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ABSTRACT: The development of nonprecious catalysts for hydrogenation of
organic molecules is of great importance in heterogeneous catalysis. Herein, we
report a series of N-doped hollow carbon frameworks encompassing cobalt
nanoparticles (denoted as Co@NHF-900) constructed as a new kind of reusable
catalyst for this purpose by pyrolysis of ZIF-8@Co−dopamine under Ar
atmospheres. Notably, the framework of ZIF-8 is essential for efficient catalyst
by providing a carbon framework to support Co−dopamine. The experimental
results reveal that the ZIF-8 renders a large hollow place within the catalysts,
allowing the enrichment of the substrate and windows of the hollow structure and
the ease of mass transfer of products during the reaction. All of the virtues made
Co@NHF-900 a good candidate for hydrogenation of quinolines with high activity
(TOF value of 119 h−1, which is several times than that of akin catalysts) and
chemoselectivity.

■ INTRODUCTION
In view of many byproducts generated during the chemical
synthesis process, developing a high-performance catalytic

system is of great demand and arouses wide attention.1−3

Consequently, there is an urgent need to design and synthesize
catalysts with high activity and selectivity.4−6 In this regard, the
non-noble metal catalysts, such as Fe- and Co-based materials,
have attracted enormous interest due to their low cost and high
selectivity in comparison to the precious metal-based
catalysts.7−10 Nowadays, unremitting efforts have been devoted
to selective hydrogenation reactions using inexpensive metal-
based catalysts.11,12 Especially, the selective hydrogenation of
azacyclo compounds with heterogeneous cobalt or other metal-
based catalysts using H2 as well as alternative transfer hydrogen
resources has been studied. This priority of the heterogeneous
catalytic system is because the heterogeneous catalysts can be
easily separated from the reaction system, although the structure
of the catalysts is ambiguous to precisely recognize at atomic

levels.13,14 Well-dispersed non-noble metal nanoparticles
supported by nitrogen-doped porous carbon have attracted
growing interest due to their well confirmable structure.15−17

As a specifically valuable building unit in synthetic bioactive
compounds, 1,2,3,4-tetrahydroquinoline (THQ) has mounts of
applications in agrochemicals, drugs, and biomolecules.18,19

Moreover, the atom-efficient methodology to obtain THQ often
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Scheme 1. Graphical Illustration of the Synthesis of Co@
NHF-900

Table 1. Activity of Hydrogenation of Quinoline with
Different Co-Based Catalystsa

entries catalysts conv. (%) select. (%)

1 Coac@NHF-900 <65 >99
2 Co@NHF-700 0 >99
3 Co@NHF-800 0 >99
4 Co@NHF-900 >99 >99

aReaction conditions: 0.2 mmol quinoline, 1 mmol AB (named
ammonia borane), 5 mg of a catalyst, 15 mL of a solvent (EtOH/
H2O; 1:2), 60 °C, 2 h. Conversions are determined by gas
chromatography−mass spectrometry (GC-MS) using n-hexadecane
as the standard.
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uses the hydrogenation of quinoline; the reduction process,
however, is still challenging due to the catalyst deactivation,
which was caused by the easy combination between the metal
centers and the nitrogen atoms in the quinoline molecule or its
other reduced products.20−22 Although various heterogeneous
catalysts have been successfully developed, this reduction still
depends on the noble metal-based catalysts. Hence, designing
nonprecious metal-based catalysts with high activity and
selectivity for the hydrogenation of quinolines under milder
conditions is essential.
Zeolitic imidazolate frameworks (ZIFs) possess high porosity

that can enrich a substrate to increase the collision probability of
reactants,23−25 which has been selected as the template to
synthesize the carbon-supported catalysts and is extremely
attractive in recent years.26−28 As a typical example, the
nanoparticles obtained by pyrolysis of ZIF-8 and ZIF-67 show
less catalytic activity toward hydrogenation reactions. Taking
the above reasons in account and considering our previous
work,29−31 here, we synthesized N-doping hollow graphitic
carbon-supported Co core−shell nanoparticles (named Co@
NHF-900) by encapsulating ZIF-8 in the cobalt−dopamine and
subsequent pyrolysis, which is described in Scheme 1. All of the
as-synthesized samples were tested for the liquid-phase
hydrogenation of quinoline at 60 °C. Catalytic experiments
exhibit that Co@NHF-900 possesses the highest activity and
selectivity, which allows the overall conversion into the target
product, THQ in 99%. Obviously, the pyrolysis temperature and
the cobalt salts strongly influence the catalytic performance: the
materials have the highest activity at the calcined temperature of
900 °C, and the conversion reduces to 65% with the cobalt

nitrate being replaced by Co(III) acetylacetonate (denoted as
Coac@NHF-900) (Table 1).

■ RESULTS AND DISCUSSION
To investigate the superb activity and selectivity of Co@NHF-
900, the characterization of its structure was carried out by X-ray
diffraction (XRD), scanning electron microscopy (SEM), high-

Figure 1. (a and b) SEM images of Co−dapamine@ZIF-8 and Co@NHF-900, respectively; (c and d) TEM and high-resolution TEM images of Co@
NHF-900; (e−i) energy-dispersive system (EDS) mapping of Co@NHF-900; and (j−l) XPS spectra of Co, N, and C of Co@NHF-900, respectively.

Table 2. Reduction of Quinoline Derivatives by Co@NHF-
900a

aNote: reaction conditions are the same as presented in Table 1.
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resolution transmission electron microscopy (HRTEM),
Brunauer−Emmett−Teller (BET) techniques, and X-ray photo-
electron spectroscopy (XPS). The XRD patterns show that
Co@NHF-900 exhibits cobalt phase with the PDF card no. 15-
0806; however, in the case of Coac@NHF-900, XRD patterns
show the presence of both metallic and oxide cobalt phases (Co
and CoO, Figure S2) which may cause the decrease in the
activity. Therefore the high activity may be attributed to Co
NPs. Compared with the other catalysts, Co@NHF-900 shows
larger BET surface areas of 730 m2/g (Figure S4, Co@NHF-700
and Co@NHF-800 show 414 and 467 m2/g, respectively),
which causes concentration enrichment of the substrate to
enhance the catalysis process. More importantly, the large pore
size of the catalyst also exposes more active site to facilitate the
catalysis process.
There is a large cave of the carbon framework as a result of the

pyrolysis of ZIF-8, as shown in Figure 1a−c, and there are no
obviously big particles on the surface of the polyhedral
framework. Furthermore, the HRTEM analysis of the catalyst
reveals that the particle size of Co@NHF-900 is in the range of
ac. 8−10 nm; most of the particles were encapsulated in N-
doped carbon to form a core−shell structure (Figure 1d,e), and
all elements are scattered well (Figure 1f−i). Moreover, XPS
analysis was performed to confirm the nature of Co species of
the active catalyst (Figure 1j−l). Peaks observed at 778.48,
780.85, and 796.39 eV corresponded to Co0 and Co−N species,
which illustrates that the metal particles were anchored on the
inner surface of the shell through coordinated bonds.32,33 In
addition, a series of peaks appear at 398.47, 400.40, and 401.57
eV, indicating the presence of pyridinic N and graphitic N in the
N-doping graphitic carbon framework.34

Considering the successful catalysis for hydrogenation of
quinoline, the catalyst was used for the derivatives of quinoline
with different functional groups, which are listed in Table 2. It is
noteworthy that the derivatives with both electron-withdrawing
and electron-donating groups are hydrogenated to obtain the
corresponding products with a high conversion of up to 99% and
without alkyl group removal and dehalogenation (entries 1−9).
Interestingly, although there are competitive unsaturated
groups, the catalyst still shows outstanding activity and excellent
selectivity (entries 10 and 12). The extreme results highlight the
activity and its eminent virtues compared with those of noble
metal catalysts in the process of hydrogenation of quinolines.
A time-dependent experiment of reduction of quinoline with

an optimal catalyst and using ammonia borane as the hydrogen
resource was used to conduct the reaction kinetic investigation
(Figure 2a). The kinetic curve indicates that the conversion is
fast within the first hour and without any byproducts. To further

prove the practicability of the optimal catalyst, its stability and
recyclability have been tested. As shown in Figure 2b, due to the
N-doping carbon shell, the metal core as the active site can be
protected from etching and aggregating, leading to Co@NHF-
900 having good recyclability, which can be reused at least seven
times without any loss in the conversion. More interestingly, the
catalyst can be separated easily from the reaction medium by the
magnetism of the nature of the catalyst, which solves the
problem that catalysts are hard to separate during the catalysis
process in the practical industry.

■ CONCLUSIONS
In summary, a hollow N-doping carbon framework supported
core−shell catalyst of Co@NHF-900 has been designed and
constructed by template synthesis of the Co−dopamine coating
on the ZIF-8 and subsequent pyrolysis. It was evidenced that the
catalyst shows excellent performance for hydrogenation of
quinolines due to the large surface areas of the carbon
framework, which facilitates substrate enrichment and transfer,
and the well-distributed Co particles, which provide uniform
active sites. Meanwhile, the Co-based catalyst can be separated
easily by magnetism and reused at least seven times due to the
carbon shell that well protects the nanoparticles from leaching in
the solvent. This work paves a new path to design hollow
structures with uniformly distributed nanoparticles and
promotes the performance of heterogeneous catalytic reactions.
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