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ABSTRACT: Three emissive bridged-triphenylamine derivatives are designed
and synthesized by incorporating carbon (DQAO), oxygen (OQAO), and sulfur
(SQAO) atoms with two carbonyl groups. The fully bridged geometry and
unique frontier molecular orbital distribution reveal its potential as narrowband
thermally activated delayed fluorescence emitters. DQAO-, OQAO-, and SQAO-
based organic light-emitting diodes exhibit the maximum external quantum
efficiency (EQEmax) of 15.2%, 20.3%, and 17.8% for blue, green, and yellow,
respectively.

Triphenylamine, which carries a lone pair of electrons, acts
as the classic skeleton in organic optoelectronics.1 Thus,

compounds possessing such moiety are generally electron-rich
and triphenylamine had been readily employed as hole
transport materials in organic light-emitting diodes (OLEDs),
organic photovoltaics, or perovskite solar cells.2−6 To further
explore the potential of triphenylamine, the structural
constraint, such as partially or fully bridged derivatives, is a
sophisticated strategy to alter the fundamental nature of the
parent molecule.7 In 1971, Hellwinkel et al. first realized the
nitrogen-centered triangulene HTANGO, which bears three
carbonyl bridges. The distance of plane-to-plane is 3.46 Å in
the single crystal, indicative of strong π−π stacking interaction
among the heterotriangulenes.8,9 After three years, they further
reported the dimethylmethylene-bridged derivatives.10 In
2003, Venkataraman et al. expanded a series of partially
carbonyl-bridged triphenylamines derivatives, which presented
helically chiral conformations in the crystalline state and strong
fluorescent emission in the blue region.11 In 2005, Okada et al.
prepared the oxygen-bridged triphenylamine, and its corre-
sponding radical cation salt would be used in electronic and
magnetic materials.12 These studies reveal that a more
planarized structure in triphenylamine derivatives can increase
the interaction between π-skeletons and induce considerable
oscillator strength for improved photophysical properties.
However, previous bridged triphenylamine derivatives in

electroluminescence were not extensively explored. In 2019,
our group first disclosed the potential application of 2-fold
carbonyl-bridged triphenylamine QAO and its derivatives in
OLEDs as the thermally activated delayed fluorescence

(TADF) emitters.13 Unlike the conventional TADF com-
pounds, its special frontier molecular orbital (FMO)
distribution resulted from the donor-nitrogen atom and
acceptor-carbonyl group, which generates effective short-
range intramolecular charge transfer (ICT) assisting reverse
intersystem crossing (RISC).14−21 Intriguingly, owing to the
rigid framework, its structure relaxation between the ground
and twist induced excited states was suppressed. QAO is able
to exhibit attractively narrow full width at half-maximum
(fwhm) of 39 nm in sky blue and high external quantum
efficiency (EQE) of 19.4% of OLEDs. This work demonstrates
that the bridged carbonyl groups instead of the embed borane
as electron accepting units could also achieve multiple
resonance TADF (MR-TADF) as proposed by Hatakeyama’s
group.15 Since the TADF emitters with narrow fwhm are
highly demanded currently but color-tunable system has been
rarely conducted.19,22 Therefore, it is promising to develop
more bridged-triphenylamine cases for OLED applications.
By embedding carbon, oxygen, and sulfur atoms into the

third bridging position of N/CO-based molecule QAO,
three fully bridged-triphenylamine derivatives, 12,12-dimethyl-
4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-
dione (DQAO), benzo[9,1]quinolizino[3,4,5,6,7-klmn]-
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phenoxazine-8,12-dione (OQAO), and benzo[9,1]quinolizino-
[3,4,5,6,7-klmn]phenothiazine-8,12-dione (SQAO), were de-
signed and synthesized (Figure 1). Among them, the sulfur-

bridged scaffold, yet bearing one methyl group, could be dated
back to 1978.23 Their properties such as the arrangement of
single crystals, energy bandgap, and thermal stability were
adjusted by altering the substituent at the bridging positions.
Eventually, three TADF emitters-based OLED showed
significantly different emission wavelengths from blue to
yellow region. In particular, the fwhm of DQAO-based and
OQAO-based devices are as small as 34 and 45 nm,
respectively. This work shows the tunability of the fully
bridged triphenylamine strategy in designing TADF emitters.
The synthetic routes for DQAO, OQAO, and SQAO are

summarized in Scheme S1. Precursor dimethyl 2-bromoisoph-
thalate was prepared using a previous synthetic procedure in
72% yield in two steps.24 Furthermore, the coupling of 3 with
9,10-dihydro-9,9-dimethylacridine, 10H-phenoxazine, and
10H-phenothiazine via copper-catalyzed Ullmann amination
to give compounds 4, 5, and 6 in 72%, 68%, and 71% yield,
respectively. Subsequent ester hydrolysis of 4, 5, and 6 in the
presence of NaOH gave diacids 7, 8, and 9 in 96%, 94%, and
92% yield, respectively. Ultimately, the diacids 7, 8, and 9 were
converted to the corresponding acid chloride with SOCl2 in
dichloromethane, followed by an in situ intramolecular
cyclization in the presence of SnCl4 to form triphenylamine
derivatives DQAO, OQAO, and SQAO in 88%, 87%, and 91%
yield. All the intermediates and target compounds were
characterized by NMR, mass spectra, and elemental analysis
(Figures S1−S27).
The molecular structures of DQAO, OQAO, and SQAO

were further confirmed by the X-ray diffraction analysis (Figure
2 and Table S1−S6), and the crystal systems of the three
compounds are all monoclinic lattices. Different from the
helical structure of QAO (Figure S28), three molecules adopt
the near trigonal-planar geometries and π-stacked with
interplanar distances between 3.347 and 3.392 Å. Interestingly,
the C−O−C bond angle of OQAO is 117.8(4)°, which is
larger than C−C−C bond angle of 111.01(15)° in DQAO and
C−S−C bond angle of 101.8(2)° in SQAO, and the C−C, C−
O, and C−S lengths were found to be 1.520(2), 1.385(6), and
1.761(7) Å in carbon-, oxygen-, and sulfur-bridged triphenyl-
amine.25 Notably, the arrangement of OQAO and SQAO are
coparallel, which is caused by C−H···O interactions (2.513 Å
for OQAO, 2.682 Å for SQAO) within the horizontal
direction. However, DQAO exhibits the antiparallel packing
type, where the C−H···O interactions of vertical direction

(2.645 Å) between dimethyl and carbonyl group forces the
adjacent molecules to rotate 108° versus each other to
maintain the π···π interactions.26

The photophysical spectroscopic properties of QAO,
DQAO, OQAO, and SQAO were measured in dilute toluene
solution as illustrated in Figure 3 and Table 1. All emitters

Figure 1. Some reported bridged triphenylamine derivatives and this
work.

Figure 2. Single-crystal structure and packing mode of (a) DQAO,
(b) OQAO, and (c) SQAO.

Figure 3. UV/vis absorption, fluorescence (298 K), fluorescence (77
K), and phosphorescence (77 K) spectra of QAO, DQAO, OQAO,
and SQAO in toluene.

Table 1. Photophysical Properties of QAO, DQAO, OQAO,
and SQAO

λabs
a

(nm)
λem

a

(nm)
fwhma

(nm)

Stokes
shiftb

(cm−1)
S1
c

(eV)
T1
c

(eV)
ΔEST

c

(eV)

QAO 433 460 33 1356 2.69 2.49 0.20
DQAO 440 465 33 1222 2.66 2.47 0.19
OQAO 489 520 36 1293 2.34 2.18 0.16
SQAO 489 552 54 2334 2.23 2.07 0.16

aIn toluene (10−5 M) solution at room temperature. bDetermined
from the λ of UV absorption and fluorescence spectra measured in
toluene solution at room temperature. cDetermined from the λ of
fluorescence and phosphorescence spectra measured in toluene
solution at 77 K, respectively.
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show two major absorption bands, the high energy one below
375 nm can be originated from the π−π* and n−π* transitions
of the conjugated skeleton, and the longer wavelength
absorption bands could be assignable to the HOMO−
LUMO transitions. The photoluminescence (PL) and the
absorption spectrum of the three QAO variants follow the
mirror image rule, and their Stokes shifts are small (ca. 1222−
2334 cm−1) as expected, embodying a singlet emission event
and the rigidity enforced by the fully structural constraint,
preventing nonradiative channeling of excitation energy. It is
noteworthy that three emitters exhibit narrow emissions at
465, 520, and 552 nm, with the fwhm as small as 0.17−0.22 eV
(corresponding to 33−54 nm). From the maximum and the
onset of each low-temperature spectrum (Figure 3), the ΔEST
of three emitters were calculated to be 0.19, 0.16, and 0.16 eV,
respectively. To further explore the transition characteristics of
the excited state, we measured the UV−vis absorption and PL
spectra of four compounds in different solvents at room
temperature (Figures S29 and S30). With the environmental
polarity increased from nonpolar hexane to the highest polar
acetone, the absorption profiles of QAO, DQAO, and OQAO
change a little, while the PL spectra are more sensitive to
different solvents.27 SQAO displays the most significant
solvatochromic effect of its fluorescent emission, and the
obvious bathochromic shifts was observed from green (509
nm) in n-hexane to orange (601 nm) in DMF, agreeing well
with its smallest HOMO/LUMO overlap integral in the
calculation (Table S7) and reflecting SQAO’s stronger ICT
process than that of DQAO and OQAO.28

Figure S31 shows the PL spectra of three emitters in neat
films (Table S9). The maximum emission peaks of DQAO,
OQAO, and SQAO were observed at 482, 546, and 604 nm,
accompanying a significant bathochromic shift and fwhms
broadening (versus their emission bands in toluene solution).
Figure S32 shows how for the doped films of 8 wt % DQAO in
1,3-bis(9H-carbazol-9-yl)benzene (mCP), 5 wt % OQAO in
4,4′-bis(9H-carbazol-9-yl)biphenyl (CBP), and 1 wt % SQAO
in 9-(3-(9H-carbazol-9-yl)phenyl)-9H-carbazole-3-carbonitrile
(mCPCN). This concentration was chosen to avoid
aggregation of three emitters, and the absolute PLQY of the
doped films was measured to be 59.3% for DQAO, 90.2% for
OQAO, and 65.4% for SQAO, respectively. As shown in
Figure S33, three emitters show microsecond-scale delayed
component with a lifetime of 110.58 μs for DQAO, 204.65 μs
for OQAO, and 78.38 μs for SQAO, demonstrating their
apparent TADF characteristics.
Benefiting from the rigid conformation, as shown in Figure

S34 and Table S9, DQAO, OQAO, and SQAO exhibited good
thermal stability with a high decomposition temperature (Td,
corresponding to 5% weight loss) of 316, 353, and 368 °C.
The electrochemical behaviors were investigated by cyclic
voltammetry (CV) in dichloromethane solution coated on a
platinum electrode (Figure S35). Upon introduction of
different electron-donating groups, the significantly distinct
oxidation potentials are observed (Eox, 1/2 = 1.76 for DQAO,
1.50 for OQAO, and 1.31 V for SQAO), and the EHOMO values
are calculated to be −5.96, −5.70, and −5.51 eV for DQAO,
OQAO, and SQAO, respectively. Similarly, originating from
the analogous half-wave reduction potentials (Ered, 1/2), the
ELUMO values are calculated to be −2.90/−2.93/−2.95 eV for
DQAO, OQAO, and SQAO, respectively.
We performed the DFT and TD-DFT calculations at the

B3LYP/6-31G(d) level to better understand the geometrical

differences and photophysical properties of the three
compounds. As shown in Figure 4 and Table S7, the

HOMO electron clouds of DQAO are mainly concentrated
on the third bridging atoms, nitrogen atom, and its ortho- and
para-carbons relative to it, whereas the LUMOs are located on
the carbonyl groups and at the meta-carbons relative to the
nitrogen atom, which revealed the short-range intramolecular
charge transfer process between the nitrogen atom and
carbonyl group.13,15 This multiple resonance effect reduces
the vibronic coupling and vibrational relaxation in the
molecules, thereby achieving efficient and narrow emission.14

In addition, the situation is further complicated by enhancing
the electron-donating ability of the third bridging atoms, and
the HOMO electron clouds has the obvious tendency of
delocalization toward the third bridging position, reflecting the
reinforcement of ICT character, which weakens the MR effect
originated from the nitrogen atoms and carbonyl groups. For
three molecules, the distributions of LUMO are similar, which
agrees well with the result of electrochemical characterization.
To evaluate the function of DQAO, OQAO, and SQAO in

devices, we fabricated and optimized the TADF-based OLEDs
(Figure S36). The energy level alignment diagrams and current
density−voltage−luminance (J−V−L) of the device are
displayed in Figures S37−S39. The EL spectra and EQE
versus L plots of the devices are displayed in Figure 5, and the
pertinent parameters are listed in Tables S10−S12. For devices
with DQAO, OQAO, and SQAO, blue emission of 472 nm,
green emission of 532 nm, and yellow emission of 564 nm
were achieved, corresponding to Commission Internationale
de l’Eclairage (CIE) coordinates of (0.12, 0.18), (0.32, 0.65),
and (0.47, 0.52), respectively. Notably, the DQAO- and
OQAO-based OLED exhibited the extremely narrow fwhms of
34 and 45 nm, and OLED employing DQAO only showed
EQEmax of 15.2% and power efficiency (PEmax) of 23.0 lm W1−.
In addition, SQAO achieved an EQEmax of 17.8% with yellow
emission, but the fwhm was much wider than DQAO and
OQAO, which may due to the large radius of the sulfur atom
making the molecular structure flabby. Ultimately, the device
employing OQAO exhibited maximum current efficiency
(CEmax), PEmax, and EQEmax of 26.2 cd A−1, 31.6 lm W−1,

Figure 4. Density functional theory (DFT) simulations of DQAO,
OQAO, and SQAO.
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and 20.3%, better than that of the device employing DQAO
and SQAO because of its higher PLQY (90.2%).
In summary, we introduced three bridged-triphenylamine

derivatives DQAO, OQAO, and SQAO with TADF nature,
and their electronic and photophysical properties can be
adjusted by tuning the substituent at the bridging positions.
Encouragingly, the OLED employing DQAO, OQAO, and
SQAO emitters exhibited high EQEmax of 15.2%, 20.3%, and
17.8%, respectively. In particular, the fwhm of DQAO (34 nm)
and OQAO (45 nm) are narrow in OLEDs, indicating its
potential in commercial display. Moreover, by varying the
electron-donating ability of the substituent, the emission
wavelength can be facilely tuned from blue (472 nm) to
green (532 nm) then to the yellow area (564 nm).
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Figure 5. OLED data for DQAO, OQAO, and SQAO (electro-
luminescent spectra and EQE versus luminance).
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