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ABSTRACT: We present herein an efficient synthetic protocol
involving iron-catalyzed cross-coupling of organolithium compounds
with vinyl halides as key coupling partners. More than 30 examples
were obtained with moderate to good yields and high stereo-
selectivities. The practicality of this method is evidenced by a gram-
scale synthesis. In addition, a preliminary mechanistic investigation
was also performed.

Transition-metal-catalyzed cross-coupling reactions target-
ing to selective C−C bond formation enable the facile

preparation of structurally diversified molecules and facilitate
the development of modern drugs and organic materials.1−4

Traditionally, catalysis by palladium, ruthenium, and nickel has
been commonly used in the cross-coupling reactions involving
many organometallic reagents.1,5−10 However, because of their
intrinsic limitations such as high reactivities and low
selectivities, the direct application of organolithium reagents
in cross-coupling reactions has not been fully explored and still
remains an enormous challenge, despite that organolithium
reagents are either commercially available or easily accessible
through direct metalation or halogen-lithium exchange
processes. Early studies by Murahashi and co-workers
pioneered the palladium-catalyzed cross-coupling procedure
involving alkyllithium/aryllithium reagents and alkenyl halides
in 1970s.11 Feringa and co-workers developed some elegant
palladium-based catalytic systems to directly generate C−C
bonds by using organolithium compounds as cross-coupling
partners.12 Moreover, they also disclosed for the first time
palladium catalytic systems for alkenyllithium or lithium
acetylides as cross-coupling partners.12g−j However, iron has
attracted a great deal of interest toward the catalysis of cross-
coupling reactions because of its low cost, low toxicity, earth-
abundance, as well as its novel reactivity as compared with
those analogous reactions with precious metals (i.e., palla-
dium). Accordingly, the development of iron-catalyzed cross-
coupling reactions is expectedly undergoing an explosive
growth.13 In 1971, Kochi demonstrated that simple iron salts
were able to catalyze the stereoselective generation of C−C
bonds.14 Subsequently, the research groups of Fürstner,
Nakamura, Bedford, and Cahiez have all contributed
significantly to iron-catalyzed cross-coupling reactions.15−18

In 2016, our group exploited an efficient iron-catalyzed cross-
coupling reaction under mild conditions, involving organo-
lithium compounds and a variety of organic bromides. Our
examples included the formation of C(sp2)−C(sp3) bonds and

C(sp3)−C(sp3) bonds, consequently providing valuable
alternatives to existing methodologies by demonstrating for
the first time that organolithium reagents could be employed as
cross-coupling partners in iron-catalyzed cross-coupling
procedures.19a Soon after, iron-catalyzed C(sp2)−C(sp2)
bonds and other C−C bond cross-coupling reactions were
also realized in good yields.19b,c Furthermore, highly practical
and efficient iron-catalyzed C(sp2)−C(sp2) oxidative homo-
coupling reactions of alkenyllithium and aryllithium reagents
were also achieved, leading to the formation of symmetric 1,3-
butadienes and biaryls in moderate to good yields,
respectively.19d,e

Vinyl arenes are privileged scaffolds frequently found in
bioactive natural products, pharmaceuticals, and polymers.20

Metal-catalyzed cross-coupling methods are also among the
most deployed synthetic methodologies for the realization of
substituted styrenes. As shown in Scheme 1, while such
reactions are usually dominated by palladium,21 nickel,22 and
cobalt23 catalysts, an iron-catalyzed Kumada process was also
reported in 2011.24 Herein, we report the stereoselective
construction of vinyl arenes under a mild iron-catalyzed cross-
coupling process between aryllithium compounds and vinyl
halides.
As shown in Table 1, we commenced the preliminary

screening on this cross-coupling reaction by reacting p-
anisyllithium 2, freshly prepared by treatment of 4-
bromoanisole with t-BuLi, with (E)-2-iodovinylbenzene 1a in
the presence of various commonly used iron catalysts in
toluene. Without any iron catalyst or ligand, no reaction
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occurred (entry 1). With iron catalysts, cross-coupling product
3a, together with some homocoupling products, were
observed. Subsequently, several iron catalysts were screened
(entries 2−7), and the highest yield among these entries was
50% when Fe(acac)2 was used. It is noteworthy that with 3.0
equiv of 2, all starting materials were consumed, and the yield
was improved to 60% (entry 8). However, a further increase of
the amount of 2 to 4.0 equiv led to a decrease of the yield of 3a
to 48%. Although different solvents were respectively

attempted (entries 9, 10, and 14), no significant improvement
was realized. We then examined several NHC ligands (entry
13), Buchwald ligands, and other commonly used phosphine-
containing, amine-containing monodentate as well as bidentate
ligands (entries 11, 12; see Table S3 in the Supporting
Information). Relevant results showed that Xphos was a better
ligand for this reaction. Moreover, lower loading of iron
catalyst (5 mol %) was found to reduce slightly the overall
transformation efficiency (entry 15). Eventually, the best
condition was found to be Fe(acac)2 and Xphos, in which 74%
of 3a was obtained (entry 14; other details can be found in the
Supporting Information).
With the optimized reaction condition in hand, the substrate

scope of the iron-catalyzed cross-coupling reaction of 2 with
(E)-vinyl iodides 1 was further examined. The results are
shown in Scheme 2. Gratifyingly, vinyl iodides with both

electron-donating groups, such as t-butyl (viz. 1b) and n-butyl
(viz. 1c), and electron-deficient aromatic ring, for example, the
pharmaceutically useful trifluoromethylvinyl iodide 1d,
smoothly underwent this coupling reaction to generate the
desired stilbenes in moderate to good yields (3b, 3c, and 3d).
Moreover, ortho-, meta-, and para-methylphenylvinyl iodides
(1e, 1f, and 1g) were also studied, generating 3e, 3f, and 3g,
respectively, with 3g notably being isolated in excellent yield
(82%). Meanwhile, stilbene 3k was also afforded with good
yield. The steric hindrance exerted by one ortho-methyl group
was found to be less obvious than that shown by two ortho-
methyl groups (3e vs 3j). Fluorine-substituted phenylvinyl
iodides 1h and 1i successfully underwent the cross-coupling
with excellent chemoselectivity and moderate to good yields,
affording the corresponding fluorinated stilbenes 3h and 3i.

Scheme 1. Transition-Metal-Catalyzed Cross-Coupling
Reactions to Form a C−C Bond

Table 1. Optimization of Reaction Conditionsa,b

entry Fe ligand Lic solvent yield (%)

1 - - 2 toluene 0
2 FeCl2 - 2 toluene 17
3 FeCl3 - 2 toluene 48
4 FeBr2 - 2 toluene 38
5 FeBr3 - 2 toluene 48
6 Fe(acac)2 - 2 toluene 50
7 Fe(acac)3 - 2 toluene 45
8 Fe(acac)2 - 3 toluene 60
9 Fe(acac)2 XPhos 3 THF trace
10 Fe(acac)2 XPhos 3 Et2O 52
11 Fe(acac)2 BrettPhos 3 toluene 64
12 Fe(acac)2 MePhos 3 toluene 67
13 Fe(acac)2 SIPr-HBF4 3 toluene 55
14 Fe(acac)2 XPhos 3 toluene 74
15 Fe(acac)2 XPhos 3 toluene 57d

aReaction conditions: To a solution of compound 1a (0.2 mmol),
iron catalyst (10 mol %) and ligand (10 mol %) in toluene (2.0 mL)
was added a solution of 2 (c = 0.2 mmol/mL) in Et2O over 2 h by a
syringe pump at 0 °C. bIsolated yield. cThe equiv of 2. d5 mol %
Fe(acac)2 and 5 mol % Xphos were used.

Scheme 2. Scope of (E)-Vinyl Iodidesa,b

aReaction conditions: Fe(acac)2 (0.02 mmol), Xphos (0.02 mmol), 1
(0.2 mmol), in 2.0 mL of toluene under Ar, added a solution of 2 in
Et2O over 2 h by a syringe pump at 0 °C, then at 23 °C for 6 h.
bIsolated yield.
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Nevertheless, 4-chlorine-, 4-bromine-, and 4-iodo-phenylvinyl
iodides were chemoselectively incompatible with this protocol.
Furthermore, alkylvinyl iodides 1l, 1m, and 1n were
successfully employed, as exemplified by the generation of
products 3l, 3m, and 3n in 55%−76% yields, respectively. The
application of conjugated olefin 1o as substrate was also
feasible and furnished the desired product 3o in 68% yield. It
was also uncovered that the sterically hindered (1-iodovinyl)-
cyclopentane 1p formed the corresponding coupling product
3p in 52% yield. In addition, compounds 3r and 3s were
formed with high yields, when the reactions were carried out
by allowing iodomethylenecyclohexane (1r) or iodomethyle-
necycloheptane (1s) to react with 2. A benzyloxymethylvinyl
iodide 1q was also examined, and as a result, 3q was obtained
in 40% yield. To our delight, freshly prepared (E)-β-3-
thienylvinyl iodide (1t) also successfully furnished the
corresponding product 3t. In addition, the application of this
protocol to couple the stanolone derivative 1u with 2
successfully led to the desired product 3u, albeit in only 45%
yield.
On the basis of the scope of various vinyl iodides 1 in

Scheme 2, we further explored the scope of this protocol by
coupling vinyl halides 4 with aryllithiums 5 (Table 2). Under
the standard condition, aryllithiums 5 bearing electron-
donating alkyl groups such as Me, Et, t-Bu, and i-Pr underwent
the cross-coupling reaction smoothly with (E)-1-(2-iodovinyl)-
3-methoxybenzene (4a) to afford stilbenes 6a−6e in good to
excellent yields. In addition, 4 containing electron-donating
groups coupled with different aryllithiums, resulting in the
formation of products 6f−6k in good yields as well. To our
delight, the sterically hindered tetrasubstituted 2-bromo-3-
methylbut-2-ene (4l), also furnished successfully the corre-
sponding product 6l in 32% yield. In order to explore the
reaction diversity, two examples with Z-alkenyl halides were
investigated. Experimental results showed that both com-
pounds reacted under our optimized condition to give 6m and
6n, respectively. Moreover, regardless of yields, it is interesting
to note that a very small percentage of isomerization was found

in the latter two cases, which lends support to our hypothesis
that this reaction might likely go through a nonradical pathway.
To demonstrate the synthetic utility of our work, we

attempted to carry out the reaction at a larger scale of 1 g, as
can be seen in Scheme 3. Two typical scale-up reactions in
approximately 1 g scale provided the corresponding stilbenes
in satisfactory yields.

In order to gain a better mechanistic understanding of the
reaction, additional studies were performed on the basis of our
previous work (Scheme 4).19c Thus, the reaction of 4m was
carried out and monitored very carefully, but only a small
amount of isomerization product 3a was observed (Z/E > 7:1).
Moreover, good cross-coupling result was also obtained for
(Z)-2-(2-bromovinyl)naphthalene (4n), leading to the for-
mation of high Z/E ratio product 6n in 62% yield (Z/E >
10:1). Additionally, a radical clock experiment of 1n was also
performed. The results indicated that no ring-opening products
were observed, therefore hinting at the absence of transient
radical intermediates. These observations suggested that
radical pathways were not likely to be involved in this reaction
(for other details, please see Supporting Information).
In summary, we have demonstrated an efficient highly

stereospecific Fe(II)-catalyzed cross-coupling process by using
organolithium reagents and vinyl halides. More than 30
examples were obtained with moderate to good yields. The
reaction could be scaled up to gram scale. This method

Table 2. Substrate Scopea,b

R1 R2 R3 X Ar product yield (%)

H 3-MeOC6H4 H I Ph 6a 72
H 3-MeOC6H4 H I 4-MeC6H4 6b 81
H 3-MeOC6H4 H I 4-EtC6H4 6c 62
H 3-MeOC6H4 H I 4-tBuC6H4 6d 60
H 3-MeOC6H4 H I 4-iPrC6H4 6e 62
H BnOCH2 H I 4-MeC6H4 6f 55
H BnO(CH2)4 H I 4-MeC6H4 6g 72
H 3, 5-(MeO)2 C6H3 H I 4-MeC6H4 6h 56
H Ph H I 4-MeO-3,5-(Me)2C6H2 6i 57
H 3,5-(MeO)2 C6H3 H I Ph 6j 46
H Ph H I 3,4-(OCH2O)C6H3 6k 42
Me Me Me Br 4-MeOC6H4 6l 32
Ph H H I 4-MeOC6H4 6m 54

2-naphthyl H H Br 4-MeOC6H4 6n 62c

aReaction conditions: Fe(acac)2 (0.02 mmol), Xphos (0.02 mmol), 4 (0.2 mmol), in 2.0 mL toluene under Ar, added a solution of 5 in Et2O over 2
h by a syringe pump at 0 °C, then at 23 °C for 6 h. bIsolated yield. cThe Z/E ratio was determined by 1H NMR, Z/E > 10:1.

Scheme 3. Gram-Scale Reactions
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displays broad substrate scope and excellent functional group
tolerance. Retention of the double bond configuration to a very
great extent was observed under these conditions. Preliminary
mechanistic investigations showed evidence that this reaction
likely does not involve radical intermediates.
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