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ABSTRACT. Enantiomer of nabscessin A (1), an aminocyclitol amide with antimicrobial 

activity, was synthesized from myo-inositol and dimethyl D-camphor acetal in 14 steps. 

Formal synthesis of natural nabscessin A was also achieved through the new approach to 

access both enantiomers of 4,5-di-O-benzyl-myo-inositol, derived from the same set of 

starting materials.  This synthesis features utilizations of the existing framework of myo-

inositol and a regioselective esterification.

Introduction

Nabscessins A-C are a family of aminocyclitol amides recently isolated from metabolites of a 

pathogenic actinomycete, Nocardia abscessus IFM 10029T (Figure 1).1-2 Preliminary study on 
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2

nabscessins A and B showed that they possess antimicrobial activity against Cryptococcus 

neoformans.1 These compounds are structural isomers and only differ in the linkage of the 2-

hydroxy-6-methylbenzoyl group to the aminocyclitol, 2-deoxy-scyllo-inosamine (DOIA), which 

is also present in a group of aminoglycoside antibiotics, inosamycins.3-4 DOIA is also the 

biosynthetic precursor to 2-deoxystreptamine (DOS),5-6 the aglycon of related and clinically 

important antibiotics, including gentamicin, kanamycin and neomycin, etc.7-13

O NH

OR3
OR2R1O

OOH2N

Nabscessin A (1), R1 =
Nabscessin B, R2 =
Nabscessin C, R3 =

OH

R NH2

OH
OHHO

2-deoxy-scyllo-inosamine (DOIA), R = OH
2-deoxystreptamine (DOS), R = NH2

OH

H3C

O , R2 = R3 = H
, R1 = R3 = H
, R1 = R2 = H

Figure 1. Structures of nabscessins A-C and aminocyclitols.

Thus, synthesis and functional group transformations of 2-deoxy-scyllo-inosamine are essential 

to prepare nabscessins. In this regard, the six-membered carbocycle of DOIA and its derivatives 

were either adopted from natural materials14-19 or constructed by chemical methods,20-21 such as 

ring-closing metathesis (RCM).22-23 For example, Banwell’s group reported synthesis of 

nabscessin B, in which the key carbocycle, 1,2-diacetal--hydroxy-cyclohexenone, was derived 

from  L-tartaric acid in six steps and 14 more steps were required to achieve nabscessin B.23 

Here, we report our approach to access nabscessin A via inexpensive, natural D-camphor and 
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3

myo-inositol (2), the most abundant cyclitol occurring in nature.24-26 In addition to saving effort 

to form the carbocycle by using 2, this pair of starting materials also makes it possible to prepare 

both enantiomers of nabscessin A.

Results and discussion

Desymmetrization of meso myo-inositol was achieved with dimethyl D-camphor acetal (3) to 

give 1,2-camphor acetal 4 according to the procedures reported by Bruzik’s and Konradsson’s 

groups (Scheme 1).27-28 The obtained compound 4, collected from recrystallization, was 

diastereomerically pure  (see 1H and 13C NMR in Supporting Information) and applied in the 

following synthesis. We were glad to find that the reaction of compound 4, dibutyltin oxide and 

benzyl/4-methoxybenzyl bromides provided di-benzylated compounds 5a/5b. The 

regiochemistry of the dibenzylation reactions was established by hydrolyzing the 1,2-camphor 

acetal of 5a to yield the known L-3,6-Di-O-benzyl-myo-inositol (6).29 The regioselectivity 

observed here is the same as that noticed in the corresponding reaction of 1,2-acetonide protected  

myo-inositol.30 Further benzylations of 5b and acid hydrolysis to remove the camphor acetal and 

PMB groups afforded (+)-4,5-di-O-benzyl-myo-inositol 8, which was prepared  asymmetrically 

for the first time.31 On the other hand, the enantiomer (-)-8 was also synthesized from 4 through 

the following sequence: protection of the two hydroxyl groups at C-3 and C-4 to form the known 

silyl ether 9,28 dibenzylations under a phase-transfer condition32 and following hydrolysis 

(Scheme 2). The phase-transfer condition and low temperature (-10 °C) were required to keep 

the silyl-protecting group intact during the dibenzylations.
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Scheme 1. Synthesis of (+)-4,5-di-O-benzyl-myo-inositol (8).
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Scheme 2. Synthesis of (-)-4,5-di-O-benzyl-myo-inositol (8).

Compound (+)-8 was chosen to continue the synthesis because its preparation is more efficient 

and convenient than that of (-)-8. The vicinal, trans-diol of (+)-8 was protected by butanedione 

to yield diacetal 10.33 The stereoselective deoxygenation of myo-inositol monotosylates, 

developed by Yu and Spencer,34 was applied to convert 10 to tosylate 11 and the following 

reduction with lithium triethylborohydride to yield deoxy-inositol 12. The axial hydroxyl group 
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5

was transformed to a triflate and replaced with an azido group to form 13 in 70% yield over the 

two steps. Palladium catalyzed hydrogenation and hydrogenolysis of azide 13 generated amino-

diol 14, which was coupled with 3-(methoxymethoxy)benzoic acid to form amide 15, assisted by 

N,N,N’,N’-tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU) and N,N-

diisopropylethylamine (DIPEA). The selective esterification between 15 and 6-methylsalicyclic 

acid by various carbodiimides was critical (Table 1).35-37 Mixtures of monoesters 16a, 16b and 

diester 17 were produced by DCC and DIC (entries 1 and 2, Table 1). To identify regioisomers 

16a and 16b, the two compounds were separated by column chromatography and analyzed by 

NMR. The proton of the O-methine (CH-OR2) was resolved according to its adjacent couplings 

to the methylene group, but no coupling with the amide proton, in their respective 1H-1H COSY 

spectrum (Supporting Information).  The compound with a more downfielded CH-OR2 ( 5.23 

versus 3.63) was assigned as 16b for its attachment to the acyl group. We found that the N-(3-

(dimethylamino)propyl)-N’-ethylcarbodiimide (EDC) or its hydrochloride salt provided the 

product free of 16b, and 68% yield of 16a was harvested when the reaction was conducted at 10 

°C for 48 h (entry 3–5, Table 1). All the screened carbodiimides providing 16a as the major 

product indicated that the hydroxyl group neighboring to the diacetals of 15 is more reactive in 

the esterification. This may be attributed to the hydrogen-bonding interaction between diacetals 

and carbodiimide-activated 6-methylsalicylic acid. The dimethylamino group of EDC, which 

should be protonated during the reaction, increased the interaction to give a better selectivity. 

This conjecture is supported by the result that the regioselectivity imposed by EDC diminished 

when a base, DBU, was added to trap protons (entry 6). A carbamate group was then installed by 

the addition of 2,2,2-trichloroacetyl isocyanate to 16a and treatment of potassium carbonate in 
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6

methanol to yield 18.38 Removal of the diacetals and methoxymethyl group with aqueous 

trifluoroacetic acid (TFA) gave ent-nabscessin A (ent-1) in 61% yield.

The NMR and mass spectroscopic data of ent-1 were consistent with the reported natural 

nabscessin A, and the specific rotation of synthetic ent-1 was opposite to that of reported, natural 

nabscessin A, [α]D +10.7 (c 0.13, MeOH) and −10.8 (c 1.0, MeOH), respectively.1 With our 

access to both enantiomerically pure building blocks (+)-8 and (-)-8 (Scheme 1 and 2), the 

procedure shown in Scheme 3 is also applicable to prepare natural nabscessin A. Therefore, 

nabscessin A was synthesized for the first time in 14 steps.
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Scheme 3. Synthesis of ent-nabscessin A.

Table 1. Regioselective esterification of 15.a

coupling reagent yield of esters (%)bentry

16a 16b 17

1 DCC 50 33 6

2 DIC 49 30 8

3 EDC 51 - 12

4 EDC · HCl 58 - 12

5c EDC 68 - 9

6d EDC 33 16 31

aReaction condition: 15 (1.0 equiv), 6-methylsalicyclic acid (1.2 equiv) 
and coupling reagent (1.5 equiv) in CH2Cl2, rt, 16 h. bIsolated yields. c10 
°C, 48 h. dAdding DBU (3.0 equiv).
DCC = N,N’-dicyclohexyl-carbodiimide, DIC = N,N’-diisopropyl-
carbodiimide, EDC = N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide, 
DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

In summary, we report an asymmetric synthesis of nabscessin A, where we utilized the 

carbocycle of myo-inositol, natural camphor to achieve desymmetrization and prepare both 
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8

enantiomers of key intermediate 8, and a regioselective esterification. The chemistry of inositol 

accumulated by previous researchers was also essential in utilizing the oxygenated carbocycle. 

This approach should be applicable to prepare other aminocyclitol-related natural products.

Experimental Section

General information: Dichloromethane and toluene were dried over calcium hydride and 

distilled prior to use. Tetrahydrofuran and diethyl ether were dried over sodium, monitored with 

benzophenone ketyl radicals and distilled prior to use. DMF was dried over molecular sieves (3 

Å). TLC was conducted using pre-coated silica gel 60 F254 plates containing a fluorescent 

indicator; purification by chromatography was conducted using silica gel (230–400 mesh). 

Chemical shifts for 1H-NMR and 13C{1H} NMR spectra are reported in δ units (parts per 

million) with reference to residual solvent peaks. All spectra were obtained at 25 °C. The 

multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, dd = doublet of doublets, td = triplet of doublets. High-resolution mass spectrometry 

(HRMS) data were recorded on a JMS-700 quadrupole mass spectrometer. D-camphor myo-

inositol acetal (4) was prepared according to the literature procedure.27

 (1'R,2R,3aR,4S,4'R,5R,6R,7S,7aS)-4,7-Bis(benzyloxy)-1',7',7'-

trimethylhexahydrospiro[benzo[d][1,3]dioxole-2,2'-bicyclo[2.2.1]heptane]-5,6-diol (5a). A 

reaction flask containing compound 4 (408.2 mg, 1.30 mmol), dibutyltin oxide (808.1 mg, 3.25 

mmol), methanol (2.5 mL) and toluene (2.6 mL) was heated to reflux for 3 h in an oil bath (130 

°C). The reaction mixture was concentrated, added with toluene (10 mL) and concentrated under 

a vacuum for 1 h to remove the solvents. The residue was diluted with toluene (5.1 mL), added 

with benzyl bromide (340 μL, 488.6 mg, 2.86 mmol) and tetrabutylammonium iodide (527.6 mg, 

1.43 mmol), and heated to reflux for another 16 h in an oil bath (130 °C). The solvent was 

removed under a vacuum, and the crude product was purified with column chromatography 

(SiO2, EtOAc/hexanes, 1:1, Rf 0.38) to give 5a as a light-yellow liquid (618.3 mg, 1.25 mmol, 
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9

96%). 1H NMR (500 MHz, CDCl3) δ 7.38‒7.25 (m, 10H), 4.95 (d, J = 11.5 Hz, 1H), 4.73‒4.64 

(m, 3H), 4.31 (t, J = 5.0 Hz, 1H ), 3.96 (t, J = 6.0 Hz, 1H ), 3.85 (t, J = 9.5 Hz, 1H ), 3.56 (dd, J 

= 9.5 Hz, J = 4.5 Hz, 1H ), 3.47‒3.37 (m, 2H), 2.81 (br, 1H), 2.76 (br, 1H), 1.96‒1.91 (m, 1H), 

1.89‒1.85 (m, 1H), 1.74‒1.69 (m, 2H), 1.46 (d, J = 13.0 Hz, 1H), 1.41‒1.35 (m, 1H), 1.25‒1.20 

(m, 1H), 1.04 (s, 3H), 0.86 (s, 3H), 0.79 (s, 3H); 13C{1H} NMR (CDCl3, 126 MHz) δ 138.3, 

137.9, 128.53, 128.46, 128.1, 128.0, 127.9, 127.8, 118.1, 83.1, 77.5, 73.4, 73.2, 72.8, 71.7, 71.2, 

51.6, 48.1, 45.3, 45.2, 29.7, 27.1, 20.5, 10.0; [α]D
20 -18.3 (c 1.1, CHCl3); HRMS-ESI m/z calcd 

for [M+H]+ (C30H39O6) 495.2741, found 495.2722.

(1'R,2R,3aR,4S,4'R,5R,6R,7S,7aS)-4,7-Bis((4-methoxybenzyl)oxy)-1',7',7'-

trimethylhexahydrospiro[benzo[d][1,3]dioxole-2,2'-bicyclo[2.2.1]heptane]-5,6-diol (5b). A 

reaction flask containing compound 4 (1.20 g, 3.82 mmol), dibutyltin oxide (2.38 g, 9.54 mmol), 

methanol (7.5 mL) and toluene (7.5 mL) was heated to reflux for 3 h in an oil bath (130 °C). The 

reaction mixture was concentrated, diluted with toluene (15 mL) and concentrated under a 

vacuum for 1 h to remove the solvents. The residue was diluted with toluene (15 mL), added 

with 4-methoxybenzyl bromide (1.69 g, 8.40 mmol) and tetrabutylammonium iodide (1.55 g, 

4.21 mmol), and heated to reflux for another 16 h in an oil bath (130 °C). The solvent was 

removed under a vacuum, and the crude product was purified with column chromatography 

(SiO2, EtOAc/hexanes, 1:1, Rf 0.33) to give 5b as a light-yellow liquid (1.46 g, 2.64 mmol, 

69%). 1H NMR (500 MHz, CDCl3) δ 7.28‒7.26 (m, 4H); 6.86 (d, J = 8.5 Hz, 4H), 4.87 (d, J = 

11.5 Hz, 1H), 4.65 (d, J = 11.5 Hz, 1H), 4.55 (d, J = 11.0 Hz, 1H), 4.57 (d, J = 11.0 Hz, 1H), 

4.30 (t, J = 5.0 Hz, 1H), 3.93 (t, J = 6.5 Hz, 1H), 3.81 (t, J = 9.5 Hz, 1H), 3.78 (s, 3H), 3.77 (s, 

3H), 3.53 (dd, J = 9.5 Hz, J = 5.0 Hz, 1H), 3.42 (dd, J = 9.5 Hz, J = 6.5 Hz, 1H), 3.36 (t, J = 10.0 

Hz, 1H), 2.74 (br, 1H), 2.68 (br, 1H), 1.96‒1.92 (m, 1H), 1.89‒1.85 (m, 1H), 1.74‒1.72 (m, 2H), 

1.47 (d, J = 13.0 Hz, 1H), 1.41‒1.36 (m, 1H), 1.25‒1.20 (m, 1H), 1.04 (s, 3H), 0.85 (s, 3H), 0.80 

(s, 3H); 13C{1H} NMR (CDCl3, 126 MHz) δ 159.5, 159.3, 130.5, 129.9, 129.7, 129.5, 118.0, 

114.0, 113.9, 82.9, 77.1, 76.4, 73.3, 72.9, 72.8, 71.22, 71.18, 55.3, 51.6, 48.1, 45.3, 45.2, 29.7, 

27.1, 20.5, 20.4, 10.1; [α]D
20 -9.1 (c 1.79, CHCl3); HRMS-ESI m/z calcd for [M+H]+ (C32H43O8) 

555.2952, found 555.2928.

L-3,6-Di-O-benzyl-myo-inositol (6). A reaction mixture of compound 5a (500.0 mg, 1.0 

mmol), acetic acid (28 mL) and water (7 mL) was heated in an oil bath (100 °C) for 2 h and 
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10

concentrated. The crude product was recrystallized in ethyl acetate to give 6 as a colorless solid 

(300.1 mg, 0.83 mmol, 83%). Mp 172.0‒174.5 °C; [α]D
20 -5.5 (c 0.45, DMSO); 1H NMR (500 

MHz , (CD3)2SO) δ 7.46‒7.10 (m, 10H), 4.84 (d, J = 4.9 Hz, 1H), 4.81‒4.73 (m, 5H), 4.66‒4.63 

(m, 2H), 4.56 (d, J = 12.0 Hz, 1H), 3.97 (br, 1H), 3.63‒3.58 (m, 1H), 3.44 (t, J = 9.0 Hz, 1H), 

3.31‒3.28 (m, 1H), 3.16‒3.10 (m, 2H); 13C{1H} NMR (126 MHz, (CD3)2SO) δ 139.9, 139.3, 

127.9, 127.8, 127.6, 127.5, 127.4, 127.0, 126.9, 81.8, 79.7, 75.0, 73.5, 72.2, 71.4, 70.7, 69.7. The 

spectroscopic data were consistent with the reported values.29

(1'R,2R,3aR,4S,4'R,5R,6R,7S,7aS)-5,6-Bis(benzyloxy)-4,7-bis((4-methoxybenzyl)oxy)-

1',7',7'-trimethylhexahydrospiro[benzo[d][1,3]dioxole-2,2'-bicyclo[2.2.1]heptane] (7). 

Sodium hydride (60 % dispersion in mineral oil, 807.7 mg, 20.2 mmol) was added to a solution 

of 5b (1.40 g, 2.52 mmol), tetrabutylammonium iodide (93.2 mg, 0.25 mmol) and N,N-

dimethylformamide (DMF, 25.2 mL) at 0 °C. The reaction mixture was stirred for 15 min, added 

with benzyl bromide (901 μL, 1.30 g, 7.57 mmol) at 0 °C, stirred for another 16 h at rt, quenched 

with water (20 mL) at 0 °C and extracted with ethyl acetate (40 mL, 20 mL × 2). The combined 

organic layers were washed with saturated NaCl(aq) (20 mL × 3), dried over sodium sulfate, 

filtered and concentrated. The crude product was purified with column chromatography (SiO2, 

EtOAc/hexanes, 1:5, Rf 0.39) to give 6 as a light-yellow liquid (1.80 g, 2.45 mmol, 96%). 1H 

NMR (500 MHz , CDCl3) δ 7.30‒7.27 (m, 14H), 6.85 (ddd, J = 6.5 Hz, J = 6.5 Hz, J = 2.5 Hz, 

4H), 4.84‒4.61 (m, 8H), 4.28 (dd, J = 6.5 Hz, J = 4.5 Hz, 1H), 3.94 (t, J = 6.5 Hz, 1H), 3.80 (s, 

3H), 3.79 (s, 3H), 3.74 (dd, J = 9.5 Hz, J = 4.5 Hz, 1H), 3.70 (dd, 9.5 Hz, J = 6.5 Hz, 1H), 1.49 

(d, J = 15.0 Hz, 1H), 1.42‒1.36 (m, 1H), 1.25 (m, 1H), 1.09 (s, 3H), 0.88 (s, 3H), 0.86 (s, 3H); 
13C{1H} NMR (126 MHz, CDCl3) δ 159.2, 138.8, 131.0, 130.6, 129.6, 129.4, 128.0, 127.5, 

117.6, 113.8, 113.8, 83.0, 82.1, 80.8, 76.3, 75.2, 75.0, 73.7, 72.0, 55.3, 51.6, 48.0, 45.2, 45.0, 

29.8, 27.1, 20.7, 20.4, 10.2; [α]D
20 +2.7 (c 0.87, CHCl3); HRMS-ESI m/z calcd for [M+H]+ 

(C46H55O8) 735.3891, found 735.3868.

(1R,2R,3S,4R,5S,6S)-5,6-Bis(benzyloxy)cyclohexane-1,2,3,4-tetraol (+)-8. A reaction 

mixture of compound 7 (862.0 mg, 1.17 mmol), acetic acid (36 mL) and water (4 mL) was 

heated in an oil bath (100 °C) for 2 h and concentrated. The residue was added with methanol (2 

mL), stirred and concentrated to remove the solvents. The light yellow, viscous liquid was 

further washed with diethyl ether (15 mL × 3), and the residue was concentrated to dryness to 
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give (+)-8 as a colorless solid (305.5 mg, 0.85 mmol, 72%). Mp 154.5‒156.0 °C; 1H NMR (500 

MHz, (CD3)2SO) δ 7.33‒7.21 (m, 10H), 4.85‒4.79 (m, 2H), 4.72‒4.66 (m, 2H), 4.54 (d, J = 5.5 

Hz, 1H), 3.72 (d, J = 2.5 Hz, 1H), 3.61 (ddd, J = 9.5 Hz, J = 9.5 Hz, J = 5.5 Hz, 1H), 3.56 (t, J = 

9.5 Hz, 1H), 3.23‒3.21 (m, 1H), 3.18 (t, J = 9.5 Hz, 1H); 13C{1H} NMR (126 MHz, (CD3)2SO) δ 

140.0, 140.0, 128.4, 128.4, 127.9, 127.9, 127.8, 127.8, 127.5, 127.5, 84.1, 82.2, 74.5, 73.5, 73.4, 

72.3, 72.2; [α]D
20 +34.3 (c 0.25, DMSO); HRMS-ESI m/z calcd for [M+H]+ (C20H25O6) 

361.1646, found 361.1649.

(1R,2R,4R,6'S,7'S,7a'R,10a'R,10b'R)-2',2',4',4'-Tetraisopropyl-1,7,7-

trimethylhexahydrospiro[bicyclo[2.2.1]heptane-2,9'-[1,3]dioxolo[4',5':3,4]benzo[1,2-

f][1,3,5,2,4]trioxadisilepine]-6',7'-diol (9). 1,3-Dichloro-1,1,3,3-tetraisopropyldisoxane (296.5 

μL, 292.2 mg, 0.99 mmol) was added to a solution of 4 (242.7 mg, 0.77 mmol) and pyridine (4.9 

mL) at ‒30 ℃. The reaction mixture was slowly warmed up to rt, stirred for another 16 h at rt, 

diluted with ethyl acetate (15 mL) and washed with water (15 mL × 3). The organic layer was 

washed with saturated NaCl(aq) (15 mL), dried over sodium sulfate, filtered and concentrated. 

The crude product was purified with column chromatography (SiO2, EtOAc/hexanes, 1:3, Rf 

0.36) to give 9 as a colorless liquid (394.1 mg, 0.71 mmol, 92%). 1H NMR (500 MHz, CDCl3) δ 

4.20 (t, J = 5.0 Hz, 1H), 3.91 (dd, J = 9.0 Hz, J = 4.5 Hz, 1H), 3.82 (t, J = 7.0 Hz, 1H), 3.78 (t, J 

= 9.5 Hz, 1H), 3.57 (dd, J = 10.5 Hz, J = 7.0 Hz, 1H), 3.25 (t, J = 9.5 Hz, 1H), 2.64 (br, 2H), 

1.93‒2.01 (m, 2H), 1.66‒1.69 (m, 2H), 1.47 (d, J = 12.5 Hz, 1H), 1.34‒1.39 (m, 1H), 1.18‒1.23 

(m, 1H), 0.96‒1.08 (m, 31H), 0.83 (s, 3H), 0.80 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 

117.6, 76.6, 75.8, 75.7, 75.5, 73.6, 73.4, 51.4, 48.0, 45.4, 45.2,  29.4, 27.1, 20.5, 20.2, 17.6, 

17.37, 17.31, 17.3, 17.2, 17.1, 17.0, 13.0, 12.7, 12.2; [α]D
20 +9.0 (c 1.05, CHCl3); HRMS-ESI 

m/z calcd for [M+H]+ (C28H53O7Si2) 557.3324, found 557.3309. 

(1S,2R,3S,4S,5R,6R)-5,6-Bis(benzyloxy)cyclohexane-1,2,3,4-tetraol (-)-8. A mixture of 

tetrabutylammonium iodide (37.9 mg, 0.103 mmol), benzyl bromide (352 μL, 506.8 mg, 2.96 

mmol) and sodium hydroxide (0.55 mL, w/w 50% in water) was cooled to -10 ℃ and added with 

a solution of 9 (44.0 mg, 0.079 mmol) in toluene (0.55 mL). The reaction mixture was stirred at -

10 ℃ for 16 h, diluted with diethyl ether (5 mL) and washed with water (1 mL × 4). The organic 

layer was washed with saturated NaCl(aq) (2 mL), dried over sodium sulfate, filtered and 

concentrated to give the benzylated intermediate (123.4 mg). The intermediate was redissolved 
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in methanol (0.5 mL) and added with hydrofluoric acid (40% wt in H2O, 73 μL, 33.5 mg, 1.67 

mmol). The reaction mixture was stirred at rt for 3 h and concentrated. The crude product was 

purified with column chromatography (SiO2, EtOAc, Rf 0.31) to give (-)-8 as a colorless solid 

(18.2 mg, 0.051 mmol, 64%).1H NMR (500 MHz, (CD3)2SO) δ 7.33‒7.22 (m, 10H), 4.86‒4.77 

(m, 2H), 4.70‒4.65 (m, 2H), 4.51 (d, J = 9.5 Hz, 1H), 3.73‒3.72 (m, 1H), 3.65‒3.59 (m, 1H), 

3.52‒3.51 (m, 1H), 3.42 (br, 4H), 3.23-3.13 (m, 2H); [α]D
20 -34.6 (c 0.23, DMSO); HRMS-ESI 

m/z calcd for [M+H]+ (C20H25O6) 361.1646, found 361.1639.

(2R,3R,4aS,5S,6R,7S,8R,8aS)-7,8-Bis(benzyloxy)-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1,4]dioxine-5,6-diol (10). A reaction mixture of (+)-8 (582.0 mg, 

1.61 mmol), 2,3-butanedione (157 μL, 154.4 mg, 1.78 mmol), trimethyl orthoformate (751 μL, 

728.3 mg, 1.58 mol), camphorsulfonic acid (18.7 mg, 0.08 mmol) and methanol (7.5 mL) was 

heated in an oil bath (90 ℃) for 16 h, quenched with triethylamine (43 μL) and concentrated. The 

crude product was purified with column chromatography (SiO2, EtOAc/hexanes, 1:1, Rf 0.50) to 

give 10 as a light-yellow liquid (397.3 mg, 0.84 mmol, 52%). 1H NMR (500 MHz , CDCl3) δ 

7.36‒7.26 (m, 10H), 4.99 (d, J = 11.0 Hz, 1H), 4.94 (d, J = 11.0 Hz, 1H), 4.76 (d, J = 11.0 Hz, 

1H), 4.69 (d, J = 11.0 Hz, 1H), 4.15 (t, J = 11.0 Hz, 1H), 4.09 (s, 1H), 3.76 (t, J = 9.3 Hz, 1H), 

3.59‒3.52 (m, 3H), 3.28 (s, 3H), 3.25 (s, 3H), 2.59 (br, 1H), 2.51 (br, 1H), 1.33 (s, 3H), 1.32 (s, 

3H); 13C{1H} NMR (126 MHz, CDCl3) δ 138.8, 138.6, 128.6, 128.3, 128.0, 127.9, 127.8, 127.6, 

100.0, 99.2, 81.9, 81.0, 75.8, 75.5, 72.1, 69.9, 69.7, 68.3, 48.1, 47.9, 17.9, 17.6; [α]D
20 -17.5 (c 

0.36, CHCl3); HRMS-ESI m/z calcd for [M+H]+ (C26H35O8) 475.2326, found 475.2373.

(2R,3R,4aS,5R,6R,7R,8R,8aS)-7,8-Bis(benzyloxy)-5-hydroxy-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1,4]dioxin-6-yl 4-methylbenzenesulfonate (11). A reaction 

mixture of 10 (338.5 mg, 0.71 mmol), dibutyltin oxide (353.5 mg, 1.42 mmol), 

benzyltriethylammonium chloride (193.6 mg, 0.85 mmol), 4-toluenesulfonyl chloride (162.1 mg, 

0.85 mmol) and acetonitrile (21.6 mL) was heated to reflux for 16 h in an oil bath (90 °C) and 

concentrated. The crude product was purified with column chromatography (SiO2, 

EtOAc/hexanes, 1:3, Rf 0.48) to give 11 as a white solid (415.1 mg, 0.66 mmol, 93%). Mp 

189.5‒193.0 ℃; 1H NMR (500 MHz , CDCl3) δ 7.74 (d, J = 8.0 Hz, 2H), 7.25‒7.23 (m, 8H), 

7.11 (d, J = 8.0 Hz, 2H), 7.07‒7.05 (m, 2H), 4.89 (d, J = 11.0 Hz, 1H), 4.67 (d, J = 11.0 Hz, 2H), 

4.51‒4.47 (m, 2H), 4.35 (d, J = 2.5 Hz, 1H), 4.13 (t, J = 9.5 Hz, 1H), 3.92 (t, J = 9.5 Hz, 1H), 
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3.56 (dd, J = 11.0 Hz, J = 2.5 Hz, 1H), 3.52 (t, J = 9.5 Hz, 1H), 3.26 (s, 6H), 2.53 (br, 1H), 2.33 

(s, 3H), 1.32 (s, 3H), 1.32 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 144.8, 138.5, 138.2, 

133.7, 129.7, 129.7, 128.3, 128.2, 128.1, 127.8, 127.6, 127.5, 127.4, 100.0, 99.2, 81.5, 80.7, 80.0, 

75.7, 69.6, 68.7, 67.5, 48.3, 47.9, 21.6, 17.8, 17.6; [α]D
20 -3.9 (c 0.34, CHCl3); HRMS-ESI m/z 

calcd for [M+H]+ (C33H41O10S) 629.2415, found 629.2359.

(2R,3R,4aS,5S,7S,8R,8aS)-7,8-Bis(benzyloxy)-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1,4]dioxin-5-ol (12). Lithium triethylborohydride (1 M in THF, 

3.1 mL, 3.1 mmol) was added to a solution of 11 (195.4 mg, 0.31 mmol) and THF (1.2 mL) at 0 

°C. The reaction mixture was heated to reflux for 24 h in an oil bath (85 °C), quenched with 

water (2 mL) at 0 °C, concentrated to remove THF and extracted with ethyl acetate (5 mL × 3). 

The combined organic layers were washed with saturated NaCl(aq) (5 mL), dried with sodium 

sulfate, filtered and concentrated. The crude product was purified with column chromatography 

(SiO2, EtOAc/hexanes, 1:1, Rf 0.32) to give 12 as a colorless liquid (109.5 mg, 0.24 mmol, 77%). 
1H NMR (500 MHz, CDCl3) δ 7.39‒7.24 (m, 10H), 4.95 (d, J = 11.0 Hz, 1H), 4.81 (d, J = 11.0 

Hz, 1H), 4.72 (d, J = 11.5 Hz, 1H), 4.63 (d, J = 11.5 Hz, 1H), 4.06 (t, J = 10.0 Hz, 1H), 4.00 (dd, 

J = 5.0 Hz, J = 3.0 Hz, 1H), 3.88 (ddd, J = 11.5 Hz, J = 9.5 Hz, J = 5.0 Hz, 1H), 3.59 (dd, J = 

10.0 Hz, J = 2.5 Hz, 1H), 3.55 (t, J = 9.5 Hz, 1H), 3.27 (s, 3H), 3.25 (s, 3H), 2.32 (ddd, J = 14.0 

Hz, J = 5.0 Hz, J = 2.5 Hz, 1H), 1.47 (ddd, J = 15.0 Hz, J = 11.5 Hz, J = 2.5 Hz, 1H), 1.34 (s, 

3H), 1.31 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 139.3, 138.9, 128.3, 128.2, 127.9, 127.8, 

127.5, 127.4, 99.9, 99.9, 99.2, 83.1, 75.4, 73.4, 71.1, 69.5, 66.9, 48.0, 47.8, 33.6, 17.9, 17.6;  

[α]D
20 -5.6 (c 0.69, CHCl3); HRMS-ESI m/z calcd for [M+H]+ (C26H35O7) 459.2377, found 

459.2340.

(2R,3R,4aR,5R,6S,8R,8aS)-8-Azido-5,6-bis(benzyloxy)-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1,4]dioxine (13). Trifluoromethanesulfonic anhydride (41 μL, 69.0 

mg, 0.25 mmol) was added to a solution of 12 (74.8 mg, 0.16 mmol), pyridine (105 μL, 103.2 

mg, 1.31 mmol) and dichloromethane (4.9 mL) at 0 °C. The reaction mixture was stirred at 0 ℃ 

for 3 h, concentrated, added with anhydrous DMF (6.2 mL) and sodium azide (160.0 mg, 1.63 

mmol), stirred at rt for another 2 h, quenched with water (10 mL) and extracted with ethyl 

acetate (20 mL, 10 mL × 2). The combined organic layers were washed with saturated NaCl(aq) 

(10 mL), dried with sodium sulfate, filtered and concentrated. The crude product was purified 
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with column chromatography (SiO2, EtOAc/hexanes, 1:5, Rf 0.66) to give 13 as a colorless liquid 

(54.2 mg, 0.11 mmol, 70%). 1H NMR (500 MHz , CDCl3) δ 7.36‒7.25 (m, 10H), 4.91 (d, J = 

11.0 Hz, 1H), 4.78 (d, J = 11.0 Hz, 1H), 4.67 (d, J = 11.0 Hz, 1H), 4.61 (d, J = 11.0 Hz, 1H), 

3.64‒3.59 (m, 2H), 3.53 (t, J = 9.1 Hz, 1H), 3.46‒3.42 (m, 2H), 3.34 (s, 3H), 3.28 (s, 3H), 2.21 

(ddd, J = 9.0 Hz, J = 9.0 Hz, J = 4.5 Hz, 1H), 1.39 (t, J = 11.5 Hz, 1H), 1.35 (s, 3H), 1.33 (s, 

3H); 13C{1H} NMR (126 MHz, CDCl3) δ 138.9, 138.3, 128.4, 128.3, 128.0, 127.7, 127.6, 99.7, 

99.4, 82.1, 77.5, 75.6, 73.2, 72.8, 71.7, 56.7, 48.1, 48.0, 33.3, 33.3, 17.7, 17.6; [α]D
20 -1.3 (c 0.55, 

CHCl3); HRMS-ESI m/z calcd for [M+Na]+ (C26H33N3O6Na) 506.2262, found 506.2230.

(2R,3R,4aS,5R,7S,8R,8aS)-7,8-Dihydroxy-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1,4]dioxin-5-aminium (14). A reaction suspension of 13 (40.1 

mg, 0.083 mmol), palladium on carbon (10% wt, 26.5 mg, 0.025 mmol), methanol (5.5 mL) and 

HCl(aq) (1N, 170 μL, 0.166 mmol) was stirred at rt for 8 h under an atmosphere of hydrogen (1 

atm) and filtered through a pad of celite. The filtrate was concentrated to give compound 14 

(21.9 mg, 0.070 mmol, 84%) as a colorless of solid. Mp >220 ℃ (decomposed); 1H NMR (500 

MHz , CD3OD) δ 3.81 (dd, J = 10.5 Hz, J = 6.0 Hz, 1H), 3.52‒3.50 (m, 1H), 3.45 (d, J = 5.5 Hz, 

2H), 3.36 (s, 3H), 3.31 (s, 3H), 3.28 (br, 1H), 2.81‒2.76 (m, 1H), 2.12 (ddd, J = 8.5 Hz, J = 8.5 

Hz, J = 4.0 Hz, 1H), 1.34 (s, 3H), 1.33 (s, 3H); 13C{1H} NMR (126 MHz, CD3OD) δ 99.2, 99.1, 

98.2, 74.7, 73.6, 72.4, 71.3, 70.3, 65.5, 37.4, 16.6, 16.6; HRMS-ESI m/z calcd for [M]+ 

(C12H24NO6) 278.1598, found 278.1592.

N-((2R,3R,4aS,5R,7S,8R,8aS)-7,8-Dihydroxy-2,3-dimethoxy-2,3-

dimethyloctahydrobenzo[b][1, 4]dioxin-5-yl)-3-(methoxymethoxy)benzamide (15). A 

solution of 14 (40.1 mg, 0.081 mmol), N,N-diisopropylethylamine (DIPEA, 18.4 μL, 13.6 mg, 

0.106 mmol) in THF (2.2 mL) was added to the mixture of 3-(methoxymethoxy)benzoic acid 

(19.2 mg, 0.106 mmol), DIPEA (18.4 μL, 13.6 mg, 0.106 mmol), HBTU (43.1 mg, 0.114 mmol) 

and THF (2.2 mL) at rt. The reaction mixture was stirred at rt for 16 h, concentrated, added with 

water (15 mL) and extracted with ethyl acetate (10 mL × 3). The combined organic layers were 

washed with saturated NaCl(aq) (10 mL), dried over sodium sulfate, filtered and concentrated. The 

crude product was purified with column chromatography (SiO2, EtOAc, Rf 0.35) to give 15 as a 

colorless liquid (27.6 mg, 0.063 mmol, 77%). 1H NMR (500 MHz, CDCl3) δ 7.39 (s, 1H), 7.31 

(t, J = 6.5 Hz, 1H), 7.25‒7.20 (m, 1H), 7.09 (t, J = 6.5 Hz, 1H), 6.65 (br, 1H), 5.09 (dd, J = 10.5 
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Hz, J = 7.5 Hz, 2H), 4.06‒4.05 (m, 1H), 3.71‒3.70 (m, 2H), 3.54‒3.52 (m, 2H), 3.39 (s, 3H), 

3.24 (s, 6H), 2.42‒2.41 (m, 1H), 1.54 (dd, J = 24.0 Hz, J = 12.0 Hz, 1H), 1.29 (s, 3H), 1.24 (s, 

3H); 13C{1H} NMR (126 MHz, CDCl3) δ 167.5, 157.4, 136.0, 129.7, 120.3, 119.6, 114.8, 99.6, 

99.4, 94.4, 74.7, 71.2, 70.4, 70.1, 56.1, 48.0, 47.9, 47.6, 35.5, 17.7, 17.6; [α]D
20 -21.1 (c 0.58, 

CHCl3); HRMS-ESI m/z calcd for [M+H]+ (C12H24NO6) 278.1598, found 278.1593.

(2R,3R,4aR,5R,6S,8R,8aS)-6-Hydroxy-2,3-dimethoxy-8-(3-

(methoxymethoxy)benzamido)-2,3-dimethyloctahydrobenzo[b][1,4]dioxin-5-yl 2-hydroxy-

6-methylbenzoate (16a). N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide (12.0 μL, 10.6 mg, 

0.068 mmol) was added to a solution of 2-hydroxy-6-methylbenzoic acid (7.6 mg, 0.050 mmol), 

4-(dimethylamino)pyridine (DMAP, 0.60 mg, 0.0046 mmol) and dichloromethane (2.2 mL) at 0 

°C. The reaction mixture was stirred at 0 °C for 15 min, added with a solution of 15 (20.1 mg, 

0.046 mmol) in dichloromethane (2.2 mL) dropwise at 0 °C, stirred at 10 °C for 48 h and 

concentrated.  The crude product was purified with column chromatography (SiO2, 

EtOAc/hexanes, 3:2, Rf 0.55) to give 16a as a colorless liquid (17.8 mg, 0.031 mmol, 68%). 1H 

NMR (500 MHz , CDCl3) δ 10.75 (br, 1H), 7.40 (s, 1H), 7.32‒7.26 (m, 3H), 7.14 (d, J = 7.0 Hz, 

1H), 6.81 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 7.0 Hz, 1H), 6.27 (br, 1H), 5.31 (t, J = 9.5 Hz, 1H), 

5.16 (s, 2H), 4.05‒4.03 (m, 1H), 4.08‒4.07 (m, 1H), 3.94‒3.93 (m, 1H), 3.87‒3.80 (m, 1H), 3.44 

(s, 3H), 3.27 (s, 3H), 3.17 (s, 3H), 2.65‒2.64 (m, 1H), 2.55 (s, 3H), 1.39‒1.37 (m, 1H), 1.26 (s, 

3H), 1.25 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 171.1, 167.5, 162.0, 157.5, 140.9, 136.0, 

134.1, 129.8, 122.9, 120.1, 119.7, 115.7, 114.8, 113.1, 99.7, 99.6, 94.5, 70.5, 69.4, 69.2, 56.1, 

49.3, 48.1, 48.0, 47.6, 36.4, 23.7, 17.6, 17.5; [α]D
20 -13.4 (c 1.08, CHCl3); HRMS-ESI m/z calcd 

for [M+H]+ (C29H38NO11) 576.2439, found 576.2434. Compound 17 (2.8 mg, 0.0039 mmol, 9%) 

was also isolated after column chromatography (SiO2, EtOAc/hexanes, 3:2, Rf 0.68) 1H NMR 

(500 MHz , CDCl3) δ 10.95 (br, 1H), 10.92 (br, 1H), 7.40 (br, 2H), 7.35‒7.31 (m, 2H), 7.23 (dd, 

16.5 Hz, J = 7.5 Hz, 2H), 7.16 (dt, J = 7.0 Hz, J = 2.5 Hz, 1H), 6.77 (dd, J = 12.5 Hz, J = 8.5 Hz, 

1H), 6.65 (dd, J = 12.5 Hz, J = 7.5 Hz, 1H), 6.09 (br, 1H), 5.77 (t, J = 10.0 Hz, 1H), 5.55‒5.49 

(m, 1H), 5.18 (s, 2H), 4.07‒4.04 (m, 1H), 4.01 (t, J = 9.5 Hz, 1H), 3.94 (t, J = 9.5 Hz, 1H), 3.45 

(s, 3H), 3.27 (s, 3H), 3.14 (s, 3H), 2.91 (dt, J = 12.5 Hz, J = 4.5 Hz, 1H), 2.48 (s, 3H), 2.44 (s, 

3H), 1.95 (dd, J = 24.5 Hz, J = 12.5 Hz, 1H), 1.28 (s, 3H), 1.25 (s, 3H); 13C{1H} NMR (126 

MHz, CDCl3) δ 170.6, 170.5, 167.5, 163.1, 162.8, 157.6, 141.5, 141.0, 135.9, 134.7, 134.5, 

129.9, 123.1, 120.1, 119.8, 115.7, 115.7, 114.6, 111.9, 111.5, 99.8, 99.7, 94.5, 73.1, 70.7, 69.7, 
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56.1, 48.1, 47.9, 36.6, 29.7, 24.7, 24.2, 24.0, 23.3, 17.6, 17.5; HRMS-ESI m/z calcd for [M+H]+ 

(C38H47NO13) 725.3042, found 725.2910.

Compound 16b (6.9 mg, 0.012 mmol, 33%) was also isolated as a colorless liquid from the 

corresponding reaction of 15 (16.3 mg, 0.037 mmol), 2-hydroxy-6-methylbenzoic acid (6.7 mg, 

0.044 mmol), DCC (11.4 mg, 0.055 mmol) and DMAP (0.4 mg, 0.0012 mmol) after column 

chromatography (SiO2, EtOAc/hexanes, 3:2, Rf 0.46). 1H NMR (500 MHz, CDCl3) δ 10.95 (br, 

1H), 7.38 (s, 1H), 7.34‒7.27 (m, 3H), 7.15 (d, J = 6.5 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.69 (d, 

J = 7.5 Hz, 1H), 6.06 (br, 1H), 5.21‒5.26 (m, 1H), 5.17 (s, 2H), 3.98‒3.89 (m, 3H), 3.62 (t, J = 

9.5 Hz, 1H), 3.45 (s, 3H), 3.28 (s, 3H), 3.26 (s, 3H), 2.77 (m, 1H), 2.52 (s, 3H), 1.93 (dd, J = 

24.5 Hz, J = 12.0 Hz, 1H), 1.33 (s, 3H), 1.30 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 17.6, 

23.9, 29.7, 31.2, 38.2, 48.1, 48.4, 56.1, 59.6, 69.2, 71.4, 72.6, 72.8, 94.5, 99.5, 112.4, 114.7, 

115.7, 119.7, 120.0, 123.0, 129.8, 134.3, 136.1, 141.3, 157.5, 162.7, 167.5, 170.7; HRMS-ESI 

m/z calcd for [M+H]+ (C29H38NO11) 576.2439, found 576.2413.

(2R,3R,4aR,5R,6S,8R,8aS)-6-(Carbamoyloxy)-2,3-dimethoxy-8-(3-

(methoxymethoxy)benzamido)-2,3-dimethyloctahydrobenzo[b][1,4]dioxin-5-yl 2-hydroxy-

6-methylbenzoate (18). Trichloroacetyl isocyanate (2.62 μL, 4.14 mg, 0.022 mmol) was added 

to a solution of 17 (11.5 mg, 0.019 mmol) and dichloromethane (0.5 mL) at 0 °C. The reaction 

mixture was warmed up to rt, stirred for 3 h, added with methanol (0.5 mL) and K2CO3(aq) (0.1 

M, 0.5 mL), stirred for another 2 h at rt, concentrated to remove methanol and extracted with 

dichloromethane (10 mL x 3). The combined organic layers were washed with saturated NaCl(aq) 

(10 mL), dried over sodium sulfate, filtered and concentrated.  The crude product was purified 

with column chromatography (SiO2, EtOAc/hexanes, 3:2, Rf 0.48) to give 18 as a colorless liquid 

(7.8 mg, 0.012 mmol, 66%). 1H NMR (500 MHz , CDCl3) δ 11.04 (br, 1H), 7.39 (s, 1H), 

7.34‒7.21 (m, 2H), 7.24‒7.22 (m, 2H), 7.15‒7.14 (m, 1H), 6.79 (d, J = 7.5 Hz, 1H), 6.66 (d, J = 

7.5 Hz, 1H), 6.12 (br, 1H), 5.34‒5.29 (m, 1H), 5.21 (t, J = 10.0 Hz, 1H), 5.17 (s, 2H), 4.66 (br, 

2H), 4.03‒4.02 (m, 1H), 3.89 (t, J = 10.0 Hz, 1H), 3.75 (t, J = 10.0 Hz, 1H), 3.44 (s, 3H), 3.24 (s, 

3H), 3.23 (s, 3H), 2.83‒2.80 (m, 1H), 2.49 (s, 3H), 1.81 (dd, J = 24.5 Hz, J = 12.0 Hz, 1H), 1.27 

(s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 170.7, 167.4, 163.0, 157.5, 155.5, 141.8, 136.0, 

134.5, 129.8, 123.2, 119.7, 115.6, 114.7, 111.9, 99.5, 94.5, 73.3, 70.8, 69.8, 69.5, 59.5, 56.1, 
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47.9, 47.8, 38.2, 32.9, 31.2, 29.7, 24.1, 17.5; [α]D
20 -10.9 (c 0.37, CHCl3); HRMS-ESI m/z calcd 

for [M+H]+ (C30H39N2O12) 619.2498, found 619.2472.

(1S,2R,3S,4R,6S)-6-(Carbamoyloxy)-2,3-dihydroxy-4-(3-hydroxybenzamido)cyclohexyl 2-

hydroxy-6-methylbenzoate (ent-1). A reaction mixture of 18 (6.3 mg, 0.0102 mmol), 

trifluoroacetic acid, (0.9 mL) and water (0.1 mL) was stirred at rt for 19 h and concentrated. The 

crude product was purified with column chromatography (SiO2, CHCl3/methanol, 4:1, Rf 0.53) to 

give ent-1 as a colorless solid (2.9 mg, 0.0062 mmol, 61%). Mp 205.5‒208.0 ℃; IR (neat) 3340, 

1722, 1591, 1062 cm-1; 1H NMR (500 MHz , (CD3)2CO) δ 10.72 (br, 1H), 8.64 (br, 1H), 7.67 

(br, 1H), 7.40 (s, 1H), 7.38 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 

7.00 (d, J = 8.0 Hz, 1H), 6.82‒6.78 (m, 2H), 6.03 (br, 1H), 5.34 (t, J = 9.5 Hz, 1H), 5.10‒5.05 

(m, 1H), 4.77 (br, 1H), 4.60 (br, 1H), 4.20‒4.15 (m, 1H), 3.84 (t, J = 9.5 Hz, 1H), 3.76 (t, J = 9.5 

Hz, 1H), 2.58 (s, 3H), 2.49‒2.45 (m, 1H), 1.79 (dd, J = 24.5 Hz, J = 12.0 Hz, 1H); 13C{1H} NMR 

(126 MHz, (CD3)2CO) δ 170.7, 168.2, 161.2, 158.4, 157.0, 141.4, 137.0, 134.1, 130.1, 123.4, 

119.1, 118.9, 115.8, 115.2, 77.4, 75.5, 74.7, 70.5, 50.1, 34.0, 22.9; [α]D
20 +10.7 (c 0.13, MeOH); 

HRMS-ESI m/z calcd for [M+H]+ (C22H25N2O9) 461.1555, found 461.1555.

Supporting Information. 1H and 13C{1H} NMR spectra for compounds 4, 6, 8, ent-1 and all 

the new compounds.
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