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ABSTRACT: Azonanes were prepared by a palladium-catalyzed (5 + 4) cycloaddition between activated vinylcyclopropanes and 1-
azadienes. During this process, the vinylcyclopropane partner displayed an unusual reactivity and behaved as an all-carbon 1,5-dipole.
A N,N-bidentate ligand was required to inhibit the formation of thermodynamic (3 + 2) cycloadducts.

While a multitude of methods describes the preparation
of 3−7-membered-rings, the synthesis of medium-sized

(8−11) heterocycles1,2 remains a more demanding task
because of the high entropy and enthalpy associated with the
cyclization process.3 Our group is interested in the design of
new cycloaddition strategies for the preparation of these
important structures, and we focused our attention on the
design and reactivity of 1,n-dipoles (n ≥ 4) whose application
for medium-rings synthesis is still limited.4

Transition-metal-catalyzed cycloaddition relying on Tsuji−
Trost chemistry has recently emerged as a valuable approach
toward π-allyl-PdII 1,n-zwitterionic dipoles.5−7 Following the
pioneering work of Zhao, vinylethylene carbonates (and, to a
lesser extent, the corresponding oxiranes) have recently
gathered growing attention as readily available oxa-1,5-dipole
precursors (Scheme 1a).8,9 The relevance of nitrogenated
heterocycles prompted organic chemists to study new aza-
dipoles.10 Tunge and others demonstrated the versatility of
vinyl benzoxazinones in a wide array of Pd-catalyzed (4+n)
cycloadditions (Scheme 1b).11 The negative charge of the
zwitterionic π-allyl-PdII intermediates could also be stabilized
as a soft enolate by electron-withdrawing neighboring groups,
and cycloadditions of all-carbon 1,4-dipoles were pioneered by
Hayashi and Shintani using γ-methylidene-δ-valerolactones as
readily available substrates.12 Recently, the group of Trost
designed two acyclic substrates, precursors of trimethylene-
methane homologues, allowing for the enantioselective
formation of diversely substituted cyclohexanes13 and cyclo-
hexanones14 (Scheme 1c). To the best of our knowledge,
cycloadditions of all-carbon 1,5-dipoles relying on Tsuji−Trost
chemistry have not been disclosed yet.15 Acknowledging that
such zwitterionic intermediates could contribute to the
preparation of new medium-sized cyclic structures, we
envisioned involving VCPs as their precursors.

While these substrates have been well established as 3-
carbon synthons in Pd(0) catalysis,16 we anticipated that steric
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Scheme 1. 1,n-Dipoles (n ≥ 4) in Tsuji−Trost Chemistry
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hindrance at the nucleophilic site of a cycloaddition partner
would promote a faster cyclization step at the C5 carbon.
Herein, we report a kinetically controlled Pd-catalyzed (5 + 4)
cycloaddition of activated vinylcyclopropanes with 1-azadiene-
s8a,b,9a for the synthesis of azonane heterocycles (Scheme 1d).
To conduct this study, we initially involved VCP 1a bearing

two methyl ester groups and benzofuran-derived 1-azadiene 2a
as test substrates. Under the usual conditions (Pd2dba3, dppe,
CH2Cl2, rt), we observed the formation of spiro compound 3a
originating from a (3 + 2) cycloaddition involving the VCP as
a nucleophilic 1,3-dipole and the CC bond of the azadiene
as an electrophilic 1,2-dipole.17 A remarkably different
outcome was observed with VCP 1b bearing two cyano
electron-withdrawing groups. Under the same conditions, a fast
transformation (<1 min) was observed and furnished the
expected 9-membered ring 4a18 as a major product along with
a mixture of diastereomers of the cyclopentane spiro
compound 5a (4a/5a = 75:25). Interestingly, 5a was the
only cycloadduct observed after 4 h (rt), and a careful
monitoring of the 4a/5a ratio by 1H NMR spectroscopy
revealed that (5 + 4) cycloadduct 4a was gradually converted
to (3 + 2) cycloadduct 5a under these reaction conditions
(Scheme 2).

After this encouraging preliminary result, an array of solvents
was tested but did not allow for a more selective formation of
9-membered azonane 4a (Table 1, entries 1−5). Gratifyingly, a
Pd2dba3/N,N-bidentate ligand catalytic system led to the
exclusive formation of the (5 + 4) cycloadduct 4a (4a/5a >
96:4) which was isolated in good yield (74%) using
phenanthroline as ligand (Table 1, entry 7), and in this case,
no conversion of 4a to 5a was observed after 16 h (Table 1,
entry 8). These conditions proved to be suitable for the gram-
scale synthesis (1.10 g, 73%) of 4a (Table 1, entry 9). It is
worth pointing out that VCP 1a bearing two methyl esters was
exclusively converted to the corresponding spiro compound
under these conditions, highlighting the importance of the two
cyano groups.19

Having these optimized conditions in hand, we then
examined the scope of this (5 + 4) cycloaddition by involving
benzofuran-derived azadienes bearing an array of aromatic
substituents at position C4. Electron-rich phenyl groups were
well tolerated, and azonane with p-anisyl (4b), p-tolyl (4c),
3,4-dimethoxyphenyl (4d), and m-methoxyphenyl (4e) groups
were smoothly generated. Steric hindrance on this aromatic
group had little influence on this cycloaddition as azadienes 2f
(82%) and 2g (76%) with an o-tolyl and a 1-naphthyl group,

respectively, were readily converted to the corresponding nine-
membered heterocycles. We continued to question the
importance of the electronic properties of this aromatic moiety
and demonstrated that electron-withdrawing substituents such
as a fluorine (4h) or a trifluoromethyl (4i) group at the para
position could be installed. Substitutions at the meta position
(3-F for 2j and 3-CN for 2k) were also tolerated as the
expected azonanes 4j (90%) and 4k (98%) were generated in
high yields. Halogen atoms are susceptible to alteration of the
course of this reaction as an oxidative insertion of the Pd0

catalyst can occur. We were pleased to observe the efficient
formation of azonanes 4l (2-Cl, 66%) and 4m (5-Br-2-OMe,
76%). Under the same reaction conditions, azadiene 2n (50%)
bearing an electron-rich 2-thiophenyl group was converted to
the expected nine-membered ring.
Finally, the reactivity of benzofuran-derived azadienes with

different sulfonamide groups was examined, and 2-nitro-
sulfonamide 4o (80%) as well as benzenesulfonamide 4p
(64%) were isolated (Scheme 3).
We then focused our attention toward linear 1-azadienes

6a−f derived from various chalcones. These substrates present
an ambitious challenge as the (5 + 4) cycloaddition does not
come with an aromatization step driving the azadiene to act as
a 4-atom synthon rather than a 2-atom synthon. We first
investigated the behavior of N-Ts-azadiene 6a derived from
benzylideneacetophenone and were pleased to observe that the
nine-membered heterocycle remained the major product under
the previously optimized reaction conditions as a 85:15
mixture of the expected (5 + 4) cycloadduct 7a along with
cyclopentane 8a was obtained (74%). The presence of an
electron-rich aryl Ar1, substituted with a methoxy group at the
para position, did not influence the 7b/8b (84:16) isomeric
ratio, but the mixture was isolated in a moderate yield of 47%.
Electron-withdrawing groups on Ar1 restored the reactivity:
azonanes 7c and 7d were isolated as the major products with a
better selectivity of 90:10 and 87:13, respectively. The ease of
preparation of acyclic 1-azadienes bearing different Ar2 aryl
groups allowed us to further review the scope of this
monocyclic azonane synthesis. In this case, electrophilic
partners with electron-deficient p-nitrophenyl and p-trifluor-
omethylphenyl substituents also reacted promptly to generate
7e (7e/8e = 88:12) and 7f (7f/8f = 91:9) with similar
selectivities, showing that electronic properties of these 1-

Scheme 2. Preliminary Studies

Table 1. Optimization of the Reaction Conditionsa

entry ligand solvent 4a/5a yield (%)

1 dppe CH2Cl2 75:25 58b

2 dppe toluene 72:28 42b

3 dppe methanol 65:35 41b

4 dppe Et2O 65:35 62b

5 dppe acetone 63:37 56b

6 bipyridine CH2Cl2 >96:4 64c

7d phenanthroline CH2Cl2 >96:4 74c

8e phenanthroline CH2Cl2 >96:4 71c

9f phenanthroline CH2Cl2 >96:4 73c

aReaction conditions: 1b (0.075 mmol), 2a (0.05 mmol), Pd2dba3
(0.0025 mmol), ligand (0.005 mmol) in solvent (0.5 mL) at room
temperature. bNMR yields cIsolated yields. dReaction time: 5 min.
eReaction time: 16 h. f2a (3.00 mmol), reaction time: 5 min.
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azadienes had little influence on the outcome of the
transformation (Scheme 4).
A mechanistic rationale was proposed for this (5 + 4)

process relying on Tsuji−Trost chemistry (Scheme 5). After in
situ formation of the active 14-electron complex Pd0L2 (L2 =
phen or dppe), its complexation (not shown) with the alkene

moiety of VCP 1b was followed by an oxidative addition to
generate zwitterionic PdII−π-allyl complex A. A Michael
addition into azadiene 2a then generates the key PdII−π-allyl
complex intermediate B. The formation of the observed nine-
membered ring 4a could result from pathway a after addition
of the sulfonamide anion, acting as a bulky soft nucleophile, to
the terminal carbon of the π-allyl moiety. An alternative
pathway b involving the nucleophilic addition of the C3 carbon
onto the substituted carbon of the π-allyl PdII complex would
then lead to the spiro (3 + 2) cycloadduct 5a, observed as the
side product of the transformation when L2 = dppe. In this
case, the complete conversion of 4a to 5a after 4 h (see
Scheme 2) could be explained by the ring-opening of kinetic
product 4a and regeneration of zwitterionic intermediate B
which then cyclizes toward the thermodynamic product 5a
(Scheme 5, eq 1). When L2 = phenanthroline, the complete
selectivity for the 9-membered ring 4a (Scheme 5, eq 2) could
be explained by an inhibition of pathway b but could also result
from a forbidden ring-opening step. We finally established that
the lower selectivity for monocyclic azonane 7a (1 h, 7a/8a =
85:15) did not evolve after an extended reaction time (Scheme
5, eq 3), suggesting that no subsequent ring-opening of 7a
(and by analogy 4a) occurs with an N,N-bidentate ligand. In
the case of VCP 1a bearing two ester groups, the (5 + 4)
cycloadduct has never been detected. This suggests that
pathway b might be operating, but an extremely fast conversion
of the 9-membered ring to the spiro compound could not be
ruled out.
In this study, we reported a Pd-catalyzed (5 + 4)

cycloaddition between an activated vinylcyclopropane and 1-
azadienes as the electrophilic partner to furnish azonanes, nine-
membered N-heterocycles. During this process, the VCP acts
as a 5-atom synthon, and a N,N-ligand was necessary to
achieve a complete selectivity and avoid the formation of the
undesired thermodynamic product originating from a compet-

Scheme 3. Formation of Benzofuran-Fused Azonanesa

aReaction conditions: 1b (1.5 equiv), 2 (1 equiv), Pd2dba3 (5 mol %),
ligand (10 mol %) in solvent (2 mL) at room temperature.

Scheme 4. (5 + 4) Cycloadditions of Linear 1-Azadienesa

aReaction conditions: 1b (0.3 mmol), 2 (0.2 mmol), Pd2dba3 (0.01
mmol), ligand (0.02 mmol) in solvent (2 mL) at room temperature.

Scheme 5. Control Experiments and Proposed Mechanism
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ing (3 + 2) process. Mechanistic investigations are underway
to better understand the selectivity of this transformation with
the aim of involving VCPs in other (5+n) cycloadditions.
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