General procedure for synthesis of compoufaip

The ester intermediate (1 mmol) was dissolved ¢hldromethane and methanol
(1:2, 9 mL). The resulting solution was cooled t60) and then hydroxylamine (50
wt% in water, 30 mmol) and sodium hydroxide (2 mmalere added. At the
temperature, the reaction was stirred for 2 h. $tleent was then removed under
reduced pressure, and the obtained solid was dexsah water, which was adjusted
to pH = 7-8 by acetic acid to precipitate a whitéids The white solid formed was

collected by filtration to afford the cruda-p and purified by flash chromatograph.

416.1.
N-Hydroxy-3-(4-((3-(1-propylpiperidin-4-yl)-1,2,4-@liazol-5-yl)methoxy)phenyl)a
crylamide {a). White powder, yield: 62%, m.p133-135°C. 'H NMR (400 MHz,
DMSO-dg) &: 7.58-7.49 (m, 2H), 7.41 (d,= 15.8 Hz, 1H), 7.08 (d] = 8.7 Hz, 2H),
6.34 (d,J = 15.8 Hz, 1H), 5.29 (s, 2H), 3.10-3.00 (m, 1HR&22.79 (m, 2H), 2.23

(m, 2H), 2.08-1.99 (m, 4H), 1.79-1.64 (m, 2H), +886 (m, 2H), 0.84 (J = 7.4
27
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Hz, 3H).*C NMR (101 MHz, DMSOdg) &: 183.08, 175.18, 166.80, 159.02, 129.50,
128.83, 115.65, 61.26, 60.41, 52.95, 52.62, 32986, 29.54, 20.09, 20.05, 12.31.
MS (ESI), m/z: 387.2 [M + H]

4.16.2.
3-(4-((3-(1-Allylpiperidin-4-yl)-1,2,4-oxadiazol-§H)methoxy)phenylN-hydroxyacr
ylamide {b). Pale yellow powder, yield: 66%, m.fp27-129°C. *H NMR (400 MHz,
DMSO-dg) &: 7.58-7.49 (m, 2H), 7.41 (d,= 15.8 Hz, 1H), 7.08 (d] = 8.4 Hz, 2H),
6.35 (dd,J = 15.8, 3.2 Hz, 1H), 5.89-5.75 (m, 1H), 5.30 (4),5.22-2.06 (m, 2H),
3.11-3.00 (m,1H), 2.95 (d, = 6.4 Hz, 2H), 2.88-2.78 (m, 2H), 2.13-1.89 (m,4H)
1.80-1.61 (m, 2H)*C NMR (101 MHz, DMSOd) &: 183.03, 175.20, 173.46,
166.81, 163.44, 136.08, 129.51, 117.90, 115.6%49%161.49, 61.25, 52.72, 52.38,
33.98, 33.65, 29.87, 29.45. MS (ESI), m/z: 385.1{M]".

4.1.6.3.
3-(4-((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazolyp)methoxy)phenyl)N-hydroxya
crylamide c). White powder, yield: 71%, m.p83-84 °C. *H NMR (400 MHz,
DMSO-dg) §: 10.68 (s, 1H), 8.99 (s, 1H),7.53 (b= 8.3 Hz, 2H), 7.40 (d] = 16.1 Hz,
1H), 7.36=7.28 (m, 4H), 7.27—7.22 (m, 1H), 7.07)(d,8.7 Hz, 2H), 6.34 (d] = 15.8
Hz, 1H), 5.52 (s, 2H), 3.48 (s, 2H), 2.88-2.73 &M), 2.13-2.03 (m, 2H), 1.97-1.85
(m, 2H), 1.78-1.61 (m, 2H)*C NMR (101 MHz, DMSOdg) &: 175.20, 173.46,
166.81, 158.63, 138.89, 129.54, 129.23, 128.63,3427115.63, 62.76, 61.24, 52.76,
33.64, 29.91. MS (ESI), m/z: 435.16 [M +H]

4.1.6.4.
N-Hydroxy-3-(4-((3-(1-(2-methylbenzyl)piperidin-43yL,2,4-oxadiazol-5-yl)methox
y)phenyl)acrylamide 7d). White powder, yield: 72%, m.pl54-156°C. *H NMR
(400 MHz, DMSOdg) &: 7.51 (d,J = 6.9 Hz, 2H), 7.36 (d] = 14.9 Hz, 1H), 7.22 (d,
J = 5.8 Hz, 1H), 7.18-7.14 (m, 2H), 7.07 (d= 8.1 Hz, 3H), 6.33 (dJ = 15.7 Hz,

1H), 5.29 (s, 2H), 3.43 (s, 2H), 3.15-3.04 (m, 1BE7—2.75 (m, 2H), 2.32 (s, 3H),
28
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2.18-2.10 (m, 2H), 2.05-1.97 (m, 2H), 1.78-1.68 gH). *C NMR (101 MHz,
DMSO-dg) &: 182.64, 166.42, 137.15, 136.46, 130.16, 129.86,90, 125.47, 115.24,
94.85, 60.36, 52.21, 33.65, 29.18, 18.88. MS (ES}; 449.2 [M + HI.

4.1.6.5.
N-Hydroxy-3-(4-((3-(1-(3-methylbenzyl)piperidin-43yl,2,4-oxadiazol-5-yl)methox
y)phenyl)acrylamide 7e). White powder, yield: 68%, m.[26-98°C. ‘*H NMR (400
MHz, DMSO-dg) §: 7.51 (d,J = 8.2 Hz, 2H), 7.37 (dJ = 15.6 Hz, 1H), 7.20 (] =
7.5 Hz, 1H), 7.11 (s, 1H), 7.10-7.03 (m, 4H), 684J = 15.7 Hz, 1H), 5.29 (s, 2H),
3.43 (s, 2H), 3.13-3.01 (m, 1H), 2.86-2.77 (m, 2439 (s, 3H), 2.15-2.06 (m, 2H),
2.05-1.97 (m, 2H), 1.77-1.67 (m, 2HJC NMR (101 MHz, DMSOds) &: 183.04,
166.82, 138.64, 137.67, 129.91, 129.41, 128.52,002826.39, 115.63, 62.68, 61.25,
52.44, 33.98, 29.48, 21.48. MS (ESI), m/z: 449.3{M]".

4.1.6.6.
N-Hydroxy-3-(4-((3-(1-(4-methylbenzyl)piperidin-43yL,2,4-oxadiazol-5-yl)methox
y)phenyl)acrylamidef). White powder, yield: 68%, m.[A.35-137°C. *H NMR (400
MHz, DMSO-de) &: 7.47: (d, J = 8.6 Hz, 2H), 7.20 @ = 14.2 Hz, 1H), 7.18 (d] =
7.8 Hz, 2H), 7.12 (d) = 7.8 Hz, 2H), 7.03 (d] = 8.6 Hz, 2H), 6.31 (d] = 15.8 Hz,
1H), 5.27 (s, 2H), 3.43 (s, 2H), 3.12-2.99 (m,1R{6-2.72 (m, 2H), 2.28 (s, 3H),
2.14-2.05 (m, 2H), 2.04-1.97(m, 2H), 1.80-1.65 @H). *C NMR (101 MHz,
DMSO-dg) 6: 183.02, 166.86, 158.34, 136.39, 135.59, 129.29,211, 128.92, 115.55,
62.40, 61.24, 52.35, 34.01, 29.49, 21.16. MS (B8f); 449.4 [M + H].

4.16.7.
3-(4-((3-(1-(2-Fluorobenzyl)piperidin-4-yl)-1,2,4¢«adiazol-5-yl)methoxy)phenyiN-
hydroxyacrylamide 7g). White powder, yield: 65%, m.[02-94°C. *H NMR (400
MHz, DMSO-dg) &: 7.51 (d,J = 8.3 Hz, 2H), 7.40 (d] = 8.7Hz, 1H), 7.36-7.28 (m,
2H), 7.21-7.15 (m, 2H), 7.07 (d,= 8.5 Hz, 2H), 6.33 (d] = 15.8 Hz, 1H), 5.29 (s,

2H), 3.55 (s, 2H), 3.12-3.01 (m, 1H), 2.88-2.75 i), 2.19-2.12 (m, 2H), 2.06—
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1.98 (m, 2H), 2.06—1.98 (m, 2H}C NMR (101 MHz, DMSOdg) &: 182.98, 166.82,
132.07, 129.58, 124.68, 115.73, 115.63, 115.5@5655.11, 52.23, 33.85, 29.45. MS
(ESI), m/z: 453.2 [M + H].

4.1.6.8.
3-(4-((3-(1-(3-Fluorobenzyl)piperidin-4-yl)-1,2,4¢«adiazol-5-yl)methoxy)phenyiN-
hydroxyacrylamide 1h). White powder, yield: 77%, m.86-88°C. *H NMR (400
MHz, CDCk) &: 7.67 (d,J = 15.7 Hz, 1H), 7.51 (d] = 5.1 Hz, 2H), 7.32-7.27 (m,
1H), 7.10 (t,J = 9.1 Hz, 2H), 7.04-6.93 (m, 3H), 6.36 (b= 15.6 Hz, 1H), 5.29 (s,
2H), 3.62 (s, 2H), 3.09-2.95 (m, 2H), 2.91-2.77 {iH), 2.31-2.16 (m, 2H), 2.11—-
1.88 (m, 4H)."*C NMR (101 MHz, DMSOd) &: 183.03, 166.82, 133.06, 129.48,
128.68, 115.72, 115.53, 115.31, 61.25, 55.11, 5233439, 29.46. MS (ESI), m/z:
453.3 [M + HJ.

4.1.6.9.
3-(4-((3-(1-(4-Fluorobenzyl)piperidin-4-yl)-1,2,4¢«adiazol-5-yl)methoxy)phenyiN-
hydroxyacrylamide 1i). White powder, vyield: 76%, m.@©1-92°C. *H NMR (400
MHz, DMSO-dg) &: 7.52 (d,J = 8.3 Hz, 2H), 7.39 (d] = 14.2 Hz, 1H), 7.33 (dd} =
8.5, 5.8 Hz, 2H), 7.14 (f] = 8.9 Hz, 2H), 7.07 (d] = 8.6 Hz, 2H), 6.34 (d] = 15.8
Hz, 1H), 5.29 (s, 2H), 3.47 (s, 2H), 3.17-3.01 {id), 2.83—2.75 (m, 2H), 2.15-2.07
(m, 2H), 2.06-1.98 (m, 2H), 1.80-1.69 (m, 2k NMR (101 MHz, DMSOds) &
183.01, 166.82, 134.91, 131.11, 131.03, 129.42641315.45, 115.24, 61.67, 61.25,
52.29, 33.95, 29.46. MS (ESI), m/z: 453.2 [M + H]

4.1.6.10.
3-(4-((3-(1-(2,4-Difluorobenzyl)piperidin-4-yl)-1,2-oxadiazol-5-yl)methoxy)phenyl
)-N-hydroxyacrylamide 7j). White powder, yield: 65%, m.pl00-102°C. *H NMR
(400 MHz, DMSO#g) &: 7.52 (d,J = 8.5 Hz, 2H), 7.49-7.42 (m, 1H), 7.40 (t=
15.9 Hz, 1H), 7.23-7.16 (m, 1H), 7.11-7.03 (m, 36483 (d,J = 15.8 Hz, 1H), 5.29

(s, 2H), 3.52 (s, 2H), 3.13-3.02 (m, 1H), 2.87-M72H), 2.19-2.10 (m, 2H), 2.06—
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1.98 (m, 2H), 1.79-1.65 (m, 2H}C NMR (101 MHz, DMSOds) &: 182.96, 166.81,
129.48, 115.64, 111.79, 104.31, 61.25, 54.61, 5832, 29.85, 29.43. MS (ESI),
m/z: 471.2 [M + H]J.

4.16.11.
3-(4-((3-(1-(3,4-Difluorobenzyl)piperidin-4-yl)-1,2-oxadiazol-5-yl)methoxy)phenyl
)-N-hydroxyacrylamide k). White powder, yield: 75%, m.[03-105°C. *H NMR
(400 MHz, CDC4) &: 7.70 (d,J = 15.9 Hz, 1H), 7.52 (d] = 8.6 Hz, 2H), 7.24-7.16
(m, 1H), 7.13-7.07 (m, 1H), 7.07—7.03 (m, 1H), 7(01) = 8.6 Hz, 2H), 6.35 (d] =
16.0 Hz, 1H), 5.30 (s, 2H), 3.51 (s, 2H), 2.98-2191 2H), 2.90-2.79 (m, 2H), 2.24—
2.11 (m, 2H), 2.09-2.00 (m, 2H), 2.00-1.86 (m, 2£0. NMR (101 MHz, DMSO#d)

0: 183.02, 166.82, 129.47, 115.61, 111.80, 104.2B4 54.61, 52.23, 33.87, 29.45.
MS (ESI), m/z: 471.4 [M + H]

4.1.6.12.
3-(4-((3-(1-(2-Chlorobenzyl)piperidin-4-yl)-1,2,4«adiazol-5-yl)methoxy) phenylN-
hydroxyacrylamide (). Yellow powder, yield: 71%, m.p136-138°C. *H NMR (400
MHz, DMSO-ds) §: 7.52 (d,J = 8.9 Hz, 2H), 7.46 (d] = 22.1 Hz, 1H), 7.43-7.25 (m,
4H), 7.08 (d,J = 8.4 Hz, 2H), 6.34 (d) = 15.7 Hz, 1H), 5.30 (s, 2H), 3.58 (s, 2H),
3.16-3.06 (m, 1H), 2.88-2.80 (m, 2H), 2.28-2.18 Zi), 2.08-1.99 (m, 2H), 1.83—
1.72 (m, 2H)."*C NMR (101 MHz, DMSOdg) &: 182.99, 166.82, 136.18, 133.74,
131.26, 129.72, 129.46, 129.06, 127.52, 115.6465159.15, 52.52, 33.85, 29.50.
MS (ESI), m/z: 469.7 [M + H]

4.1.6.13.
3-(4-((3-(1-(4-Bromobenzyl)piperidin-4-yl)-1,2,4-adiazol-5-yl)methoxy) phenylN-
hydroxyacrylamide {m). Yellow powder, yield: 78%, m.p98-100°C. *H NMR (400
MHz, DMSO-de) &: 7.51 (d,J = 8.3 Hz, 4H), 7.36 (d] = 15.7 Hz, 1H), 7.27 (d] =
8.3 Hz, 2H), 7.07 (d) = 8.5 Hz, 2H), 6.34 (d] = 15.8 Hz, 1H), 5.29 (s, 2H), 3.46 (s,

2H), 3.14-3.03 (m, 1H), 2.84-2.73 (m,2H), 2.18-2(6i7 2H), 2.06-1.97 (m, 2H),
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1.82-1.66 (m, 2H)*C NMR (101 MHz, DMSOd) &: 182.99, 166.82, 138.29,
131.53, 131.39, 129.38, 120.38, 115.63, 61.71,4652.32, 33.90, 29.46. MS (ESI),
m/z: 513.5 [M + H]J.

4.1.6.14.
N-Hydroxy-3-(4-((3-(1-(4-methoxybenzyl)piperidin-411,2,4-oxadiazol-5-yl)metho
xy)phenyl)acrylamide®n). White powder, yield: 78%, m.[89-91°C. *H NMR (400
MHz, DMSO-dg) §: 7.52 (d,J = 8.5 Hz, 2H), 7.40 (d] = 15.8 Hz, 1H), 7.20 (d] =
8.5 Hz, 2H), 7.07 (dJ = 8.7 Hz, 2H), 6.88 (d] = 8.6 Hz, 2H), 6.34 (d] = 15.8 Hz,
1H), 5.29 (s, 2H), 3.73 (s, 3H), 3.41 (s, 2H), 3302 (m, 1H), 2.85-2.74 (m, 2H),
2.13-2.04 (m, 2H), 2.03-1.97 (m, 2H), 1.79-1.67 2H). *C NMR (101 MHz,
DMSO-dg) 6: 183.04, 166.80, 158.73, 130.50, 129.50, 115.48,01, 62.05, 61.25,
55.45, 52.27, 34.03, 29.48. MS (ESI), m/z: 465.3{M]".

4.1.6.15.
3-(4-((3-(1-(2-Cyanobenzyl)piperidin-4-yl)-1,2,4-akiazol-5-yl)methoxy) phenylN-
hydroxyacrylamide 70). Pale yellow powder, yield: 61%, m.p8-100°C. *H NMR
(400 MHz, DMSOd) &: 7.82 (d,J = 7.7 Hz, 1H), 7.68 (td] = 7.7, 1.0 Hz, 1H), 7.59
(d,J=7.7 Hz, 1H), 7.53 (d] = 8.6 Hz, 2H), 7.47 () = 7.6 Hz, 1H), 7.40 (d] = 15.6
Hz, 1H), 7.08 (d,J = 8.6 Hz, 2H), 6.34 (d] = 15.8 Hz, 1H), 5.30 (s, 2H), 3.67 (s, 2H),
3.18-3.07 (m, 1H), 2.88-2.75 (m, 2H), 2.31-2.16 Zi), 2.10-1.98 (m, 2H), 1.84—
1.65 (m, 2H).13C NMR (101 MHz, DMSOdg) 6: 182.94, 166.81, 142.66, 133.50,
130.56, 129.50, 128.46, 118.17, 115.64, 112.525%150.34, 52.36, 33.76, 29.40. MS
(ESI), m/z: 460.3 [M + H].

4.1.6.16.

N-Hydroxy-3-(4-((3-(1-(2-nitrobenzyl)piperidin-4-yl}, 2,4-oxadiazol-5-yl)methoxy)
phenyl)acrylamideqp). Yellow powder, yield: 66%, m.pl06-107°C. *H NMR (400
MHz, DMSO-<g) &: 7.85 (d,J = 8.0 Hz, 1H), 7.70-7.61 (m, 2H), 7.59-7.48 (m),3H

7.33 (d,J = 15.7 Hz, 1H), 7.06 (dl = 8.4 Hz, 2H), 6.36 (d] = 15.6 Hz, 1H), 5.28 (s,
32
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2H), 3.74 (s, 2H), 3.13-3.01 (m, 1H), 2.74-2.64 PH), 2.25-2.10 (m, 2H), 2.01—
1.84 (m, 2H), 1.73-1.57 (m, 2HYC NMR (101 MHz, DMSOdg) §: 182.90, 175.27,
173.35, 166.83, 150.10, 133.43, 133.33, 133.07,5131129.26, 128.98, 128.94,
124.58, 115.60, 61.24, 58.83, 58.70, 52.79, 5238470, 33.38, 29.85, 29.45. MS
(ESI), m/z: 480.2 [M + H].

4.1.7. General procedure for synthesis of compolBais
The compound8a-c were prepared analogously starting from compagiiathd

the appropriate phenol following the procedureifidermediated.

41.7.1.
t-Butyl-4-(5-((4-(3-methoxy-3-oxopropyl)phenoxy)mgtjr1,2,4-oxadiazol-3-yl)pipe
ridine-1-carboxylate §a). White solid, yield: 91%'H NMR (400 MHz, CDCY) &:
7.07 (d,J = 8.6 Hz, 2H), 6.84 (d] = 8.6 Hz, 2H), 5.16 (s, 2H), 4.10-4.01 (m, 2H),
3.60 (s, 3H), 2.97-2.89 (m, 1H), 2.88-2.79 (m, 4M53 (t,J = 7.7 Hz, 2H), 1.97—
1.89 (m, 2H), 1.77-1.65 (m, 2H), 1.40 (s, 9H). NES(), m/z: 456.3 [M + H].

4.1.7.2.
t-Butyl-4-(5-((4-(2-methoxy-2-oxoethyl)phenoxy)methy,2,4-oxadiazol-3-yl)piperi
dine-1-carboxylate8b). White solid, yield: 85%'H NMR (400 MHz, CDC}) &: 7.22
(d,J = 6.5 Hz, 2H), 6.95 (d] = 6.5 Hz, 2H), 5.24 (s, 2H), 4.18-4.05 (m, 2HBRB(s,
3H), 3.58 (s, 2H), 3.04-2.96 (m, 1H), 2.95-2.86 BH), 2.05-1.96 (m, 2H), 1.84—
1.70 (m, 2H), 1.47 (s, 9H). MS (ESI), m/z: 432.2 f\H]".

4.1.7.3.
t-Butyl-4-(5-((4-(ethoxycarbonyl)phenoxy)methyl)-}42oxadiazol-3-yl)piperidine-1-
carboxylate §c). White solid, yield: 87%'H NMR (400 MHz, CDC}) &: 8.03 (d,J =
8.9 Hz, 2H), 7.01 (dJ = 8.9 Hz, 2H), 5.31 (s, 2H), 4.36 @= 7.1 Hz, 2H), 4.18—
4.06 (m, 2H), 3.05-2.96 (m, 1H), 2.96-2.87 (m, 2MP4-1.97 (m, 2H), 1.82-1.71

(m, 2H), 1.47 (s, 9H), 1.38 @,= 7.1 Hz, 3H). MS (ESI), m/z: 454.3 [M + Na]
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760

761  4.1.8. General procedure for synthesis of compogai$

762  The compoundSa-f were prepared as described for compotad

763

764  4.1.8.1

765  N-Hydroxy-3-(4-((3-(1-propylpiperidin-4-yl)-1,2,4-axliazol-5-yl)methoxy)phenyl)pr
766 opanamideda). White powder, yield: 66%4H NMR (400 MHz, DMSO#ds) 5: 10.34
767 (s, 1H), 8.69 (s, 1H), 7.13 (dd= 8.4, 4.9 Hz, 2H), 6.94 (d,= 8.6 Hz, 2H), 5.19 (s,
768 2H), 3.13-2.96 (m, 1H), 2.89-2.79 (m, 2H), 2.75](t 7.5 Hz, 2H), 2.22 (dd] =
769  13.8, 6.5 Hz, 4H), 2.09-1.85 (m, 4H), 1.80-1.60 2#), 1.50—1.37 (m, 2H), 0.85 (t,
770 J= 7.4 Hz, 3H)XC NMR (101 MHz, DMSOd6) & 182.98, 175.47, 173.47, 168.72,
771 167.03, 156.45, 156.12, 134.87, 134.50, 129.81,7/42915.10, 115.08, 61.26, 60.49,
772 60.40, 56.50, 52.96, 52.63, 34.53, 34.49, 34.17843330.42, 29.96, 29.55, 20.09,
773 20.05, 19.02, 12.31. MS (ESI), m/z: 390.6 [M + H]

774

775  4.1.8.2.

776  3-(4-((3-(1-Allylpiperidin-4-yl)-1,2,4-oxadiazol-§)methoxy)phenyl)N-hydroxypro
777 panamide 4b). White powder, vyield: 78%H NMR (400 MHz, DMSOdg) §: 10.35
778 (s, 1H), 8.70 (s, 1H), 7.22-7.06 (m, 2H), 6.94Xd, 8.6 Hz, 2H), 5.88-5.75 (m, 1H),
779 5.43 (s, 1H), 5.22-5.08 (m, 3H), 2.95 {ds 6.3 Hz, 2H), 2.89-2.78 (m, 3H), 2.75 (t,
780 J=7.7 Hz, 2H), 2.22 (t) = 7.6 Hz, 2H), 2.12-1.89 (m, 4H), 1.79-1.62 (m).2iC
781  NMR (101 MHz, DMSOdg) 6 182.93, 175.49, 173.43, 168.72, 167.04, 156.44,
782  156.12, 136.20, 136.07, 134.88, 134.50, 129.82,7429117.88, 117.76, 115.10,
783  115.08, 61.58, 61.48, 61.26, 52.72, 52.39, 34.43%3B 34.00, 33.67, 30.41, 29.87,
784 29.46. MS (ESI), m/z: 387.0 [M + H]

785

786 4.1.8.3. 3-(4-((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazblyl)methoxy)phenyl)N-
787 hydroxypropanamided¢). White powder, yield: 829%6H NMR (400 MHz, DMSO#)
788 & 7.33=7.29 (m, 4H), 7.27-7.22 (m, 1H), 7.16=7rh] ZH), 6.94 (dJ = 8.6 Hz, 2H),

789 5.42 (s, 2H), 3.48 (s, 2H), 2.87-2.78 (m, 3H), At73 = 7.6 Hz, 2H), 2.22 (J = 7.7
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Hz, 2H), 2.12-2.05 (m, 2H), 1.96-1.87 (m, 2H), £¥67 (m, 2H).*C NMR (101
MHz, DMSO<s) 5 182.93, 175.49, 175.43, 173.43, 168.62, 168.60,0B5 156.44,
156.11, 138.88, 138.72, 134.91, 134.54, 129.82,7129129.26, 129.23, 128.62,
127.37, 127.33, 115.09, 115.07, 62.77, 62.66, 65267, 52.42, 34.58, 34.54, 34.00,
33.67, 30.46, 29.90, 29.48, 24.94, 19.92. MS (BBA); 437.1 [M + HI.

4.1.8.4.
N-Hydroxy-3-(4-((3-(1-(4-methylbenzyl)piperidin-43yl,2,4-oxadiazol-5-yl)methox
y)phenyl)propanamide 9¢l). White powder, yield: 78%'H NMR (400 MHz,
DMSO-dg) §: 10.35 (s, 1H), 8.70 (s, 1H), 7.18 (s 7.9 Hz, 2H), 7.15-7.10 (m, 4H),
6.94 (d,J = 8.6 Hz, 2H), 5.19 (s, 2H), 3.43 (s, 2H), 2.8462(m, 3H), 2.75 (t) = 7.7

Hz, 2H), 2.28 (s, 3H), 2.22 3,= 7.6 Hz, 2H), 2.14-1.86 (m, 4H), 1.79-1.60 (m).2H
3%C NMR (101 MHz, DMSOdg) 6 182.95, 175.49, 173.44, 168.68, 167.03, 156.44,
156.12, 136.39, 136.34, 135.76, 135.60, 134.88,5034129.82, 129.74, 129.26,
129.23, 129.20, 115.10, 115.07, 62.51, 62.40, 652G1, 52.36, 34.49, 34.02, 33.69,
30.42, 29.92, 29.50, 21.16. MS (ESI), m/z: 451.0{M]".

4.1.85.
2-(4-((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazolyp)methoxy)phenyl)N-hydroxya
cetamide 9€). White powder, yield: 77%H NMR (400 MHz, DMSO#d) &: 10.47 (s,
1H), 8.83 (s, 1H), 7.35-7.28 (m, 4H), 7.27-7.22 {id), 7.18 (dJ = 8.5 Hz, 2H),
6.96 (d,J = 8.5 Hz, 2H), 5.21 (s, 2H), 3.48 (s, 2H), 3.202), 3.12-3.02 (m, 1H),
2.86-2.77 (m, 2H), 2.16-2.06 (m, 2H), 2.06—1.98 i), 1.80-1.64 (m, 2H):*C
NMR (101 MHz, DMSOdg) 6 182.95, 175.45, 173.43, 167.60, 166.99, 156.81,
138.90, 138.75, 130.55, 130.47, 129.60, 129.25,2P29128.63, 127.36, 127.33,
115.03, 115.00, 62.77, 62.66, 61.25, 52.78, 5238392, 34.01, 29.92, 29.50. MS
(ESI), m/z: 423.0 [M + H].

4.1.8.6

4-((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazol-5}ghethoxy)N-hydroxybenzamide
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(9f). White powder, yield: 75%H NMR (400 MHz, DMSO#) 8: 11.08 (s, 1H), 8.95
(s, 1H), 7.73 (dJ = 8.8 Hz, 2H), 7.35-7.28 (m, 4H), 7.27-7.22 (m),1H09 (d,J =
8.9 Hz, 2H), 5.31 (s, 2H), 3.48 (s, 2H), 3.13-308 1H), 2.89-2.73 (m, 2H), 2.16—
2.07 (m, 2H), 2.06-1.98 (m, 2H), 1.81-1.66 (m, 2£. NMR (101 MHz, DMSOds)

0 183.05, 175.11, 173.47, 166.75, 164.19, 160.29,282 129.23, 129.10, 128.64,
127.37, 126.40, 114.90, 62.65, 61.28, 52.41, 3420091, 29.49. MS (ESI), m/z:
409.0 [M + HT.

4.1.9 tert-Butyl
4-(5-((methylamino)methyl)-1,2,4-oxadiazol-3-yl)pipdine-1-carboxylate 10).
Compound3 (0.6 g, 2 mmol) was dissolved in 30% methylamib® ifiL) and stirred
for 2 h at room temperature. After completion o€ theaction, the solvent was
removed under reduced pressure. The resulting weaslded in ethyl acetate, and
washed with water. The organic phase was furth@oved under reduced pressure,
and got the desired produb®. *H NMR (400 MHz, DMSOe) &: 4.02 (s, 2H), 3.04—
2.81 (m, 3H), 2.53 (s, 3H), 2.05-1.95 (m, 2H), £BT¥0 (m, 2H), 1.47 (s, 9H). MS
(ESI), m/z: 297.2 [M + H].

4.1.10 tert-Butyl
(E)-4-(5-(((5-(3-ethoxy-3-oxoprop-1-en-1-yl)pyrimidryl)(methyl)amino)methyl)-
1,2,4-oxadiazol-3-yl)piperidine-1-carboxylatél). Compoundl10 (0.3 g, 1 mmol)
and methyl E)-3-(2-chloropyrimidin-5-yl)acrylate (0.2 g, 1 mmakere dissolved in
MeOH (15 mL), DIPEA (2.5 mL, 1.5 mmol) was addetbithe solution. The reaction
was stirred overnight at room temperature. Therstheent was removed, the residue
was dissolved in ethyl acetate and washed withrwatee organic phase was further
removed under reduced pressure, and got the dgmiogdict11 (66% yield, yellow
solid). 'H NMR (400 MHz, CDCJ) &: 8.50 (s, 2H), 7.51 (d} = 16.1 Hz, 1H), 6.33 (d,
J=16.1 Hz, 1H), 5.11 (s, 2H), 3.80 (s, 3H), 3.873H), 2.99-2.88 (m, 2H), 2.84—
2.70 (m, 1H), 2.15-2.05 (m, 2H), 2.03-1.81 (m, 4HR9 (s, 9H). MS (ESI), m/z:

481.0 [M + Nal.
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4.1.11 Ethyl
2-(((3-(1-(tert-butoxycarbonyl)piperidin-4-yl)-1 £pxadiazol-5-yl)methyl)(methyl)a
mino)pyrimidine-5-carboxylatel@). Compoundl0 (0.3 g, 1 mmol) and methyl ethyl
2-chloropyrimidine-5-carboxylate (0.2 g, 1 mmol)realissolved in MeOH (15 mL),
DIPEA (2.5 mL, 1.5 mmol) was added into the soluti@he reaction was stirred
overnight at room temperature. Then the solvent veasoved, the residue was
dissolved in ethyl acetate and washed with watbe ®rganic phase was further
removed under reduced pressure, and got the degsioellict12 (71% yield, white
solid). 'H NMR (400 MHz, DMSOé) &: 8.83 (m,2H), 5.20 (s, 2H), 4.27 @= 7.1
Hz, 2H), 3.98-3.83 (m, 2H), 3.32 (s, 3H), 2.98Jt;, 11.2, 3.7 Hz, 1H), 2.92-2.81 (m,
2H), 1.93-1.85 (m, 2H), 1.54-1.41 (m, 2H), 1.39), 1.29 (tJ = 7.1 Hz, 3H). MS
(ESI), m/z: 469.7 [M + Nd]

4.1.12.1
(E)-3-(2-(((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazb-yl)methyl) (methyl)amino) py
rimidin-5-yl)-N-hydroxyacrylamide 13a). The compoundl3a was synthesized as
7a-7p. Yellow solid.'H NMR (400 MHz, DMSOsg) &: 8.63 (s, 2H), 7.35-7.27 (m,
5H), 7.27-7.21 (m,1H), 6.38 (d,= 16.0 Hz, 1H), 5.15 (s, 2H), 3.47 (s, 2H), 3.80 (
3H), 2.84-2.78 (m, 2H), 2.77-2.71 (m, 1H), 2.1022(6, 2H), 1.91-1.84 (m, 2H),
1.70-1.59 (m, 2H)**C NMR (101 MHz, DMSOdg) & 177.05, 173.31, 161.34, 138.85,
129.17, 128.59, 127.29, 118.66, 117.21, 70.20,3%52.74, 45.71, 36.44, 33.62,
29.87. m/z: 450.5 [M + H]

4.1.12.2
(E)-N-hydroxy-3-(2-(methyl((3-(1-(4-methylbenzyl)pipemd4-yl)-1,2,4-oxadiazol-5-
yl)methyl)amino)pyrimidin-5-yl)acrylamide 1@b). The compound 13b was
synthesized a%a-7p. Yellow solid.*H NMR (400 MHz, DMSOs) &: 8.61 (s, 2H),
7.31 (d,J = 15.9 Hz, 1H), 7.16 (dl = 7.9 Hz, 2H), 7.11 (d] = 7.9 Hz, 2H), 6.38 (d]

= 15.9 Hz, 1H), 5.14 (s, 2H), 3.41 (s, 2H), 3.2934d), 2.82-2.76 (M, 2H), 2.76—2.69
37



880  (m, 1H), 2.27 (s, 3H), 2.08-1.97 (m, 2H), 1.92-1(82 2H), 1.69-1.56 (m, 2H}*C
881 NMR (101 MHz, DMSOdg) 6 177.05, 173.37, 161.41, 157.51, 136.32, 135.76,
882 129.20, 129.18, 118.74, 117.28, 62.52, 52.72, 4388315, 33.70, 29.92, 21.15. MS
883  (ESI), m/z: 464.3 [M + H].

884

885 4.1.13.1

886  2-(((3-(1-Benzylpiperidin-4-yl)-1,2,4-oxadiazol-3ynethyl)(methyl)amino)N-hydro
887  Xxypyrimidine-5-carboxamidel@a. The compoundl4a was synthesized aga-7p.
888  White solid.'H NMR (400 MHz, DMSOsdg) &: 11.10 (s, 1H), 9.04 (s, 1H), 8.69 (s,
889  2H), 7.35-7.21 (m, 5H), 5.16 (s, 2H), 3.47 Jc& 3.9 Hz, 2H), 3.30-3.22 (m, 3H),
890  3.07-2.96 (m, 1H), 2.84-2.76 (m, 2H), 2.13—2.01 2i), 2.0- 1.84 (m, 2H), 1.77—
891 1.57 (m, 2H). ®C NMR (101 MHz, DMSOds) &: 182.31, 176.51, 172.98,
892 167.30,161.82, 138.50, 138.34, 128.85, 128.82,282826.97, 126.93, 115.72, 62.37,
893  62.25, 52.39, 52.03, 45.33, 44.60, 36.08, 35.66HB3B3.27, 29.51, 29.13. MS (ESI),
894  m/z:424.6 [M + HJ.

895

896 4.1.13.2

897  N-hydroxy-2-(methyl((3-(1-(4-methylbenzyl)piperidéwyl)-1,2,4-oxadiazol-5-yl)met
898  hyl)amino)pyrimidine-5-carboxamidel4b). The compound4b was synthesized as
899  7a7p. White solid.*H NMR (400 MHz, DMSOs) 5 11.11 (s, 1H), 9.05 (s, 1H), 8.69
900 (s, 2H), 7.19 (dJ = 7.7 Hz, 2H), 7.13 (d] = 7.5 Hz, 2H), 5.16 (s, 2H), 3.47 (s, 2H),
901  3.29 (s, 3H), 2.80 (d] = 25.3 Hz, 3H), 2.28 (s, 3H), 2.09 (s, 2H), 1.89)(= 13.5 Hz,
902  3H), 1.66 (dJ = 13.2 Hz, 2H)*C NMR (101 MHz, DMSOdg) &: 176.50, 172.98,
903 161.82, 135.93, 135.36, 128.82, 128.79, 115.7312652.33, 45.33, 36.08, 33.30,
904  29.52, 20.76. MS (ESI), m/z: 438.37 [M +'H]

905

906 4.1.13.3

907  N-hydroxy-2-(methyl((3-(1-(3-methylbenzyl)piperidéwyl)-1,2,4-oxadiazol-5-yl)met
908  hyl)amino)pyrimidine-5-carboxamidel4c). The compound4c was synthesized as

909  7a7p. White solid.*H NMR (400 MHz, DMSOdg) & 11.09 (s, 1H), 9.03 (s, 1H),
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8.68 (s, 2H), 7.19 () = 7.5 Hz, 1H), 7.12-7.01 (m, 3H), 5.15 (s, 2H}13(s, 2H),
3.29 (s, 2H), 2.84-2.69 (m, 3H), 2.29 (s, 3H), 20080 (m, 2H), 1.87 (dl = 10.6 Hz,
2H), 1.64 (qd,J = 12.1, 3.7 Hz, 2H)**C NMR (101 MHz, DMSOdg) & 182.70,
176.90, 173.38, 167.71, 162.18, 138.80, 137.63,8429128.49, 127.96, 126.36,
126.33, 116.27, 62.81, 52.82, 52.46, 45.71, 3638569, 29.91, 29.52, 21.46. MS
(ESI), m/z: 438.19 [M + H]

41.13.4
2-(((3-(1-(2-fluorobenzyl)piperidin-4-yl)-1,2,4-o”&zol-5-yl)methyl)(methyl)amino)
-N-hydroxypyrimidine-5-carboxamidel4d). The compound4d was synthesized as
7a-7p. White solid.'H NMR (400 MHz, DMSOds) § 11.09 (s, 1H), 9.03 (s, 1H),
8.68 (s, 2H), 7.40 (td) = 7.7, 1.8 Hz, 1H), 7.34-7.27 (m, 1H), 7.21-7.t1, @H),
5.15 (s, 2H), 3.53 (d] = 5.0 Hz, 2H), 3.26 (d] = 22.7 Hz, 3H), 2.86—2.79 (m, 2H),
2.79-2.69 (m, 1H), 2.12 (d,= 11.6 Hz, 2H), 1.93 (dd} = 39.4, 11.0 Hz, 2H), 1.76—
1.57 (m, 2H).**C NMR (101 MHz, DMSQdg) & 182.61, 176.90, 173.28, 167.66,
162.41, 162.14, 159.98, 132.02, 131.96, 131.91,48629129.38, 125.16, 125.02,
124.85, 124.62, 124.59, 116.13, 115.68, 115.65,4415%55.14, 55.05, 52.56, 52.21,
45.69, 44.96, 36.44, 36.03, 33.82, 33.49, 29.8%RMS (ESI), m/z: 442.23 [M +
H]™.

4.1.13.5
2-(((3-(1-(4-fluorobenzyl)piperidin-4-yl)-1,2,4-o”&zol-5-yl)methyl)(methyl)amino)
-N-hydroxypyrimidine-5-carboxamidel4€. The compound.4e was synthesized as
7a-7p. White solid."H NMR (400 MHz, DMSOdg) § 11.10 (s, 1H), 9.04 (s, 1H),
8.69 (s, 2H), 7.32 (dd, = 8.2, 5.9 Hz, 2H), 7.13 (td,= 8.9, 2.1 Hz, 2H), 5.16 (s, 2H),
3.45 (d,J = 4.0 Hz, 2H), 3.26 (dJ = 22.5 Hz, 3H), 2.80-2.71 (m, 3H), 2.07 (4=
11.7 Hz, 2H), 1.92 (dd) = 39.7, 11.4 Hz, 2H), 1.76-1.58 (m, 2jC NMR (101
MHz, DMSO-dg) 6 182.68, 176.91, 173.36, 167.70, 162.22, 135.07,083 131.04,
130.96, 115.43, 115.22, 61.80, 61.68, 52.66, 528173, 36.47, 33.97, 33.64, 29.90,

29.51. MS (ESI), m/z: 442.11 [M + H]
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940

941 4.1.13.6

942  2-(((3-(1-(2-chlorobenzyl)piperidin-4-yl)-1,2,4-odi@zol-5-yl)methyl)(methyl)amino
943  )-N-hydroxypyrimidine-5-carboxamidel4f). The compound4f was synthesized as
944  7a-7p. White solid.'H NMR (400 MHz, DMSOdg) & 10.97 (s, 1H), 9.04 (s, 1H),
945  8.68 (s, 2H), 7.49 (dd] = 7.6, 1.6 Hz, 1H), 7.44-7.40 (m, 1H), 7.35-7.2% @H),
946  5.16 (s, 2H), 3.57 (d] = 4.0 Hz, 2H), 3.27 (d] = 22.5 Hz, 3H), 2.85-2.75 (m, 3H),
947  2.18 (q,J = 11.4 Hz, 2H), 1.94 (dd] = 41.6, 9.2 Hz, 2H), 1.79-1.61 (m, 2HjC
948 NMR (101 MHz, DMSOdg) 6 182.62, 176.91, 173.29, 167.67, 162.14, 136.24,
949  136.12, 133.68, 133.64, 131.19, 131.15, 129.66,6829129.00, 128.95, 127.47,
950 59.21, 59.12, 52.86, 52.52, 45.69, 44.96, 36.49)8B63.82, 33.50, 29.89, 29.50. MS
951  (ESI), m/z: 458.08 [M + H]

952

953 4.1.13.7

954  2-(((3-(1-(4-cyanobenzyl)piperidin-4-yl)-1,2,4-oxadol-5-yl)methyl)(methyl)amino)
955  -N-hydroxypyrimidine-5-carboxamidel4g. The compound.4g was synthesized as
956  7a-7p. White solid.'H NMR (400 MHz, DMSO€g) & 11.10 (s, 1H), 9.04 (s, 1H),
957  8.68 (s, 1H), 7.61 (dl = 6.9 Hz, 1H), 7.29 (d] = 7.9 Hz, 1H), 5.15 (s, 2H), 3.48 (@,
958 = 3.6 Hz, 2H), 3.26 (d] = 22.4 Hz, 3H), 2.81-2.71 (m, 3H), 2.08 {¢& 11.6 Hz, 2H),
959  1.93 (dd,J = 39.5, 11.8 Hz, 2H), 1.76-1.60 (m, 2#C NMR (101 MHz, DMSOde)
960 o 182.69, 176.91, 173.36, 167.70, 169.30, 162.2Q,285 139.71, 139.55, 132.55,
961 132.51, 128.95, 128.92, 127.90, 125.74, 116.20,7¥1%2.41, 62.30, 52.79, 52.44,
962 45.73, 45.00, 36.47, 36.07, 33.98, 33.65, 29.91532MS (ESI), m/z: 449.53 [M +
963 H]".

964

95 4.1.13.8

966  N-hydroxy-2-(methyl((3-(1-(4-(trifluoromethyl)ben2yiperidin-4-yl)-1,2,4-oxadiazo
967 I-5-yl)methyl)amino)pyrimidine-5-carboxamide14h). The compoundl14h was
968  synthesized aga-7p. White solid."H NMR (400 MHz, DMSO#dg) & 11.00 (s, 1H),

969  9.07 (s, 1H), 8.68 (s, 2H), 7.68 @= 8.1 Hz, 2H), 7.54 (d] = 8.0 Hz, 2H), 5.16 (s,
40
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2H), 3.56 (s, 2H), 3.29 (s, 3H), 2.78 (= 11.7, 6.4 Hz, 3H), 2.16-2.05 (m, 2H),
1.95-1.84 (m, 2H), 1.66 (qd= 12.4, 3.5 Hz, 2H}*C NMR (101 MHz, DMSOdg) &
176.90, 173.28, 162.14, 161.96, 144.02, 129.68,1P28127.80, 126.14, 125.47,
125.43, 125.39, 123.44, 116.11, 61.94, 52.75, 436812, 33.49, 29.84. MS (ESI),
m/z: 492.36 [M + HJ.

4.1.13.9
2-(((3-(1-(2,4-difluorobenzyl)piperidin-4-yl)-1,2-dxadiazol-5-yl)methyl) (methyl)am
ino)-N-hydroxypyrimidine-5-carboxamidel4i). The compound.4i was synthesized
as7a7p. White solid."H NMR (400 MHz, DMSOsg)  11.10 (s, 1H), 9.03 (s, 1H),
8.68 (s, 2H), 7.48-7.39 (m, 1H), 7.23-7.14 (m, 1HD5 (td,J = 8.7, 2.1 Hz, 1H),
5.15 (s, 2H), 3.50 (s, 2H), 3.26 (= 22.8 Hz, 3H), 2.76 (dd, = 30.8, 11.4 Hz, 2H),
2.16-2.04 (m, 2H), 1.88 (d, = 10.6 Hz, 2H), 1.70-1.54 (m, 2HYC NMR (101
MHz, DMSO-dg) 6 182.26, 176.90, 173.31, 167.70, 162.21, 160.60,5I% 159.88,
133.14, 121.62, 121.47, 116.16, 111.76, 111.56,280404.02, 103.76, 54.69, 52.47,
52.12, 45.72, 36.46, 33.50, 29.85, 29M®. (ESI), m/z: 460.10 [M + H]

4.1.13.10
2-(((3-(1-(2-chloro-4-fluorobenzyl)piperidin-4-yl);2,4-oxadiazol-5-yl)methyl)(meth
yl)amino)N-hydroxypyrimidine-5-carboxamide 14j). The compound 14j was
synthesized aZa-7p. White solid."H NMR (400 MHz, DMSOds) § 10.97 (s, 1H),
9.16 (s, 1H), 8.68 (s, 2H), 7.52 (dii= 8.6, 6.5 Hz, 1H), 7.39 (dd,= 8.9, 2.6 Hz,
1H), 7.20 (td,J = 8.5, 2.6 Hz, 1H), 5.14 (s, 2H), 3.53 (s, 2HR&(s, 3H), 2.86-2.73
(m, 3H), 2.21-2.12 (m, 2H), 1.88 (d= 10.8 Hz, 2H), 1.66 (qd] = 12.7, 12.3, 3.6
Hz, 2H).»*C NMR (101 MHz, DMSOds) & 182.58, 177.01, 173.26, 167.72, 162.49,
162.09, 161.95, 160.04, 134.32, 134.27, 132.66,6P32132.59, 132.54, 132.51,
116.94, 116.68, 114.72, 114.51, 58.55, 58.45, 55231, 45.67, 44.93, 36.41, 36.00,
33.80, 33.47, 29.87, 29.48S (ESI), m/z: 476.27 [M + H]

4.2 In vitro HDAC enzymatic assay
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The HDACs inhibitory activity assay in vitro was nohucted utilizing
7-amino-4-methylcoumarin (AMC) labeled Ac-peptide{peptide-AMC) substrates,
performed by Chempartner Company (Shanghai, ChBragfly, upon deacetylation
of the substrate, the release of AMC was promatethé existence of trypsin. The
compounds, diluted to the specified concentratiomere mixed with full-length
recombinant HDAC enzymes (BPS Biosciences), trypsind Ac-peptide-AMC
substrates, incubated at room temperature for Thk. fluorescence was measured
with excitation at the wavelength of 355 nm andssiin at the wavelength of 460
nm, using a multilabel plate reader. The inhibitiates of the test groups were

calculated by comparison with the DMSO (vehicleptrgroup.

4.3 AML patient samples
Primary cells of AML patients samples were obtaiaad approved via West China Hospital
of Sichuan University (Chengdu, China) and the ich information are summarized in

supplementary Table S1.

4.4 MTT assay

A2780s, SKOV3, HCT116, MCF-7, MDA-MB-231 and HepG2lls were
cultured in DMEM (Gibco, Milano, Italy). MM1S, ARCRPMI-8226, Jeko-1, Ramos
and Raji cells were cultured in RPMI-1640 mediunib@s, Milano, Italy). All of the
above media contained 10% fetal bovine serum (KBSijtrogen, Milano, Italy), 100
units/mL penicillin (Gibco, Milano, Italy), and 10Qg/mL streptomycin (Gibco,
Milano, Italy). Cells were incubated at 37 °C ilmamidified atmosphere of 5% GO
Cells in logarithmic phase were seeded into 96-walture plates at densities of
3000-5000 cells per well and subsequently treatét warious concentrations of
compounds for 72 h in final volumes of 2(0. Upon end point, 2@L of MTT (5
mg/mL) was added to each well, and the cells warabated for an additional 1-3 h.
After carefully removal of the medium, the precipés were dissolved in 150 of
DMSO via mechanically shaking, and then absorbaabtges at a wavelength of 570

nm were taken on a spectrophotometer (Molecularidesy Sunnyvale, USA). kg
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values were calculated using percentage of groetbus untreated control.

4.5 Western blot assay

The cells were treated with the compounds at te#@ted concentrations. After
washing by PBS 2 times, the cells were resuspeird&dPA lysis buffer (Beyotime
Co.). After 30 min of incubation on ice, the lysatgere collected by centrifuging at
12000 g for 15 min at 4 °C. The protein concentratvas measured. Equivalent
samples (2Qug of protein) were subjected to 15% SDS-PAGE, édah tthe proteins
were transferred onto activated PVDF membraneslifdie, USA). After blocking
by 5% non-fat milk for 1 h at room temperature, thembranes were incubated with
the indicated primary antibodies af@ and subsequently probed by the appropriate
secondary antibodies conjugated to horseradishxgl®e for 1 h. Immunoreactive

bands were visualized using enhanced chemilumineso@illipore, USA).

4.6 Pharmacokinetic assay

The animal protocol was approved by the Animal Gard Use Committee of
Sichuan University in China (JACUC number: 20100818 1 mg/mL dosing
solution was preparing by dissolving the appropramnount of the compound in 3%
ethanol and 1% tween80 in normal saline. SD raesgling 200-250 g each, were
abtained from Beijing HFK Bioscience Co., Ltd. Tiested compound was separately
administered intravenously to a group of six ras fime point (5 mg/kg dose) by a
bolus injection (5 mg/kg) to the tail vein or pedtly. At time points O (prior to
dosing), 5 min, 15 min, 30 min, 45 min, 1 h, 2 M,46 h, 8 h, 10 h, 12 h, and 24 h
after dosing, a blood sample was collected frontheagmal via cardiac puncture and
stored in ice (0-4C). Plasma was separated from the blood by ceg#ifon (4000 g
for 15 min at £C) and stored in a freezer at -8D. All samples were analyzed for the
test compound by LC-MS/MS (Waters Acquity UPLC syst Waters Quattro
Premier XE). Data were acquired via monitoring ofiltiple reactions. Plasma

concentration data were analyzed by a standardongpartmental method.
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4.7 Animal Tumor Models and Treatment
To establish the Daudi xenograft model, Daudi c@dl®7 cells in 100uL serum-free

RPMI 1640) were injected subcutaneously into thghtriflanks of 5-6 week old
female NOD/SCID mice. When the size of the formedografts reached 100—-200
mn?, the

mice were randomly divided (six mice per group).eTimice in the experimental
group received i.v. (10 mg/kg, dissolved in 8% HPED) and p.o. (20 mg/kg,
dissolved in 8% HMPB-CD) treatment, 1st, 3rd, and 5th days per weekadrnburden
was measured every 2 days by a caliper. Tumor weI{i) was calculated using the
following formula: TV = length x width2 x 0.5. Ahé end of the experiment, the
mice were sacrificed and tumors and organ tissuse wollected. HE staining and
immunohistochemistry are serviced by Servicebio.e Tanimal studies were
conducted in conformity with institutional guiderfthe care and use of laboratory
animals, and all mouse protocols were approved Hey Animal Care and Use

Committee of Sichuan University (Chengdu, Sichi@mna).
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1,2,4-Oxadiazole-Containing Selective Histone Deacetylase Inhibitors
Nanomole antiproliferative activitiesin a panel of cancer cell lines
Inducing cell cycle arresting at G1 phase and apoptotic effects

Oral bioavailability was up to 53.52%



