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ABSTRACT: The synthetic study toward highly enantio- and diastereoselective synthesis of the tricyclic framework of 12-epi-JBIR-
23/24, a natural product analogue showing inhibitory activity against four malignant pleural mesothelioma cell lines, is presented
herein. In this synthesis, a rhodium-catalyzed asymmetric three-component Michael/aldol reaction introduces three consecutive
tertiary carbon centers, while the unique epoxyquinol core motif is successfully forged via [3,3]-sigmatropic rearrangement of an
allylic xanthate, vinylogous Pummerer rearrangement, and a selective mesylation/epoxidation cascade of a triol.

JBIR-23 and -24 were isolated from Streptomyces sp. AK-
AB27 by Shin-ya and co-workers in 2009.1a Structurally,

they contain a novel dodecahydrodibenzo[b,d]furan skeleton
bearing six stereogenic centers, three of which are located on
the compactly and highly oxygenated cyclohexane platform,
and a trienyl acid side chain (Scheme 1). Notably, both of
them display inhibitory activity against four malignant pleural
mesothelioma (MPM) cell lines. JBIR-23 not only shows
stronger antitumoral efficacy (10−50 μM) than JBIR-24 but
also prevents tumor growth in tumor-bearing nude mice for in
vivo studies.1b In spite of their intriguing structural motifs and
promising pharmacological properties, no total synthesis or
synthetic study toward JBIR-23 and -24 has yet been reported.
Herein, we present our endeavors on the synthesis of the
tricyclic core structure of 12-epi-JBIR-23 and -24.
Construction of the epoxyquinol motif of JBIR-23 and -24 is

challenging2 because its aromatization is feasible under both
basic and acidic conditions. Accordingly, to minimize the side
reactions, we consider introducing the brittle epoxyquinol core
at the late stage of synthesis, by devising an A−AB−ABC
synthetic strategy. As depicted in Scheme 1, we envision that
JBIR-23 and -24 could be advanced from compound 3 through
sequential ozonolysis and Wittig olefination or Horner−
Wadsworth−Emmon reaction as in our previous synthesis of
cuevaene A.3 We conceived that compound 3 could be
produced from 4 via oxidative rearrangement of a tertiary
allylic alcohol and selective epoxidation. Furthermore, ring C
of compound 4 could be installed through an intramolecular
nucleophilic addition of vinyl to ketone in 5. We consider that
5 could arise from 6 via necessary functional group
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Scheme 1. Retrosynthetic Analysis of JBIR-23/-24
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manipulations involving ketalization and Wittig reaction. A Rh-
catalyzed enantioselective Michael addition between cyclo-
hexanone 7 and alkenyl zirconium 8,4 followed by aldol
reaction with aldehyde 9 in one pot, might generate 6. Finally,
9 could be derived from commercially available D-ribose 10.
Our synthesis commenced with D-ribose 10, which was

transformed to aldehyde 9 through a three-step sequence
involving acetonide protection,5 selective oxidation of the
primary alcohol, and silyl protection of the secondary alcohol
(Scheme 2). Taking inspiration from asymmetric Michael

reaction,4 we initially treated the enone 7 with 8 in the
presence of [Rh(COD)Cl]2 (3.8 mol %) and (R)-BINAP (7.6
mol %) by following Oi’s methodology4a and generated a
Michael adduct with excellent 97% ee. We were then
encouraged to conduct a cascade Michael/aldol reaction, in
which the resulting alkenylzirconium 12 was treated with the
aldehyde 9. Pleasingly, compound 13 was achieved in 80%
overall yield with excellent diastereoselectivity (>20:1 dr).

With 13 in hand, we embarked on the construction of ring B
of the tricyclic core. Accordingly, desilylation of 13 in the
presence of TBAF and HOAc afforded 6. Treatment of 6 with
TEMPO/PhI(OAc)2 at 50 °C resulted in selective oxidation of
the semiacetal and then ester migration, providing 14 in 83%
yield together with a five-membered lactone in 15% yield (see
the Supporting Information for details). After numerous trials,
we fortunately identified that treating 14 with CH3ONa,
followed by a CSA-mediated cyclization, could generate
compound 15 in 81% yield.6 Although 15 embraced a cis-
fused 6/5 bicyclic skeleton, not in accordance with that of
either JBIR-23 or JBIR-24, we envisioned the desired trans-
fused 6/5 bicycle could be achieved through equilibration at
the final stage of synthesis.
The stage was now set for establishment of ring C with the

epoxyquinol substructure. Initially, an alkene was devised to be
installed at C14 to facilitate RCM reaction, leading to ring C.
Thus, oxidation of 15 secured the corresponding ketone 16
(Scheme 3). However, the ketone at C14 was inert to various
olefination reagents involving Tebbe reagent, Peterson reagent,
and phosphorus ylide. Then we resorted to an oxidative
rearrangement of tertiary allylic alcohol to construct the enone
motif in ring C, instead of the RCM strategy. In practice, in the
presence of the ketone at C14, treating 16 with DIBAL-H
enabled chemoselective reduction of the ester into an aldehyde
to give 17. Such abnormal selectivity indicated steric hindrance
surrounding the ketone at C14, accounting for the inert
reactivity of its olefination. Compound 17 was further
advanced to the vinyl iodide 18 via Wittig reaction. Then,
we extensively screened classical NHK reaction conditions, but
no productive reactivity could be identified.7 Satisfactorily,
exposure of vinyl iodide 18 into nBuLi/LiCl at −78 °C induced
expedient lithium/halide exchange, and the resulting vinyl
lithium attacked the ketone (C14) to deliver 19 as a single
stereoisomer in 83% yield.8 The relative configuration of
tricyclic compound 19 was confirmed by NOE analysis. Next,
we started to investigate installation of the enone via 1,3-
oxidative rearrangement of allylic alcohol.9 Preliminary
experimentations under typical conditions, such as PCC,
PDC, and Dess−Martin periodinane, led to either decom-
position of 19 or a complex mixture, plausibly due to the
instability of 19 under acidic conditions. Thus, different bases
were tested to suppress acidity in the oxidative rearrangement
process, and the combination of PCC and Et3N generated

Scheme 2. Synthesis of 15

Scheme 3. Synthesis of 21 and Attempt to Synthesize α,β-Unsaturated Ketone 22 through a Cleavage of Acetonide
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compounds 20 and 21 in 72% and 15% yield, respectively,
based on the recovery of starting material (see the Supporting
Information for details). Allylic oxidation with MnO2 could
transform 20 into 21, albeit in moderate yield. To our dismay,
although considerable protonic acids and Lewis acids were
investigated, we failed to remove the acetonide-protecting
groups in either 20 or 21 (see the Supporting Information for
details).
Learning from the above failure, we perceived that the cis-

fused 6/5 ring junction between ring C and the acetonide
moiety was stable to weak acidity, while the BC bicycle was
prone to aromatization under typical acidic conditions. To
comprise the stability of the BC bicycle and requirement of
deprotection of acetonide, we planned to achieve a compound
with trans-diol on ring C instead of compound 19 with a cis-
diol moiety.

Reduction of the ester 15 with DIBAL-H furnished 23 in
89% yield (Scheme 4). Exposure of 23 to Cs2CO3 in MTBE
triggered epimerization to a thermodynamically favorable
trans-fused acetonide, which was in situ advanced to the
vinyl iodide 24 after sequential Wittig reaction and oxidation
of the secondary alcohol. Subsequent treatment of 24 with
tBuLi provided 25 as a single diastereomer in 90% yield. The
stereochemistry of 25 was assigned by NOE analysis. Unlike its
epimer 19, compound 25 underwent various oxidative
rearrangement conditions without delivering the desired 26
or 27, disappointingly (see the Supporting Information for
details). Such a failure could be attributed to the twisty boat-
like conformation of ring C in 25, which prompted us to resort
to [3,3]-rearrangement. However, although an array of
attempts involving Eschenmoser−Claisen rearrangement,10

Johnson−Claisen rearrangement,11 Overman rearrangement,12

Scheme 4. Synthesis of Compound 32

Scheme 5. Synthesis of the Tricycle 42
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and aliphatic Claisen rearrangement13 were surveyed, either
recovery of 25 or the formation of undesired aromatized
compounds was discovered. Alternatively, we prepared the
xanthate 28 from 25, as a precursor of [3,3]-sigmatropic
rearrangement. Heating 28 in benzene at 90 °C afforded the
dithiolcarbonate 30 predominantly in 72% yield via TS-29
(path A),14 while the unexpected retro-Ene-type fragmentation
occurred simultaneously to produce 2-alkenyl methyl sulfide
32 in 24% yield via TS-31 (path B).15 Exposing 30 to
ethanolamine under air achieved the disulfide 33,16 which was
treated by P(NEt2)3 to smoothly furnish 32, with the
stereochemistry at C18 maintained.17 The relative config-
urations of 30, 32, and 33 were established by extensive
spectroscopic analysis including NOE analysis (see the
Supporting Information for details).
After considerable experiments, we discovered a strategy

involving vinylogous Pummerer rearrangement to establish the
enone moiety in ring C.18 In practice, oxidation of 32 with
H2O2 gave the sulfoxide 34 in 90% yield as a 2:1 separable
mixture of diastereomers (Scheme 5). Treatment of 34 with
TFAA in the presence of 2,6-lutidine resulted in the vinylogous
Pummerer rearrangement,19 affording 37 after hydrolysis. For
37, NOE interactions between H13/14-OH, H15/12-OMe,
and H8/H17 were shown in Scheme 5. These results indicate
that 37 is a unique cage-like compound. Treating 37 with
MeI20 produced the cyclohexanone 38 in 75% yield, showing a
result of simultaneous desulfurization, elimination to form
enone, and deprotection of acetonide. Direct conversion of the
trans-diol 38 into an epoxide failed after numerous attempts,
while the aromatization byproduct was observed instead.
By following a circuitous strategy to bypass the facility of

aromatization, the ketone in 38 was reduced to give the triol
39, in which the rigid tricycle scaffold made ring C exist with a
stable half-chair conformation. Thus, selective mesylation of
the C17 hydroxyl in 39 was achieved in the presence of the
other two hydroxyls at C16 and C18, and basic treatment of the
intermediate in one pot realized formation of the epoxide 41.
Due to its lability, compound 41 was immediately subjected to
allylic oxidation to afford 42, an epimer of core 3, in 49%
overall yield from 39. Notably, compound 42 is difficult to
prepare in large quantities due to the instability of 40 and 41.
Actually, an array of acidic conditions aiming at achievement of
equilibration between 42 and 3 were examined but
unfortunately unsuccessful (see the Supporting Information
for details). Thus, we conceive of constructing the trans-fused
6/5/6 tricycle, i.e., 3, from the cis-fused 6/5/6 tricycle, i.e., 42,
through a precisely tailored chiral catalyst under neutral
conditions.21 The related studies are currently ongoing in our
laboratory, and further results will be described in the future.
In summary, we have completed synthesis of the tricyclic

core of 12-epi-JBIR-23 and -24 through a A−AB−ABC ring
construction sequence. Key features include a tandem
asymmetric Michael/aldol reaction to establish three consec-
utive tertiary carbon centers and [3,3]-sigmatropic rearrange-
ment of an allylic xanthate, followed by vinylogous Pummerer
rearrangement and a selective mesylation/epoxidation cascade
of a triol, to access the brittle epoxyquinol motif. Inspired by
this achievement, further endeavors toward total synthesis of
JBIR-23 and -24 are currently in progress in our laboratory and
will be disclosed in due course.
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