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from aziridines and carbon dioxide†
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The catalytic potential of ammonium halide salts was explored in the coupling reaction of a model aziri-

dine with carbon dioxide, highlighting the superior activity of [NH2Et2]I. Then, working at room tempera-

ture, atmospheric CO2 pressure and in the absence of solvent, the [NH2Et2]I-catalyzed synthesis of a

series of 5-aryl-2-oxazolidinones was accomplished in good to high yields and excellent selectivity, from

2-aryl-aziridines with N-methyl or N-ethyl groups. NMR studies and DFT calculations outlined the pivotal

role of both the diethylammonium cation and the iodide anion. The proposed method represents a con-

venient choice for obtaining a limited number of valuable molecules for which more complex and more

expensive catalytic systems have been reported even in recent years.

Introduction

The employment of carbon dioxide as a sustainable, non-toxic
and largely available C1 synthon for organic synthesis, repla-
cing hazardous compounds, has witnessed an increasing
advance in recent years.1 In this setting, oxazolidinones are
five-membered heterocyclic compounds that are key precursors
for the manufacture of bioactive chemicals,2,3 and synthetic
processes exploiting CO2 fixation routes have been intensively
investigated.2a,4 In general, the available methods require the
use of a catalyst, unless high pressure of CO2 or supercritical
conditions are employed.5 A variety of suitable unsaturated
organic substrates (e.g. amines and amino-alcohols6,7) and
also appropriate combinations of reactants have been evalu-
ated for their coupling with carbon dioxide, such as epoxide/
amine,8 alkyne/amine,9 aniline/1,2-dibromoethane,10 alkene/
amine11 and amine/(2-bromo-1-aryl)dimethylsulfonium
salts.12 The use of aziridines for their direct coupling with CO2

is appealing from the point of view of the atom economy,13

but is featured by a high activation barrier;14 therefore, press-

urized conditions are often required and a catalyst is strictly
necessary, either metal based15,16 or not.17,18

In fact, the catalyst-free synthesis of 5-aryl-2-oxazolidinones
from aziridines has been forced at temperatures above 100 °C
and at 3.5–10.0 MPa CO2 pressure, affording products in
30–90% yields;19 in the absence of a catalyst, drastic con-
ditions are avoided only using a special apparatus (high-speed
ball milling).20

Most of the metal-catalysed reactions, and even some orga-
nocatalytic systems,18,21 require a Lewis base additive to facili-
tate the aziridine ring opening, and tetrabutylammonium
halides have been widely employed in this regard.16 The direct
catalytic effect of simple halide salts has been sparingly inves-
tigated, and in some cases (tetraalkyl)ammonium halides
alone have revealed some potential to promote the aziridine/
CO2 coupling. Working at ambient conditions, 2-methyl-aziri-
dine was converted to 4-methyl-1,3-oxazolidin-2-one in organic
solvent by means of [NBu4]X (X = Cl, Br, I), Scheme 1A, and
[NBu4]Br in THF solution revealed to be the best choice (95%
yield). The alternative use of lithium/sodium halides needed a
considerably higher amount of salt (20% mol) to provide satis-
fying yields, which are increased upon addition of 18-crown-
6.22 Similarly, the carboxylation of a small series of aziridines
by lithium iodide, in THF solution at room temperature and
normal CO2 pressure, required a stoichiometric amount of salt
(1.5 equivalents vs. aziridine), Scheme 1B; the addition of
hexamethylphosphoramide (HMPA) as a co-solvent improved
the regioselectivity of the reaction.23 On the other hand, rela-
tively low amounts of LiBr efficiently operate under drastic
conditions.24–26
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A range of halide salts was explored for carrying out the car-
boxylation of N-benzyl-2-methylaziridine in THF at room temp-
erature and 4 atm of CO2 pressure (Scheme 1C).27 Two regio-
isomers were generally obtained, and ammonium iodide per-
formed better than lithium and sodium salts under stoichio-
metric conditions. Ammonium iodide was efficient also in a
catalytic amount, and its favourable action was attributed to
the preliminary formation of an aziridinium cation.

This scenario prompted us to systematically investigate the
catalytic potential of alkylammonium halides in the synthesis
of oxazolidinones from aziridines via CO2 fixation, with a par-
ticular focus on partially alkylated ammonium species, which,
to the best of our knowledge, have never been evaluated here-
tofore. No solvent, room temperature and atmospheric
pressure of carbon dioxide were adopted as fixed experimental
conditions, due to sustainability issues. Note that working
under 1 atm CO2 pressure is an added value also for safety
reasons, allowing to conduct the synthesis using common lab-
oratory glassware and a simple, safe and cheap balloon tech-
nique, without the needing of any pressurized equipment.

The results of this work will be presented, including DFT
calculations giving insight into the higher performance pro-
vided by the use of a dialkylammonium halide as catalyst.

Results and discussion

We studied the coupling between 1-methyl-2-phenylaziridine
and carbon dioxide as a model reaction, and several
ammonium salts were evaluated as possible catalysts by 1H
NMR spectroscopy. The results of this study are compiled in
Table 1. The reaction was conducted in the absence of solvent
at ambient temperature and atmospheric pressure of CO2 from
a balloon. Fixing the catalyst concentration to 2 mol%,
3-methyl-5-phenyloxazolidin-2-one was produced in variable
yields after 24 hours. Tetramethylammonium iodide and tetra-
hexylammonium bromide revealed totally inactive, while other
tetraalkylammonium iodides and [NBu4]Br led to the for-
mation of the desired product in 15–29% yields. This fact
suggests that a balance between steric and electronic factors
related to the nitrogen substituents is crucial to provide
activity. Moreover, iodide salts manifested higher efficiency
than the homologous chlorides and bromides (compare runs
3–5 and 12–14). Overall, ammonium iodides performed as the
best catalysts of the series with [NH2Et2]I leading to the
highest yield of product (78%, run 14).

Scheme 1 Overview of previously investigated aziridine/CO2 coupling
reactions promoted by (alkyl)ammonium halides and alkali metal halides
in mild conditions. (A) Catalyst (equivalents vs. aziridine, yield): [NBu4]Cl
(0.02, 22%), [NBu4]Br (0.02, 10–95%), [NBu4]I (0.02, 63%), LiCl (0.20,
traces), LiBr (0.20, 74%), LiI (0.20, 32%), NaBr (0.20, 37%), NaBr (0.20 +
0.05 18-crown-6, 76%), KBr (0.20 + 0.05 18-crown-6, 62%); solvent:
THF, MeCN or MeOH; pCO2 = 1 atm; T = 0–40 °C; reaction time =
24 h.22 (B) Catalyst (equivalents vs. aziridine, yield): LiI (1.5, 83–99%), LiI
(1.0 + 1.0 HMPA, 88–91%); solvent: THF; pCO2 = 1 atm; T = room temp-
erature; reaction time = 4 h.23 (C) Catalyst (equivalents vs. aziridine,
yield): [NH4]Cl (1.0, 0%), [NH4]Br (1.0, 0%), [NH4]I (1.0, 94%), LiCl (1.0,
33%), LiBr (1.0, 76%), LiI (1.0, 85%), NaCl (1.0, 0%), NaBr (1.0, 27%), NaI
(1.0, 83%); solvent: THF; pCO2 = 3 atm; T = room temperature; reaction
time = 4 h; the use of [NH4]I (5 mol%) at pCO2 = 4 atm provided 98%
yield of product after 2 h; I/II ratio variable between 66/34 and 99/1.27

Table 1 Synthesis of 3-methyl-5-phenyloxazolidin-2-one from 1-methyl-
2-phenylaziridine and carbon dioxide

Run
Aziridine
(mg, mmol) Catalyst

Catalyst,
mol% (mg)

t
(° C)

Yielda

(%)

1 (133, 1.00) [NMe4]I 2 (4.0) 21 0
2 (135, 1.01) [NEt4]I 2 (5.2) 21 15
3 (130, 0.98) [NBu4]Cl 2 (5.4) 21 5
4 (133, 1.00) [NBu4]Br 2 (6.4) 21 20
5 (136, 1.02) [NBu4]I 1 (3.8) 21 30
6 (130, 0.98) [NBu4]I 2 (7.2) 21 29
7 (133, 1.00) [NBu4]I 5 (15) 21 65
8 (135, 1.01) [NHex4]Br 2 (8.8) 21 Traces
9 (136, 1.02) [NMe3Bn]I 2 (5.6) 21 26
10 (133, 1.00) [NHEt3]I 2 (4.6) 21 74
11 (136, 1.02) [NH2Me2]I 2 (3.5) 21 70
12 (133, 1.00) [NH2Et2]Cl 2 (2.2) 21 0
13 (130, 0.98) [NH2Et2]Br 2 (3.0) 21 25
14 (130, 0.98) [NH2Et2]I 2 (3.9) 21 78
15 (135, 1.01) [NH2Et2]I 1 (2.0) 21 66
16 (133, 1.00) [NH2Et2]I 5 (10) 21 82
17 (133, 1.00) [NH2Et2]I 5 (10) 0 50
18 (130, 0.98) [NH2Et2]I 5 (9.8) 35 53
19 (136, 1.02) [NH2Et2]I 10 (20) 21 75
20 (133, 1.00) [NH2

iPr2]I 2 (4.6) 21 72
21 (136, 1.02) [NH3Me]I 2 (3.2) 21 58
22 (130, 0.98) [NH3Et]I 2 (3.4) 21 67
23 (136, 1.02) [NH3Cy]I 2 (4.6) 21 68
24 (136, 1.02) [NH4]I 2 (2.9) 21 73

Experimental conditions: no solvent; pCO2 = 1 atm; t = 24 hours
a Calculated as integral ratio between the 1H NMR signals of ring CH
(product) and 1,1,2,2-tetrachloroethane as standard
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Different concentrations of diethylammonium iodide and
tetrabutylammonium iodide were then tested: the best result
was obtained by using [NH2Et2]I in a concentration of 5 mol%
(yield = 82%, run 16). An appreciable influence of the tempera-
ture was observed, and working at room temperature (ca.
21 °C) resulted to be the most favourable choice, presumably
representing a compromise between slow kinetics (low temp-
erature) and side reactions (high temperature).

Using the optimal reaction parameters found for the model
reaction, we extended the catalytic study to the carboxylation
of a series of 2-arylaziridines (Table 2). In general, variable
yields were recognized, mainly depending on the nature of the
nitrogen substituent. More precisely, the carboxylation of 1-H-
2-arylaziridines did not work or provided low yields of the
corresponding cyclic products after 24 hours (runs 1–4). This
result is probably ascribable to the prevalent occurrence of
side aziridine polymerization.28 On the other hand, the reac-
tions involving 1-methyl-2-arylaziridines led to the formation
of the oxazolidinones in 76–85% yields, including the first syn-
thesis of 3-methyl-5-(4-fluorophenyl)oxazolidin-2-one via the
aziridine/CO2 route (runs 5–8). The Me/Et replacement at nitro-
gen leads to a lower conversion, and the products were
detected in 28–66% yields, including the unprecedented
3-ethyl-5-(4-fluorophenyl)oxazolidin-2-one (runs 9–12). 1H
NMR analyses outlined the formation of aziridine oligomeriza-
tion species and piperazines as by-products, consistently to
previous findings.29

On further increasing the steric hindrance of the aziridine
N-substituent (isopropyl, n-butyl, cyclohexyl, tosyl), no reaction
took place. Moreover, the results shown in Table 2 evidence
some role of the aryl para-substituent, although a clear corre-
lation between its electronic and steric properties and the yield
values seems hard to be rationalized.

The synthesis, from the respective aziridine, of the products
indicated in Table 2 is not a trivial task, since more expensive/
elaborated catalytic systems and eventually drastic experi-
mental conditions have been reported, even recently, for the
same reactions. Note that ammonium halides are often
employed as co-catalysts, in a range of concentrations compar-
able to that adopted here for [NH2Et2]I.

In order to figure out possible differences in the mecha-
nism of action of different catalysts, the interaction between
equimolar amounts of 1-methyl-2-phenylaziridine and two
selected ammonium iodides was NMR investigated. Thus,
solutions of the aziridine in CD3CN were treated with [NBu4]I
and [NH2Et2]I, respectively. The addition of [NBu4]I did not
determine any appreciable change in the 1H NMR resonances
of the two mixed species over 4 days (Fig. S1†). Then, the
expected formation of 3-methyl-5-phenyloxazolidin-2-one was
cleanly observed upon bubbling CO2 to the solution (no
additional information was achieved by carrying out the reac-
tion directly under CO2 atmosphere). Conversely, mixing di-
ethylammonium iodide and 1-methyl-2-phenylaziridine
resulted in a downfield shift (from 3.15 to 2.98 ppm) and an
increase of the intensity of the signal due to the ammonium
protons (Fig. S2†). This variation is ascribable to the occur-

Table 2 Carboxylation of aziridines to 5-aryl-2-oxazolidinones cata-
lysed by [NH2Et2]I under solventless and ambient conditions

Run Aziridine (mg, mmol) Oxazolidinone Yielda (%)

1 0

2 20

3 0

4 17

5 82

6 76

7 85

8 81

9 28

10 50

11 52
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rence of N–H⋯N hydrogen bonding between the diethyl-
ammonium cation and the aziridine nitrogen, as previously
described for analogous systems.30 After 15 hours in the
absence of CO2, a complicated mixture of products was
detected, presumably derived from oligomerization and cycli-
zation processes;29a this fact highlights the major activating
power towards the aziridine of [NH2Et2]I compared to [NBu4]I.

1-Methyl-2-phenylaziridine was selected as a model sub-
strate for the computational investigation of the coupling reac-

tion with carbon dioxide leading to 3-methyl-5-phenyloxazoli-
din-2-one, catalysed by ammonium halides. Preliminary calcu-
lations indicate that the three-membered cycle is not opened
by the direct attack of iodide or bromide on the phenyl-substi-
tuted carbon. Therefore, the presence of an acidic species able
to interact with the nitrogen atom appears of paramount
importance for the subsequent coupling with CO2.

24,31 Carbon
dioxide itself is a possible acid, and in fact, the transition state
for the aziridine ring-opening reaction by iodide in the pres-
ence of one CO2 molecule was found (N-CO2 bond length =
1.497 Å). This transition state is 36.5 kcal mol−1 higher than
the free reactants and presumably involved in the case of the
reaction promoted by [NBu4]I, being the tetrabutylammonium
cation unable to interact with the aziridine/iodide system, in
agreement with NMR studies (see above).

Much lower energy barriers were obtained on considering
[NH2Et2]

+ as Brønsted acid. The computed reaction profiles for
the formation of 3-methyl-5-phenyloxazolidin-2-one by
[NH2Et2]X (X = Br, I) are shown in Fig. 1. Coherently with NMR
experiments (see above), the cation gives hydrogen bond inter-
action with the aziridine, with modest Gibbs energy variation
with respect to the reactants (step a, Fig. S3†). The nucleophilic

Table 2 (Contd.)

Run Aziridine (mg, mmol) Oxazolidinone Yielda (%)

12 66

Experimental conditions: aziridine ca. 1 mmol (no solvent); catalyst:
[NH2Et2]I, 5 mol%; pCO2 = 1 atm; t = 24 hours. a Calculated as integral
ratio between the 1H NMR signals of ring CH (product) and 1,1,2,2-tet-
rachloroethane as standard.

Fig. 1 Computed reaction profiles for the conversion of 1-methyl-2-phenylaziridine and carbon dioxide to 3-methyl-5-phenyloxazolidin-2-one,
catalysed by [NH2Et2]X (X = Br, red; X = I, violet). C-PCM/ωB97X/def-SVP calculations, ε = 8.9. Gibbs energy values (kcal mol−1) are referred to the
free reactants.
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attack of X− to the C(Ph) carbon atom affords the first transition
state of the reaction (step b, Fig. S4†), then the ammonium
acidic hydrogen is transferred to the aziridine. The consequent
ring-opening species (step c, Fig. S5†) is best described as a sec-
ondary amine with hydrogen bond interaction with diethyl-
amine. The bromide-derivative is about 9.2 kcal mol−1 more
stable than the corresponding iodide-one, due to the higher
stability of the C–Br bond with respect to C–I. The nitrogen
atom of the amino group is able to attack CO2, assisted by
hydrogen bond interaction with diethylamine. The non-proto-
nated oxygen atom can give intramolecular nucleophilic attack
to the halido-substituted carbon (step f, Fig. S8†). This is fol-
lowed by generation of the oxazolidinone ring with strong nega-
tive Gibbs energy variation, the [NH2Et2]

+ cation binding the
carbonyl moiety via hydrogen bond (step g, Fig. S9†).

In summary, DFT outcomes point out multiple roles played
by the diethylammonium cation in the catalytic reaction, and
in particular: (1) the initial protonation of the aziridine nitro-
gen to trigger the ring-opening and stabilize the intermediate
amine species; (2) the hydrogen bond interaction with the
amine, facilitating the nucleophilic attack towards CO2; (3) the
protonation of the carbamate formed after interaction with
CO2; (4) the deprotonation of the O–H moiety during the final
cyclization step. The convenience in the use of [NH2Et2]

+ prob-
ably relies on a compromise between the good Brønsted acidic
character (otherwise absent in [NBu4]

+), favouring the protona-
tion steps, and the satisfying basicity of the conjugated base
provided by the two ethyl substituents, favouring the hydrogen
bond formation and deprotonation steps.

Concerning the halide counteranion, the comparison of the
two reaction profiles in Fig. 1 can be rationalized based on the
two different carbon–halogen bond strengths: it is worth remind-
ing that too stable intermediates are as detrimental to catalysis
as too high energy intermediates. Thus, the greater stability of
the C–Br bond lowers the energy barrier of the first step, and the
carbamic acid (step e) is much more stable for X = Br (rather
than X = I) compared to the reactants (ΔG = −7.5 kcal mol−1).
The stability of such an intermediate presumably slows down the
final cyclization step, requiring C–Br bond cleavage, and this
feature represents a possible explanation for the lower catalytic
activity exhibited by [NH2Et2]Br with respect to [NH2Et2]I.

Conclusions

The development of sustainable synthetic routes to access
2-oxazolidones exploiting CO2 fixation is currently of large
interest. In particular, the aziridine/CO2 coupling reaction is
an atom economic process but possessing a high activation
barrier, whereby a wide range of catalysts has been proposed.
Nonambient temperature and/or pressure are often required
and elaborated catalytic systems have been reported, including
the use of tetrabutylammonium halides as co-catalysts, when
working under mild conditions. In this context, the catalytic
potential of ammonium halides alone has been barely
explored, despite the easy availability and relatively low toxicity

of these species. Here, we have carried out a screening study
evidencing diethylammonium iodide as a convenient catalyst
for the regiospecific conversion of 2-arylaziridines, bearing
small N-alkyl substituents, to the corresponding 5-aryl-2-oxazo-
lidinones under environmentally benign conditions (room
temperature and atmospheric CO2 pressure). Combined, NMR
and DFT results suggest that the optimal activity provided by
[NH2Et2]I arises from its nature of Brønsted acid associated
with a satisfying strength of the conjugate base, and the rela-
tive weakness of the carbon-iodine bond, favouring the final
cyclization step of the reaction.

Although the applicability of the present method is not
broad and has not been extended to 2-alkyl-aziridines, it pro-
vides a clear advance, in terms of simplicity and sustainability,
for the synthesis of a series of valuable molecules with respect
to existing literature procedures.

Experimental section
General details

Operations were conducted in air. CO2 (99.99%) was purchased
from Rivoira, while other reactants and solvents were commer-
cial products (Merck, TCI Europe or Strem) of the highest
purity available, and stored under N2 as received. Solvents
(Merck) were distilled before use over appropriate drying
agents. 2-Arylaziridines17b and [NH3Cy]I

32 were prepared
according to the respective literature procedures. NMR spectra
were recorded at 298 K with a Bruker Avance II DRX 400 instru-
ment equipped with a BBFO broadband probe. 1H and 13C
chemical shifts were referenced to the non-deuterated aliquot
of the solvent,33 while 19F chemical shifts were referenced to
an external standard (CFCl3). Elemental analyses were per-
formed on a Vario MICRO cube instrument (Elementar).

Synthesis and characterization of [NH2
iPr2]I

An excess of hydrogen iodide (ca. 20 mmol from a 57%
aqueous solution) was added dropwise to diisopropylamine
(1.00 mL, 7.14 mmol) in a Schlenk tube. The mixture was
stirred for 30 minutes, then ethanol (5 mL) was added. The
liquid phase was removed, and the precipitate was washed
with diethyl ether (3 × 10 mL) and then dried under vacuum. A
second crop of product was recovered from the initial solution
by re-crystallization using diethyl ether as non-solvent (15 mL)
at −30 °C. Total yield 1.55 g, 95%. Anal. calcd for C6H16NI: C,
31.46; H, 7.04; N, 6.11. Found C, 31.61; H, 7.09; N, 6.04. 1H
NMR (CDCl3): δ/ppm = 8.29 (br, 2H, NH2), 3.66 (m, 1H, CH),
1.61 (d, 3JHH = 6.7 Hz, 6H, CH3).

Synthesis, isolation and NMR characterizaion of 2-aryl-
aziridines

General procedure.17b Under N2 flux, a 250 mL round
bottom flask containing a solution of Me2S (ca. 65 mmol) in
dry CH3CN (15 mL) was cooled to 0 °C. To this solution, Br2
(ca. 40 mmol) in dry CH2Cl2 (35 mL) was added dropwise over
15 minutes, thus [Me2SBr]Br formed as orange precipitate.12
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The system was stirred for further 30 minutes, then the appro-
priate alkene (ca. 80 mmol) was added dropwise and the
resulting mixture was stirred for 2 hours at 0 °C. White solid
[BrCH2C(SMe2)(4-C6H4R)]Br was recovered by filtration,
washed with Et2O (3 × 15 mL) and dried under vacuum. A
portion of this solid (ca. 6 mmol) was dissolved in water
(30 mL) and the selected amine (6 eq.) was added dropwise.
The mixture was stirred overnight at room temperature,
extracted with Et2O (3 × 20 mL) and dried over Na2SO4. The
volatiles were removed under vacuum and the residue was
chromatographed on a silica column; a mixture of ethyl
acetate and petroleum ether (40–60 °C) (from 1 : 10 to 1 : 6 v/v),
added of triethylamine (5% v/v), as eluent allowed to isolate
the aziridine product.

2-Phenylaziridine.17b From (2-bromo-1-phenylethyl)di-
methylsulfonium bromide (6.10 mmol) and NH3 (30%
aqueous solution). Colourless liquid. Yield 363 mg, 50% 1H
NMR (CDCl3): δ/ppm = 7.37–7.23 (m, 5H, Ph); 3.05 (m, 1H,
CH); 2.29 (d, 3JHH = 6.0 Hz, 1H, CH2); 1.77 (d, 3JHH = 2.9 Hz,
1H, CH2).

1-Methyl-2-phenylaziridine.17b From (2-bromo-1-pheny-
lethyl)dimethylsulfonium bromide (6.25 mmol) and NH2Me
(40% aqueous solution). Colourless liquid. Yield 599 mg, 72%.
1H NMR (CDCl3): δ/ppm = 7.37–7.21 (m, 5H, Ph); 2.50 (s, 3H,
NMe); 2.28 (m, 1H, CH); 1.91 (d, 3JHH = 3.2 Hz, 1H, CH2); 1.63
(d, 3JHH = 6.7 Hz, 1H, CH2).

1-Ethyl-2-phenylaziridine.17b From (2-bromo-1-phenylethyl)
dimethylsulfonium bromide (6.00 mmol) and NH2Et (2 M
tetrahydrofuran solution). Colourless liquid. Yield 600 mg,
68%. 1H NMR (CDCl3): δ/ppm = 7.40–7.24 (m, 5H, Ph);
2.53–2.44 (m, 2H, NCH2); 2.34 (m, 1H, CH); 1.94 (d, 3JHH = 3.2
Hz, 1H, CH2); 1.68 (d, 3JHH = 6.7 Hz, 1H, CH2); 1.26 (t, 3JHH =
7.2 Hz, 3H, CH3).

2-(p-Tolyl)aziridine.34 From (2-bromo-1-(p-tolyl)ethyl)di-
methylsulfonium bromide (6.00 mmol) and NH3 (30%
aqueous solution). Colourless liquid. Yield 344 mg, 43%. 1H
NMR (CDCl3): δ/ppm = 7.14 (m, 4H, C6H4); 3.00 (m, 1H, CH);
2.35 (s, 3H, C6H4Me); 2.18 (m, 1H, CH2); 1.81 (m, 1H, CH2);
1.68 (br, 1H, NH) ppm.

1-Methyl-2-(p-tolyl)aziridine.35 From (2-bromo-1-(p-tolyl)
ethyl)dimethylsulfonium bromide (5.95 mmol) and NH2Me
(40% aqueous solution). Colourless liquid. Yield 613 mg, 70%
1H NMR (CDCl3): δ/ppm = 7.16 (m, 4H, C6H4); 2.52 (s, 3H,
NMe); 2.37 (s, 3H, C6H4Me); 2.28 (m, 1H, CH); 1.92 (d, 3JHH =
3.2 Hz, 1H, CH2); 1.64 (d, 3JHH = 6.7 Hz, 1H, CH2).

1-Ethyl-2-(p-tolyl)aziridine.17b From (2-bromo-1-(p-tolyl)
ethyl)dimethylsulfonium bromide (6.30 mmol) and NH2Et (2
M tetrahydrofuran solution). Colourless liquid. Yield 660 mg,
65%. 1H NMR (CDCl3): δ/ppm = 7.13 (m, 4H, C6H4); 2.52–2.36
(m, 2H, NCH2); 2.33 (s, 3H, C6H4Me); 2.28 (m, 1H, CH); 1.89
(m, 1H, CH2); 1.64 (d, 3JHH = 6.7 Hz, 1H, CH2); 1.20 (t, 3JHH =
7.2 Hz, 3H, CH3).

2-(4-Chlorophenyl)aziridine.36 From (2-bromo-1-(4-chloro-
phenyl)ethyl)dimethylsulfonium bromide (6.06 mmol) and
NH3 (30% aqueous solution). Colourless liquid. Yield 539 mg,
58% 1H NMR (CDCl3): δ/ppm = 7.23–7.10 (m, 4H, C6H4); 2.92

(m, 1H, CH); 2.14 (d, 1H, CH2,
3JHH = 6.2); 1.63 (d, 1H, CH2,

3JHH = 3.1); 1.06 (br, 1H, NH).
1-Methyl-2-(4-chlorophenyl)aziridine.35 From (2-bromo-1-(4-

chlorophenyl)ethyl)dimethylsulfonium bromide (6.18 mmol)
and NH2Me (40% aqueous solution). Colourless liquid. Yield
746 mg, 72% 1H NMR (CDCl3): δ/ppm = 7.27–7.14 (m, 4H,
C6H4); 2.48 (s, 3H, NMe); 2.24 (m, 1H, CH); 1.85 (d, 1H, CH2,
3JHH = 3.0); 1.63 (d, 1H, CH2,

3JHH = 6.7).
1-Ethyl-2-(4-chlorophenyl)aziridine.17b From (2-bromo-1-(4-

chlorophenyl)ethyl)dimethylsulfonium bromide (5.92 mmol)
and NH2Et (2 M tetrahydrofuran solution). Colourless liquid.
Yield 742 mg, 69%. 1H NMR (CDCl3): δ/ppm = 7.38–7.22 (m,
4H, C6H4); 2.44 (m, 2H, NCH2); 2.25 (m, 1H, CH); 1.82 (d,
3JHH = 3.2, 1H, CH2); 1.64 (d, 3JHH = 6.7 Hz, 1H, CH2,); 1.18 (t,
3JHH = 7.2 Hz, 3H, CH3).

2-(4-Fluorophenyl)aziridine.34 From (2-bromo-1-(4-fluoro-
phenyl)ethyl)dimethylsulfonium bromide (6.15 mmol) and
NH3 (30% aqueous solution). Colourless liquid. Yield 388 mg,
46%. 1H NMR (CDCl3): δ/ppm = 7.39–7.24 (m, 4H, C6H4); 3.07
(m, 1H, CH); 2.30 (d, 3JHH = 6.3 Hz, 1H, CH2); 1.78 (d, 3JHH =
3.1 Hz, 1H, CH2); 1.23 (br, 1H, NH).

1-Methyl-2-(4-fluorophenyl)aziridine. From (2-bromo-1-(4-
fluorophenyl)ethyl)dimethylsulfonium bromide (6.28 mmol)
and NH2Me (40% aqueous solution). Colourless liquid. Yield
475 mg, 50%. 1H NMR (CDCl3): δ/ppm = 7.17, 6.97 (m, 4H,
C6H4); 2.47 (s, 3H, NMe); 2.24 (m, 1H, CH); 1.84 (d, 1H, CH2,
3JHH = 3.4); 1.60 (d, 1H, CH2,

3JHH = 6.6). 13C NMR (CDCl3): δ/
ppm = 162.0 (d, 1JCF = 244.5 Hz, CF); 136.0 (d), 127.6 (d), 115.1
(d) (C6H4); 47.9 (NCH3); 41.7 (CH); 39.3 (CH2).

19F NMR
(CDCl3): δ/ppm = −116.2. Anal. Calcd for C9H10FN: C, 71.50; H,
6.67; N, 9.26. Found: C, 71.43; H, 6.75; N, 9.23.

1-Ethyl-2-(4-fluorophenyl)aziridine. From (2-bromo-1-(4-
fluorophenyl)ethyl)dimethylsulfonium bromide (5.96 mmol)
and NH2Et (2 M tetrahydrofuran solution). Colourless liquid.
Yield 581 mg, 59%. Colourless liquid. 1H NMR (CDCl3): δ/ppm
= 7.38–7.22 (m, 4H, C6H4); 2.44 (q, 3JHH = 7.2 Hz, 2H, NCH2);
2.29 (m, 1H, CH); 1.86 (d, 1H, CH2,

3JHH = 3.2); 1.65 (d, 1H,
CH2,

3JHH = 6.7); 1.20 (t, 3H, CH3,
3JHH = 7.2); 13C NMR

(CDCl3): δ/ppm = 161.9 (d, 1JCF = 244.6 Hz, CF); 136.3 (d), 127.8
(d), 115.1 (d) (C6H4); 55.8 (NCH2), 40.5 (CH); 37.5 (CH2); 14.5
(CH3).

19F NMR (CDCl3): δ/ppm = −116.3. Anal. Calcd for
C10H12FN: C, 72.70; H, 7.32; N, 8.48. Found: C, 72.75; H, 7.37;
N, 8.43.

Synthesis and NMR characterization of 5-aryloxazolidin-2-ones

General procedure. The appropriate amount of ammonium
salt (according to Table 1) was introduced into a Schlenk tube,
which was evacuated by a vacuum pump and then filled with
CO2. The vacuum/CO2 sequence was repeated twice. Under a
stream of carbon dioxide, the selected aziridine (ca. 1 mmol)
was added, and the resulting mixture was stirred for 24 hours
at room temperature under atmospheric pressure of carbon
dioxide from a balloon. A precise amount of 1,1,2,2-tetrachlor-
oethane (ca. 0.2 mL) was added as internal standard, then an
aliquot (ca. 0.1 mL) of the mixture was mixed with CDCl3
(0.5 mL) in an NMR tube. Yield values were determined by 1H
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NMR spectroscopy and are referenced to 1,1,2,2-
tetrachloroethane.

5-Phenyloxazolidin-2-one.17b From 2-phenylaziridine
(120 mg, 1.01 mmol) and carbon dioxide. 1H NMR (CDCl3): δ/
ppm = 7.43–7.34 (m, 5H, Ph); 6.54 (br, 1H, NH); 5.61 (t, 3JHH =
8.4 Hz, 1H, CH); 3.97, 3.54 (t, 3JHH = 8.4 Hz, 2H, CH2).

3-Methyl-5-phenyloxazolidin-2-one.17b,12 From 1-methyl-2-
phenylaziridine (133 mg, 1.00 mmol) and carbon dioxide. 1H
NMR (CDCl3): δ/ppm = 7.41–7.26 (m, 5H, Ph); 5.48 (t, 3JHH =
8.6 Hz, 1H, CH); 3.91, 3.44 (t, 3JHH = 8.6 Hz, 2H, CH2); 2.92 (s,
3H, CH3).

3-Ethyl-5-phenyloxazolidin-2-one.12,17b From 1-ethyl-2-phe-
nylaziridine (148 mg, 1.00 mmol) and carbon dioxide. 1H NMR
(CDCl3): δ/ppm = 7.29–7.20 (m, 5H, Ph); 5.33 (t, 3JHH = 8.7 Hz,
1H, CH); 3.80 (t, 3JHH = 8.7 Hz, 1H, CH2); 3.30–3.15 (m, 3H,
CH2 + NCH2); 1.04 (t, 3JHH = 7.2 Hz, 3H, CH3).

5-(p-Tolyl)oxazolidin-2-one.12,37 From 2-(p-tolyl)aziridine
(136 mg, 1.02 mmol) and carbon dioxide. 1H NMR (CDCl3):
δ/ppm = 7.31–7.22 (m, 4H, C6H4); 6.22 (br, 1H, NH); 5.60 (t,
3JHH = 8.4 Hz, 1H, CH); 3.97, 3.56 (t, 3JHH = 8.4 Hz, 2H, CH2);
2.39 (s, 3H, CH3).

3-Methyl-5-(4-tolyl)oxazolidin-2-one.12,16d From 1-methyl-2-
(p-tolyl)aziridine (150 mg, 1.02 mmol) and carbon dioxide.
1H NMR (CDCl3): δ/ppm = 7.27–7.21 (m, 4H, C6H4); 5.46
(t, 3JHH = 8.4 Hz, 1H, CH); 3.90, 3.45 (t, 3JHH = 8.4 Hz, 2H,
CH2); 2.94 (s, 3H, NCH3); 2.38 (s, 3H, C6H4CH3).

3-Ethyl-5-(4-tolyl)oxazolidin-2-one.12,17b From 1-ethyl-2-(p-
tolyl)aziridine (165 mg, 1.02 mmol) and carbon dioxide.
1H NMR (CDCl3): δ/ppm = 7.20–7.13 (m, 4H, C6H4); 5.39 (t,
3JHH = 8.3 Hz, 1H, CH); 3.83 (t, 3JHH = 8.6 Hz, 1H, CH2);
3.38–3.25 (m, 3H, CH2 + NCH2), 2.30 (s, 3H, C6H4CH3); 1.12
(t, 3JHH = 7.3 Hz, 3H, CH2CH3).

5-(4-Chlorophenyl)oxazolidin-2-one.12,37 From 2-(4-chloro-
phenyl)aziridine (150 mg, 0.976 mmol) and carbon dioxide.
1H NMR (CDCl3): δ/ppm = 7.39–7.29 (m, 4H, C6H4); 6.49 (br,
1H, NH); 5.58 (t, 3JHH = 8.4 Hz, 1H, CH); 3.97, 3.49 (t, 3JHH =
8.4 Hz, 2H, CH2).

3-Methyl-5-(4-chlorophenyl)oxazolidin-2-one.12,38 From
1-methyl-2-(4-chlorophenyl)aziridine (165 mg, 0.984 mmol)
and carbon dioxide. 1H NMR (CDCl3): δ/ppm = 7.38–7.28 (m,
4H, C6H4); 5.45 (t, 3JHH = 8.3 Hz, 1H, CH); 3.91, 3.40 (t, 3JHH =
8.3 Hz, 2H, CH2); 2.92 (s, 3H, CH3).

3-Ethyl-5-(4-chlorophenyl)oxazolidin-2-one.12,15a From
1-ethyl-2-(4-chlorophenyl)aziridine (183 mg, 1.01 mmol) and
carbon dioxide. 1H NMR (CDCl3): δ/ppm = 7.37, 7.29 (d, 3JHH =
7.9 Hz, 4H, C6H4); 5.45 (t, 3JHH = 8.3 Hz, 1H, CH); 3.92 (t,
3JHH = 8.3 Hz, 1H, CH2); 3.44–3.30 (m, 3H, CH2 + NCH2); 1.17
(t, 3JHH = 7.3 Hz, 3H, CH3).

5-(4-Fluorophenyl)oxazolidin-2-one.12,37 From 2-(4-fluoro-
phenyl)aziridine (137 mg, 1.00 mmol) and carbon dioxide.
1H NMR (CDCl3): δ/ppm = 7.39–7.34, 7.11–7.07 (m, 4H, C6H4);
6.17 (br, 1H, NH); 5.60 (t, 3JHH = 8.4 Hz, 1H, CH); 3.97, 3.58
(t, 3JHH = 8.4 Hz, 2H, CH2).

3-Methyl-5-(4-fluorophenyl)oxazolidin-2-one.12 From 1-methyl-
2-(4-fluorophenyl)aziridine (150 mg, 0.992 mmol) and carbon
dioxide. 1H NMR (CDCl3): δ/ppm = 7.36–7.32, 7.11–7.07 (m,

4H, C6H4); 5.46 (t, 3JHH = 8.1 Hz, 1H, CH); 3.90, 3.42 (t, 3JHH =
8.4 Hz, 2H, CH2); 2.93 (s, 3H, CH3).

3-Ethyl-5-(4-fluorophenyl)oxazolidin-2-one. From 1-ethyl-2-
(4-fluorophenyl)aziridine (163 mg, 0.987 mmol) and carbon
dioxide. In this case, the reaction mixture was dissolved in the
minimum volume of ethyl acetate, and this solution was
charged on a silica column. A mixture of ethyl acetate and pet-
roleum ether (40–60 °C) (from 1 : 10 to 1 : 4 v/v), added of tri-
ethylamine (5% v/v), was used as eluent to collect the fraction
corresponding to the product. Yield 132 mg, 64%. Anal. Calcd
for C11H12FNO2: C, 63.15; H, 5.78; N, 6.69. Found: C, 63.20; H,
5.77; N, 6.63. 1H NMR (CDCl3): δ/ppm = 7.34–7.30, 7.07–7.03
(m, 4H, C6H4); 5.45 (t, 3JHH = 8.3 Hz, 1H, CH); 3.91 (t, 3JHH =
8.3 Hz, 1H, CH2); 3.41–3.25 (m, 3H, CH2 + NCH2); 1.15 (t, 3JHH

= 7.3 Hz, 3H, CH3).
13C NMR (CDCl3): δ/ppm = 162.7 (d, 1JCF =

246.6 Hz, CF); 161.5 (CvO); 134.6 (d), 127.5 (d), 115.8 (d)
(C6H4); 73.72 (CH); 51.5 (CH2); 38.8 (NCH2); 12.4 (CH3).
19F NMR (CDCl3): δ/ppm = −112.9.

DFT calculations

The ground- and transition state structures were optimized
using the hybrid B3PW91 DFT functional39 in combination
with Ahlrichs’ split-valence-polarized basis set, with ECP on
the iodine atom.40 The C-PCM implicit solvation model was
added to ωB97X calculations, considering a dielectric constant
ε = 8.9.41 The stationary points were characterized by IR simu-
lations (harmonic approximation), from which zero-point
vibrational energies and thermal corrections (T = 25 °C) were
obtained. The software used was Gaussian 09.42 Cartesian
coordinates of the DFT-optimized structures are collected in a
separated .xyz file.
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