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C-O/C-C activation | [3+3] annulation |β-ketoethers | cyclopropenones | transition-metal free conditions 

 

The efficient cleavage of carbon-oxygen (C-O) bond is highly important for the transformation of oxygen-rich biomass and industry 
chemicals. Herein, an efficient [3+3] annulation of β-ketoethers with cyclopropenones in presence of catalytic base has been devel-
oped, which proceed through the C(sp3)-O bonds cleavage in β-ketoethers and C-C bond cleavage in cyclopropenones under transi-
tion-metal free conditions. The cleavage of C(sp3)-O bonds in alkyl alkyl ethers and aryl alkyl ethers were realized. The reaction fea-
tured excellent functional group compatibility and chemoselectivity, affording various 2-pyrones in good to excellent yields under 
mild conditions and simple operation. 
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Background and Originality Content 

The ubiquity of C-O bond in nature has stimulated efforts to-
wards their efficient transformation to afford diverse organic plat-
forms.1 Although the direct conversion of C-O bonds of esters, 
carbonates, carbamates and sulfates are studied very well, the 
cleavage of C-O bonds in inexpensive ethers is more challenge 
because of its low polarity and reactivity.2 In the past several dec-
ades, many efforts have been developed for the chemical conver-
sion of the C-O bonds in ethers into value-added chemicals.3 

Among these investigations, the cleavage of sp2 C-O bonds in aryl 
aryl ethers, aryl alkyl ethers and sp3 C-O bonds in aryl alkyl ethers, 
benzyl alkyl ethers or benzyl allyl ethers have been the main fo-
cus,1-3 while the sp3 C-O bonds activation in other alkyl alkyl ethers 
are rarely reported. In this regard, the C-O cleavage in β-ketoethers 
has attracted great attention, as the keto aryl alkyl ethers are of-
ten utilized as the model compounds to disclose the chemical 
transformation of lignin.4 Some representative approaches have 
been reported to convert the lignin model compounds (keto aryl 
alkyl ethers) using nickel catalysts, ruthenium complexes, vanadi-
um complexes and so on.5 These strategies usually require harsh 
conditions or transition-metal-based catalysis. Only some transi-
tion-metal catalysis free routes for the C-O bond cleavage in keto 
aryl ethers were developed in recent years,6-9 through ionic liquid 
inducing oxidation process or classic Baeyer-Villiger oxidation re-
action with stoichiometric oxidant reagent (Scheme 1a).8  

 
Scheme 1  Selected examples of C-O cleavage of β-ketoethers and C-C 
cleavage of cyclopropenones in absence of transition-metal catalysis. 

 
On the other hand, the cyclopropenones have been utilized as 

important building skeletons with transition-metal or or-
gano-catalysis via C-C bond cleavage process,10 which could server 
as 3C synthon in the [3+n] annulation reaction with various cou-
pling partners.11 Recently, Lin group reported the [3+2] annulation 
of cyclopropenones with β-ketoesters under base conditions, the 
electron-withdrawing group in the ketoester is crucial to the reac-
tion transformation(Scheme 1b).11c Herein, we report the [3+3] 
annulation of β-ketoethers with cyclopropenones via C(sp3)-O/C-C 
bond fission in presence of catalytic potassium t-butoxide without 
the using of transition-metal catalysis, affording various 2-pyrones 
in good to excellent yields with excellent chemoselectivity 
(Scheme 1c). 2-pyrones constitute the key structural units of nu-
merous natural products and pharmaceuticals. 12 This general, 
mild and clean method for cleavage of sp3 C-O bonds of the alkyl 
alkyl ethers were furthermore expand to lignin models β-O-4 link-
age (keto aryl alkyl ethers) for synthetic transformations. Com-
pared to other C-O bond activations, there are three issues to 
overcome: 1) The oxygen or carbon atom of keto group could both 
be nucleophilic site after the deprotonation (α-position) as the 

enolization. The mixture of geometric isomers may complicate the 
annulation process; 2) The C-O bonds in the β-ketoethers are 
highly insert, which may lead to low efficiency; 3) The protonation 
of the reaction intermediate can be a competitive reaction after 
the ring-opening of cyclopropenone. 

Results and Discussion 

We initiated set out to explore the possibility of C(sp3)-O cleav-
age in β-ketoethers by investigating the coupling of commerical 
available material 1a with diphenylcyclopropenone 2a (Table 1). 
When the reaction was performed in MeOtBu at 30℃ for 12h, the 
[3+3] annulation product 3a was not observed using the base of 
CH3COOK, K2CO3, NEt3 or DBU (Table 1, entries 1-4), only CH3ONa 
gave the product 3a in 13% yield (Table 1, entry 5). To our delight, 
when tBuOK was used, the cyclic product 3a could be obtained in 
93% yield (Table 1, entry 6). The yield decreased slightly when the 
reaction performed under the air atmosphere (Table 1, entry 7), 
and higher temperature resulted slight lower yield as the decom-
position of cyclopropenone 2a (Table 1, entry 8). Screening of the 
solvent revealed that the yield of 3a could be isolated in 98% 
when DME was used as the solvent (Table 1, entry 9). The reaction 
in dioxane, THF and toluene as well as polar solvent such as EtOH, 
DMA also resulted in good to excellent yields of 3a (Table 1, en-
tries 10-15), while no desired product observed when 
1,2-dichloroethane (DCE) was used as solvent (Table 1, entry 16). 
Furthermore, only starting materials 1a and 2a were recovered in 
the absence of tBuOK (Table 1, entry 17) 

Table 1  Optimization of Reaction Conditions. 

 
The scope and generality of this [3+3] annulation reaction was 

evaluated with the optimized conditions (Scheme 2). First, the 
compatibility of β-ketoethers was investigated. The β-ketoethers 
bearing methyl-, methoxyl-, fluoro-, chloro- groups at the pa-
ra-position of the benzene ring were all tolerated, giving the de-
sired products in high to excellent yield (3a-3e, 75-99% yield). The 
reaction also worked smoothly in the presence of methyl-, 
methyoxyl-, fluoro- and chloro- groups at the meta-position of the 
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benzene ring (3f-3i, 90-99% yield). The cyclic products with ortho- 
methyl (3j) or methoxyl group (3k) at the benzene ring were ob-
tained in 99% yield and 98% yield respectively. The presence of 
phenyl group at the α-position of the β-ketoether afforded the 
tetra-phenyl-substituted 2-pyrone 3l in 74% yield. The β-ketoether 
with a methyl group at the α-position resulted in decreased reac-
tivity (3m, 34% yield). The coupling of 
1-cyclohexyl-2-methoxyethan-1-one 2n with diphenylcycloprope-
none 2a failed to give the cyclic product. Further exploration 
demonstrated the scope of cyclopropenones in this reaction sys-
tem. Diphenylcyclopropenone bearing methyl-, tBu-, fluoro- and 
chloro- groups at the C4-position of the benzene ring underwent 
smooth transformation, and the desired annulation products 
3o-3r were isolated in 71-89% yields. Several other cycloprope-
nones were also briefly examined, affording the desired products 
3s-3u in 53-99% yields. The dialkyl- substituted cyclopropenones 
could proceed very well (3v, 95% yield). Meanwhile, this coupling 
system can be extended to the nonsymmetrical cyclopropenones 
with excellent regioselectivity (3w, 47% yield and 3x, 93% yield). 
Low yield of 3w as the decomposition of cyclopropenone. The 
cyclopronones containing heterocyclic ring such as thiophene 
could be converted to the desired product 3y in 99% yield. 

Scheme 2  Substrates Scope. 

We then turned our attention to the transformation of β-O-4 
linkage 4 (keto aryl alkyl ether) which were used as the lignin 
model compounds. The present base conditions allowed the direct 
conversion of the lignin model 4a to 2-pyrone 3a in 99% yield 
along with formation of phenyl (E)-2,3-diphenylacrylate 5a in 83% 
yield just using two equiv cyclopropenone 2a at slightly higher 
temperature (Table 2, entry 1). Installation of the methoxyl- or 
acetyl- group on the benzene ring resulted in excellent conversion 
(Table 2, entries 2 and 3). It is worthy of note that the presence of 
methyl group at α-position in the β-ketoethers allowed direct 
conversion of lignin model 4d and 4e to corresponding products in 
moderate to excellent yields (Table 2, entries 4 and 5). The bro-
mo-substituted compound 4f gave corresponding products 

2-pyrone 3z in 99% yield and ester 5a in 58% yield (Table 2, entry 
6). 

Table 2  Scope of lignin model compounds. 

 
Then we briefly explored the reaction mechanism (Scheme 3). 

No corresponding product was observed when 
2,2-dimethyl-1-phenylpropan-1-one 1z reacted with cycloprope-
none 2a even at higher temperature (Scheme 3, eq. 1), and this 
result demonstrated that the enol intermediate under base condi-
tion is crucial for the reaction conversion. Moreover, the H/D ex-
change reaction was performed, when CD3OD was added into the 
coupling system of 1a with 2a, H/D exchanged was observed at 
the 5-position of the product 3a with partial deuteration (73% D), 
indicating that protonation of the enolization intermediate oc-
coured before the ring-opening of cyclopropenone and not likely 
involved in the turnover-limiting step (Scheme 3, eq. 2). 

Scheme 3  Mechanism studies. 

 

On the base of our mechanism experiments results and previ-
ous related reports,10, 14 proposed mechanistic possibilities of this 
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[3+3] annulation is shown in Scheme 4. Deprotonation of 
β-ketoether 4a by tBuOK generated the enol intermediate A and B, 
the in-situ formed nucleophilic oxygen anion attacks the carbonyl 
group of cyclopropenone 2a gave intermediate C, subsequently 
ring-opening process and intramolecular cyclization reaction de-
livered the anion species D. Finally, the β-O elimination process 
gave the final product 3a and regenerated the base. 

Scheme 4  Proposed Reaction Mechanism. 

Conclusions 

We have developed an unprecedented base catalyzed [3+3] 
annulation of β-ketoethers with cyclopropenones via C(sp3)-O and 
C-C cleavage under mild conditions, giving various 2-pydones with 
broad substrates scope and excellent chemoselectivity. This 
method obviated the need of transition-metal catalysis and pro-
ceeded well with simple operation. The sp3 C-O bonds cleavage in 
keto alkyl alkyl ethers and keto aryl alkyl ethers were realized in 
this annulation reaction. Further efforts will be made to apply the 
present strategy to the conversion of the nature lignin. 

 

Experimental 

General procedure：tBuOK (2.24 mg, 0.02 mmol) in DME (2.0 
mL) were charged into a pressure tube under argon, followed by 
addition of cyclopropenone (0.200 mmol, 1.0 equiv) and ke-
toether (0.200 mmol, 1.0 equiv). The reaction tube was then 
sealed and placed into an oil bath at 30 oC. After reaction for 36 h, 
the reaction mixture was filtered through a pad of celite. The 
mixture was eluted with ethyl acetate, concentrated, and purified 
by silica gel chromatography (PE : EA = 10:1) to give the indicated 
product. 
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