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ABSTRACT: A palladium-catalyzed asymmetric hydroesterification-cyclization of 1,6-enynes with CO and alcohol was developed
to efficiently prepare a variety of enantioenriched γ-lactams bearing a chiral quaternary carbon center and a carboxylic ester group.
The approach featured good to high chemo-, region-, and enantioselectivities, high atom economy, and mild reaction conditions as
well as broad substrate scope. The correlation between the multiple selectivities of such process and the N-substitutes of the amide
linker in the 1,6-enyne substrate has been depicted by the crystallographic evidence and control experiments.

Chiral γ-lactams play a significant role in a variety of
bioactive compounds and are also regarded as a

serviceable synthesis precursor of N-heterocyclic molecules
due to the versatile transformation of the amide functional
group.1 Thus, a variety of catalytic asymmetric methods has
been established toward preparing optically active γ-lactams.2

The intrinsic effect of all-carbon quaternary stereocenter on
biological characteristics, i.e., activity, metabolism, solubility,
and hydrophobicity, endows its construction method with
long-lasting research interest.3 Owing to the congested
circumstances, catalytic enantioselective creation of such a
quaternary carbon center via a forming carbon−carbon bond is
an imperative but quite challenging task.4 In this context,
despite significant progress in the enantioselective synthesis of
chiral γ-lactams, only a few protocols could construct such a
skeleton bearing an all-carbon quaternary stereocenter.5

Transition-metal-catalyzed stereoselective cycloisomeriza-
tion,6 reductive cyclization,7 and hydrofunctionalizative cycli-
zation8−10 of 1,6-enynes provide an efficient and convenient
access to five-membered (hetero)cycles. Especially, merging
the hydrofunctionalization of unsaturated bond with the
cyclization reaction manifests high bond-forming efficiency,
rapid construction of complex molecules, and/or high atomic
economy. Apart from the established asymmetric hydro-
boration-,8 hydrosilylation-,9 and hydrovinylation-cyclization,11

to our knowledge, neither the nonasymmetric nor enantiose-
lective hydrocarbonylation-cyclization process of dienes/
enynes has yet to be exploited.12 Palladium-catalyzed hydro-
esterification reaction constitutes one of the ideal routes to
prepare carboxylic acid derivatives from readily available
feedstocks of unsaturated hydrocarbons, CO, and alcohols.13

Compared with the well-established industrial application of
nonasymmetric alkoxycarbonylation, the development of

corresponding asymmetric variant is rather sluggish, probably
due to the difficulty of simultaneously controlling the chemo-,
regio-, and enantioselectivities under a nonbeneficial reaction
temperature and high CO pressure.14 Following our interest in
catalytic asymmetric carbonylation15 and cyclization16 reac-
tions, we envisioned integrating the challenging but rewarding
alkoxycarbonylation with enyne cyclization reaction would
offer a novel entry to chiral heterocyclic compounds containing
both a carboxylic ester group and a quaternary carbon center
with high efficiency of carbon−carbon/heteroatom bond
formation.
Herein, we described the first palladium-catalyzed asym-

metric hydroesterificative cyclization of 1,6-enynes (Scheme
1). The type of amide-tethered 1,6-enyne substrate, containing
an internal alkyne and a terminal gem-disubstituted alkene, was
investigated recently for the palladium-catalyzed nonasym-
metric hydrohalogenation-cyclization to δ-lactams by Pobla-
dor-Bahamonde and Lautens17 as well as the cobalt-catalyzed
enantioselective hydroboration-cyclization to chiral γ-lactams
from the group of Ge.8a Generally, these hydrofunctionalizative
cyclization processes start with the formation of metal hydride
followed by the alkyne group addition and subsequent
intramolecular insertion of the alkene unit into the formed
metal−alkenyl intermediates to generate a metal−alkyl
complex. In the previous studies, such species were trapped
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by the reactive H-X (X = halide or -Bpin) substrate and
converted into the corresponding lactams along with the active
catalyst regeneration. In our protocol, CO was introduced to
insert the palladium−alkyl complex, and the alcohol
nucleophile was utilized to alcoholize the resulting palla-
dium−acyl species (Scheme 1). A series of chiral carboxylic
esters containing a γ-lactam skeleton and a quaternary carbon
stereocenter were delivered. This approach proceeded under
ambient reaction temperature and exhibited high bond
construction efficiency and good functional group compati-
bility. By changing the N-substitutes of amide linker in the 1,6-
enynes substrate to adjust the stable spatially conformation
around the active metal center, the chemo-, regio-, and
enantioselectivities of this unprecedented process were
controlled.
At the beginning of our studies, the palladium-catalyzed

asymmetric hydroesterificative cyclization of p-toluenesulfo-
nate (Ts-) protected 1,6-enynes 1a with CO and MeOH was
chosen as the model reaction. After the optimization of the
reaction conditions, the combination of Pd(OAc)2, (S)-MeO-
BIPHEP, and TsOH·H2O was used as the catalyst system, and
this tandem process was conducted with 4 equiv of alcohol
under 20 bar pressure of CO in a mixed solvent of toluene/
DCE (9/1) at room temperature (Scheme 2). The desired
chiral γ-lactam 2a was isolated in excellent ee value and good
yield, along with the presence of uncyclized alkyne carbon-
ylation compound 3a (2a/3a = 74/36). Besides 3a, no other
uncyclized isomer was detected. On the basis of the reaction
pathway (Scheme 1), this result indicated the irreversible
regioselective hydropalladation step of the alkyne unit in 1a
with the active palladium-hydride catalyst determined the ratio
of 2a/3a. The subsequent cyclization step via adding the PdII−
C(sp2) bond of PdII−alkenyl intermediate onto the CC
bond of the alkene moiety is crucial to both chemoselectivity
and enatioselectivity. In principle, such an insertion step could
be adjusted by the relative spatial position between PdII−
alkenyl and alkene moieties, which probably could be affected
by the N-substitutes of the amide linker in the substrate.
Therefore, a series of substitutes on the N-atom as well as
other type of the linker were investigated. Both electron-
donating and electron-withdrawing substituents on the phenyl
ring of the sulphonyl group in the enyne exhibited an
unnoticeable effect on the enantioselectivity but considerable
influence on the distribution of the cyclization/uncyclization

products (2a−2f). Replacing the sulphonyl group in the
substrate by methyl (2g), phenyl (2h), hydrogen (2i), or aroyl
(2j) group resulted in significantly low yield or trace amounts
of wanted γ-lactams. When the tether was changed from the
amide group to the corresponding protected amine unit (1k),
the yield of cyclized product dropped significantly. These
results suggested both the sulphonyl and carbonyl groups are
essential to this carbonylation-cyclization reaction.
Because the configuration flipping of the amide linker

between Z and E forms via C−N bond rotation in the enyne
substrates is rather sluggish at such low reaction temperature,17

the spatial conformation of these reactants might affect the
ratio of 2/3 and the reaction stereoselectivity. To validate such
a relationship, single crystals of the substrates (1a, 1h, and 1i−
1k) were cultivated and suitable for the X-ray diffraction
characterization (Scheme 2). Seemingly, the close distance
between the alkyne and the alkene moieties in the 1,6-enynes
was beneficial to the chemoselectivity toward cyclized
products.
After exploring the effect of the N-substitute of the enyne

substrate on the multiple selectivities for the tandem
methoxycarbonylation-cyclization, we therefore began the
evaluation of reaction conditions. The standard reaction was
carried out with 1a, CO (20 bar), and MeOH (4.0 equiv)
using 2.5 mol % Pd(OAc)2, 3 mol % L1, and 24 mol % PTSA·

Scheme 1. Asymmetric Hydroesterification-Cyclization of
Amide-Tethered 1,6-Enynes

Scheme 2. Effect of the N-Substituent of the Substratea

a(a) Reactions were run on 0.1 mmol scale. Yield and ratio of 2a/3a
were determined by GC-FID using n-decane as an internal standard.
Ee values were determined by HPLC analysis. Isolated yield. (b)
ORTEP diagrams with thermal ellipsoids at the 50% probability level.
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H2O as the catalyst at room temperature (for details see
Supporting Information (SI), Table S1). With the optimized
reaction conditions in hand, the substrate scope and functional
group compatibility for this catalytic asymmetric hydro-
esterfication-cyclization of 1,6-enynes were studied. First, the
substituents on the alkyne moiety of 1 were varied and the
desired chiral γ- lactams (2l-2aa) were afforded in reasonable
to good yields with high enantioselectivity using the suitable
chiral bidentate phosphine ligand and Pd(OAc)2 as the catalyst
system (Table 1). The aryl group attached to the triple bond of
the substrate bearing both electron-rich (2l−2o) and electron-
deficient substituents (2r−2w) at the para-, ortho-, or meta-
position was suitable for this conversion, giving slightly lower
yields with the same level of ee value. A variety of functional
groups, such as methoxy (2m), halide (2r−2t), nitrile (2u),

ester (2v), trifluoromethyl (2w), and piperonyl (2x), were
well-tolerated with up to 95% ee without significantly
compromising the yield under slightly modificated reaction
conditions. Besides aryl and 2-naphthyl (2q) units, hetero-
aromatic rings, including 2-thienyl and 2-furyl groups (2y, 2z),
were also compatible and high ee value with reasonable to
moderate yields was obtained. In addition, the enyne substrate
with aliphatic methyl substitute at the terminus of the alkyne
(2aa) was also smoothly transformed into the wanted γ-lactam
in 50% yield with 82% ee using chiral phosphine ligand L3
instead of L1. When the enyne (1ab) bearing tertiary butyl
substituent at the terminus of the alkyne was used as the
substrate, no substrate conversion was obtained.
We next turned our attention to investigating the influence

of the substituted alkene moiety of the enyne on this tandem
cyclized alkoxycarbonylation (Table 2). Replacing the methyl

group by ethyl, n-butyl, or ether-containing aliphatics was able
to deliver the corresponding lactams 2ac−2ad or 2af−2ag in
moderate yields with high ee value. Besides normal aliphatic
one, phenyl-, and benzyl-substituted substrates were also
compatible to furnish the products 2ae and 2ah−2aj with
excellent enantioselectivity and reasonable to good yields. Both
electron-acceptor (2ai) and electron-donor (2aj) groups on

Table 1. Scope of 1,6-Enynes with Various Substituted
Alkynesa

aReaction conditions: 1 (0.2 mmol), Pd(OAc)2/L1/PTSA•H2O
(2.5/3/24 mol %), CO (20 bar), MeOH (0.8 mmol, 4 equiv),
toluene/DME (1.8/0.2 mL), rt, 12 h. bPd(OAc)2 (5 mol %), L2 (6
mol %). cPd(OAc)2 (5 mol %), L1 (6 mol %). dL4 instead of L1.
eORTEP diagram with thermal ellipsoids at the 50% probability level.
fPd(OAc)2 (5 mol %), L3 (6 mol %), and reaction temperature was
10 °C.

Table 2. Scope of 1,6-Enynes with Different Substituted
Alkenesa

aReaction conditions: 1 (0.2 mmol), Pd(OAc)2/L1/PTSA•H2O
(2.5/3/24 mol %), CO (20 bar), R′OH (0.8 mmol, 4 equiv),
toluene/DME (1.8/0.2 mL), rt, 12 h. bL4 instead of L1. cPd(OAc)2
(5 mol %), L2 (6 mol %).
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the benzyl ring tethered to the alkene exhibited no effect on
this reaction. Inspired by these results, the nucleophile sources
for such transformation were examined, and the alcohol EtOH
and nBuOH were also amenable to generate target products
2ak and 2al with 92% ee and slightly diminished yield. The
substrate 1am (R = H) without methyl substituent on the
alkene was also investigated in the enantioselective methox-
ycarbonylative cyclization, which gave the desired product 2am
in 50% isolated yield with 69% ee value. Other types of
nucleophiles, such as amine and thiol, were demonstrated to be
not suitable in this hydrocarbonylation-cyclization reaction
(2an and 2ao). Substrates (1ap and 1aq) including O- and C-
tethered 1,6-enynes failed to undergo such asymmetric
hydroesterificative cyclization reaction.
After exploring the substrate scope of the hydroesterifica-

tion-cyclization of the enynes, gram-scale synthesis was carried
out, and the γ-lactam 2a was obtained in good yield and
excellent enantioselectivity (Scheme 3A). The protecting

group -Ts in 2a was easily removed by SmI2 to give the
corresponding chiral γ-lactam 4 in good yield and 92% ee. The
chiral 2,3-pyrrolidinedione 5 could be readily obtained by
oxidation of 2a without diminishing enantiomeric excess,
which could be further converted regioselectively to the β-
amino acid derived N-carboxyanhydride according the
reported reference.18

To probe the mechanism and disclose the role of the double
bond in the enyne substrate on the reaction stereoselectivity
for the palladium-catalyzed asymmetric hydroesterification-
cyclization, control experiments using alkyne 6 and dienyne 9,
bearing isobutyl or two isobutenyl groups, were carried out
under identical reaction conditions (Scheme 3B). Replacing
the isobutenyl group of 1a by an isobutyl group led to the

carbonylation products of 7 and 8 with the ratio of 1:1 in high
yield. The decreased regioselectivity with 6 as the substrate
may be caused by the loss of the coordination of the alkene
moiety in the enyne substrate to the palladium catalyst.8a With
dienyne 9 as the substrate, cyclization/uncyclization products
10/11 with a ratio of 3/1 were afforded in high yield, wherein
very low ee value of the lactam 10 was observed. These results
suggested the alkene group of the enyne substrate plays a
function to affect the site selectivity in the initial hydro-
palladation step, and the -Ts group is essential to the
enantioselectivity.
In conclusion, the first palladium-catalyzed enantioselective

hydroesterification-cyclization of amide-tethered 1,6-enynes
was developed. Various chiral γ-lactams bearing all-carbon
quaternary stereocenters with high ee value were synthesized
efficiently under milder conditions. Changing the substituent
on the amide tether of the enyne substrate could alter the
relative spatial position between the alkyne and the alkene
moieties, which was demonstrated to be critical to adjust the
multiple selectivities of this reaction process.
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