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Abstract 
Isosteviol, a prodrug used to be obtained via Wagner–Meerwein rearrangement from steviol with low yield and long reac-
tion time. Herein, an in-situ separation-coupling-reaction is presented to prepare isosteviol from the natural sweetener stevio-
side. Simply with in-situ water-washing, the product containing 92.98% purity of isosteviol was obtained with a stevioside 
conversion of 97.23% from a packet bed reactor without further separation. Within the assayed inorganic acid, organic acids 
and acidic ionic liquids, the acidic ion-exchange resins provided higher product specificity towards isosteviol. Furthermore, 
comparing to 5-Fluorouracil, the product presented similar and even stronger inhibition on proliferation of the assayed human 
cancer cells in a time and dose-dependence by causing cell phase arrest. Isosteviol treatment caused G1 arrest on SGC-7901, 
HCT-8 and HCT-116 cells, S arrest on HepG2, Huh-7 and HepG3B cells, and G2 arrest on MGC-803 cells, respectively.

Graphic abstract
Reaction coupling separation for isosteviol production catalyzed by acidic ion-exchange resin.
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Introduction

Isosteviol, (4α, 8β, 13β)-13-Methyl-16-oxo-17-norkauran-
18-oic acid, was reported on its structure, stereochemistry 
[1] and absolute configuration in 1960s [2]. To date, isoste-
viol has been mostly recognizing as a popular starting mate-
rial for drug synthesis [3–7]; for instance, as precursors of 
synthetic drugs for the treatment of cancer and inflammation 
[8, 9].

Recently, isosteviol itself has gained intensive inter-
ests as it possesses various biological activities [10], such 
as reducing vasoconstriction [11], improving glucose and 
insulin sensitivity, lowering plasma triglycerides and weight, 
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and regulating the gene expression profile of key insulin 
regulatory genes for the treatment of type II diabetes [12, 
13], relieving I/R injury in rat brains [14] and so on [6]. 
Therefore, efficient massive production of isosteviol with 
high purity is expected and benefit to its application.

Isosteviol can be obtained by Wagner–Meerwein rear-
rangement from steviol [15], the latter is a product hydro-
lyzed from natural glycosyl steviosides such as stevioside 
or rebaudiosides catalyzed by acids (Scheme 1), such as 
hydrochloric acid, sulfuric acid and hydrobromic [16–18]. 
However, the acidic hydrolysis of glycosyl steviosides would 
simultaneously yield steviol and endocyclic isomers of ste-
viol [19, 20]. For example, an analogous mixture of isoste-
viol, steviol, and Δ15-steviol was obtained using 0.7% of 
hydrochloric acid, and the yield of isosteviol was only 36% 
[16]. Cherney et al. synthesized steviol by multistep reac-
tions, which was then converted to isosteviol by the acid-
induced rearrangement [21]. In another case, an isosteviol 
yield of 83% along with steviol (17% yield) was obtained, 
assisted with  FeCl3 from hydrolyzing stevioside at a reflex-
ing temperature [20]. Enzymatic hydrolysis may provide 
higher product specificity on isosteviol. Milagre disclosed 
that stevioside was hydrolyzed with the catalysis of pancrea-
tin and offered isosteviol in a yield of 93.9% in 7 days [22].

Therefore, quick and affordable preparation of isosteviol 
might be still expected on acidic hydrolysis of stevioside. 
In this experiment, aiming at finding a practicable process 
to produce isosteviol in high yields, various acidic catalysts 
including acids, acidic ionic liquids and cation-exchange res-
ins were investigated on their catalysis activity and selec-
tivity to find a suitable catalyst for isosteviol production; 
subsequently, an in-situ separation coupling production of 
isosteviol from hydrolyzing stevioside was designed and 

conducted. Meanwhile, to elucidate isosteviol’s cytotoxic-
ity and anticancer activity, the cytotoxicity of isosteviol on 
several human normal cells and carcinoma cell lines was 
investigated as well.

Materials and methods

Chemicals

Stevioside (97% of HPLC purity) was from Qing-
dao Runde Biotechnology Co., Ltd (Qingdao, China). 
 Na2CO3,  CH3COONa,  CH3COOH,  Na2HPO4⋅12H2O, 
 NaH2PO4⋅2H2O, NaCl, KCl, dimethyl sulfoxide (DMSO, 
BR) and 5-Fluorouracil (5-FU, BR) were purchased from 
Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). 
Isosteviol (97% of HPLC purity) was from Nanjing Spring & 
Autumn Biological Engineering Co., Ltd (Shanghai, China). 
Acidic ionic liquids  [MIMPS]3PWO40,  [C3IMPS]3PWO40, 
 [C5IMPS]3PWO40,  [C7IMPS]3PWO40,  H3PWO40 were pro-
vided by Dr Wei Li from School of Chemical and Materials 
Engineering at Jiangnan University. Resin 732  (Na+ form, 
styrene–divinyl benzene copolymer, total exchange capac-
ity of 4.6 mmol/g  (Na+ form), resin 0014  (Na+ form, sty-
rene–divinyl benzene copolymer, total exchange capacity of 
4.5 mmol/g), resin 00112  (Na+ form, matrix styrene–divinyl 
benzene copolymer, total exchange capacity of 4.0 mmol/g) 
and resin D113  (H+ form, acrylic copolymer, total exchange 
capacity of 10.8 mmol/g) cation-exchange resins were pur-
chased from Sinopharm Chemical Reagent Co., Ltd (Shang-
hai, China). Trypsin–EDTA solution, propidium iodide (PI), 
Triton X-100, endonuclease (RNase A), 3-(4,5-dimethylth-
iazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 

Scheme 1  Acid-catalyzed preparation of isosteviol from hydrolysis of stevioside
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penicillin–streptomycin solution (100×) were purchased 
from Beyotime Institute of Biotechnology Co., Ltd (Shang-
hai, China). All other reagents were of analytical grade and 
used as received unless otherwise stated.

Cell culture

The human moderately differentiated gastric cancer cell 
SGC-7901, human colon adenocarcinoma cell Caco-2, 
human ileocecal adenocarcinoma epithelial cell HCT-8 
and human colorectal cell HCT 116 were purchased from 
Shanghai Institute of Biochemistry and Cell Biology, Chi-
nese Academy of Science. The human gastric mucosal epi-
thelial cell GES-1, human poorly differentiated gastric can-
cer cell MGC-803, three hepatoma cells, Huh-7 (mutated 
p53), HepG2 (wild-type p53) and Hep3B (p53 deleted) 
were purchased from the American Type Culture Collec-
tion. SGC-7901 was cultured in RPMI 1640 medium, and 
other cells were cultured in DMEM medium containing 10% 
fetal bovine serum, 1% glutamine (200 mmol/L), penicillin 
(100 IU/mL), and streptomycin (100 mg/L) in a humidified 
5%  CO2 atmosphere at 37 °C before use.

Hydrolysis of stevioside in a batch reactor

The prepared selected cation exchange resins in  Na+ form 
was converted to  H+: cation exchange resins were condi-
tioned in hydrochloric acid solution (1 mol/L HCl) and then 
several washings with deionized water to remove excess acid 
[23]. In a typical reaction, 20 mL stevioside aqueous solu-
tion (20 g/L) in a 50 mL Erlenmeyer flask was kept at 95 °C 
for 30 min, then mixed with the cation-exchange resin and 
shaken in a water bath at 95 °C for 24 h. The precipitated 
white powder was filtered and washed with warm DI water 
until no stevioside was detectable from the eluting solution. 
The powder was then recrystallized from 95% aqueous 
methanol, and white needles were obtained as the final prod-
uct. The product was characterized with NMR (AVANCE III 
400 MHz Digital NMR Spectrometer (Bruker, USA)) and 
LC–MS (BEH HILIC C18 column; mobile phase: acetoni-
trile and water (75:25, v/v), 0.3 mL/min; column tempera-
ture: 30 °C; collision energy: 20–55 eV; polarity:  ES−)[24, 
25]. The conversion of stevioside (St) was calculated based 
on HPLC analysis with the calibration of a standard solution 
of stevioside, described as following:

where C0 and Ct is the initial and real-time concentration 
(g/L) of stevioside in the reaction mixture, respectively. The 
stevioside concentration was determined with a standard 
calibration curve.

St conversion=
C0 − C

t

C0

× 100%

The yield of isosteviol or steviol was production yield, 
calculated based on the whole analysis of precipitated solid 
with mass measurement. But the yields of other byprod-
ucts, if needed, were calculated based on their corresponding 
HPLC chromatograph peak area  (Ax) with chromatograph 
peak area of stevioside  (ASt) as the reference, calculated as 
follows:

All tests were performed in triplicate at least; all data 
presented were with standard deviations less than 5%.

MTT assay on cell proliferation

The effect of isosteviol on the proliferation of human carci-
noma or normal cell was evaluated with MTT assay [25–27]. 
The cells in the logarithmic growth phase were digested with 
0.25% trypsin and adjusted to 5,000 cells/well using DMEM 
complete medium. Prior to the isosteviol treatment, 100 μL 
cell suspension was pipetted into each well in 96-well plates 
and cultured for 24 h at 37˚C in 5%CO2. Subsequently, cells 
were incubated with isosteviol at 37 °C in 5%  CO2 for 48 h. 
The culture medium was then removed and 100 μL MTT 
reagent (0.5 mg/mL in culture medium) was added. Follow-
ing an additional 4 h of incubation, the MTT/medium was 
removed and 150 μL of DMSO was added to dissolve the 
formazan crystals. Absorbance of the solution at 570 nm 
was recorded to calculate the inhibition rate on cell growth. 
Chemotherapy agent 5-FU was employed as a positive con-
trast. All measurements were performed in triplicate and 
recorded as means. The inhibition rate was calculated as 
follows:

Cell cycle analysis

The human carcinoma cells were plated at 2 × 105/well in 
6-well plates and treated with isosteviol. After 48 h, the cells 
were then harvested with trypsin, washed three times for 
1 min each, resuspended in cold PBS and fixed in cold (4 
°C) 70% ethanol for 4 h, and kept storage at − 20 °C over-
night. Next, the cells were washed three times for 1 min each 
again and resuspended in PBS containing 40 μg/mL PI and 
0.1 mg/mL RNase (#C1052, Beyotime Institute of Biotech-
nology Co., Ltd, Shanghai, China), and then incubated for 
30 min at room temperature. PI-stained cells were analyzed 
using a flow cytometer and ModFit LT 5.0 software (Verity 
Software House, USA) [26].

Yield =
C
t
× A

x
∕A

st

C0

× 100%

Cell growth inhibition rate (%)

=
A570 of control − A570 of sample

A570 of control
× 100
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Results and discussion

Comparative study with inorganic acids and acidic 
cation‑exchange resins

Four inorganic acids and four organic acids (Fig. 1a), five 
acidic ionic liquids (Fig. 1b), and five cation-exchange resins 
(Fig. 1c) were tested for their product specificity of hydro-
lyzing stevioside(Fig. 1).

As presented in Fig. 1, strong acids (Fig. 1a) mainly 
induced steviol in the hydrolysis products, in accordance 
with that reported in the literature [16] where the yield of 
isosteviol is only 36%; while the middle strong and weak 
acids did not promote hydrolysis of stevioside (Fig. 1a). The 
main products of the hydrolysis catalyzed by acidic ionic 
liquid were isosteviol and steviol, the yield ratio is about 

2:1 (Fig. 1b). Similarly, weak acidic cation-exchange resins 
(D113) did not accelerate the hydrolysis of stevioside; but 
the stronger acidic resins reduced more isosteviol, especially 
the 732 cation-exchange resin, the yield of isosteviol and 
steviol is about 6:1 (Fig. 1c, Run 2). In summary, compared 
to the assayed inorganic acid, organic acids and acidic ionic 
liquids, the acidic ion-exchange resins provided high product 
selectivity towards isosteviol.

Therefore, 732 cation-exchange resin was then chosen 
for the subsequent experiments due to its higher product 
specific activity, in which isosteviol was the main product 
as the IR, LC–MS and NMR profile indicated [16, 28] (see 
also Supporting material, Figs. 1s, 2s, 3s). The product was 
recrystallized with 95% methanol twice, giving white crystal 
needles with a purity of 99% (HPLC). NMR profiles of the 
main product from hydrolysis of stevioside with 732 resin 

Fig. 1  Acidic hydrolysis of stevioside. 95 oC, St 50 g/L,  H+ 10 mol%/
St, 3  h; catalyzed by A (acids): 1- HCl, 2-  H2SO4, 3-  HNO3, 4 
-H3PO4, 5-  CH3COOH, 6-  NH2SO3H, 7-  C2H2O4, 8-  C6H8O7; B 
(acidic ionic liquids): 1-  [MIMPS]3PWO40, 2-  [C3IMPS]3PWO40, 

3-  [C5IMPS]3PWO40, 4-  [C7IMPS]3PWO40, 5-  H3PWO40; C (cat-
ion-exchange resins): 1- 001 × 4, 2- 732, 3- 001 × 12, 4- D113, 5- 
001 × 7.5

Fig. 2  Single factor test of hydrolyzing stevioside catalyzed by 732 cation-exchange resin. A: St 100 g/L,  H+ 15 mol%/St, 10 h; B: 95 °C,  H+ 
15 mol%/St, 10 h; C: 95 °C, St 200 g/L, 10 h; D: 95 °C, 200 g/L,  H+ 15 mol%/St



Bioprocess and Biosystems Engineering 

1 3

are as follows: 1H NMR: (400 MHz, Pyr) δ 14.66 (s, 1H), 
2.66 (dd, J = 18.4, 3.5 Hz, 1H), 2.45 (d, J = 13.0 Hz, 1H), 
2.25–2.11 (m, 1H), 2.10 – 2.01 (m, 2H), 1.78 (d, J = 18.4 Hz, 
1H), 1.66–1.52 (m, 4H), 1.45 (dt, J = 11.4, 4.2 Hz, 3H), 1.35 
(s, 3H), 1.34–1.24 (m, 2H), 1.24–1.03 (m, 4H), 1.02 (s, 
3H), 0.96 (s, 3H), 0.87 (td, J = 13.3, 3.9 Hz, 1H).. 13CNMR 
(101 MHz, Pyr) δ 39.34 (C-1), 19.41 (C-2), 37.21 (C-3), 
43.62(C-4), 56.73 (C-5), 22.17 (C-6), 41.43 (C-7), 48.34 
(C-8), 54.49 (C-9), 38.34 (C-10), 20.35 (C-11), 38.10(C-
12), 39.85 (C-13), 53.98 (C-14), 48.34 (C-15), 224.5 (C-16), 
20.02 (C-17), 29.15 (C-18), 180.04 (C-19), 39.34(C-20).

Reaction coupling separation for isosteviol 
production from stevioside with 732 acidic 
ion‑exchange resin

First of all, using 732 acidic ion-exchange resin as the cata-
lyst, a single factor test was applied to optimize the reaction 
parameters as shown in Fig. 2; where St completely con-
verted with 91.9% of isosteviol yield and 4.8% of steviol 
yield in 24 h (Fig. 2d).

Subsequently, a packed bed reactor was used to utilize 
the resin (Fig. 3), where the reaction coupling separation 

Fig. 3  Reaction coupling 
separation of isosteviol from 
stevioside with 732 acidic ion-
exchange resin

Fig. 4  Hydrolysis of stevioside with the acidic cation exchange resin in the packed bed reactor at 95 °C. 6 g ion exchange resins, a St 20 g/L; b 
flow rate: 5.0 mL/h; c St 20 g/L, flow rate: 5.0 mL/h
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of isosteviol production from stevioside was realized. With 
an in-situ separation, the product with 92.98% purity of 
isosteviol was obtained with a stevioside conversion of 

97.23%, simply after water washing. Considering the pro-
duction strength and production yield, the suitable param-
eters would be obtained as (Fig. 4): 95 °C, 20 g/L of St, 

Fig. 5  Inhibition on human cancer cells proliferation with isosteviol (48 h)
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5.0 mL/h of flow rate and 6 g acidic ion-exchange resin; 
the isosteviol production intensity was up to 1.54 g/L/h 
with 97.23% of St conversion. Except greatly expediting 
the reaction with the pure product, this process can erase 
the need for recrystallizing.

Anticancer potential of isosteviol

As aforementioned, there are many reports on the antican-
cer activity of isosteviol derivative [4, 9, 29]. Isosteviol 
was shown to prevent the growth of human cancer cells 
(human B cell acute lymphoblastoid leukemia cell BALL-
1, human T cell acute lymphoblastic leukemia cell MOLT-4, 
and human gastric cancer cell NUGC-3) with  LD50 values 
of 84–167 μM, and  IC50 value for DNA polymerases was 
64.0 μM [30, 31]. Isosteviol showed exhibited strong inhibi-
tory effects in a two-stage carcinogenesis test using mouse 
skin induced by DMBA and 12-O-tetradecanoylphorbol-
13-acetate (TPA), and the inhibitory was greater than that 
of glycyrrhizin [32].

In this study, nine human cancer cell and normal lines 
were tested with isosteviol treatment (Fig. 5). For compari-
son, 5FU  (LD50 is 115 mg/kg, oral, mouse) was used as the 
positive control in this experiment. And the  LD50 of isoste-
viol is 0.5 g/kg body weight (dogs, rats and mice, oral) [33], 
which is 3 folders of that of 5-FU.

As shown in Fig. 5, isosteviol presented similar inhibition 
as 5-FU, and inhibited the cells viability in a time and dose-
dependent manner (see also Supporting material Fig. 4S). 
Moreover, isosteviol even performed stronger inhibition on 
some cell lines, such as Huh-7 and MGC-803.

Furthermore, flow cytometry analysis was performed 
to determine the cell cycle distribution and population of 
dead cell in isosteviol-treated cells. As it was reported, 5-FU 
(1000 ng/mL) inhibited SW480 and COLO320DM by a tran-
sient G1-S phase arrest [34]. Similarly, as Fig. 6 and Table 1 
indicated, isosteviol also caused cell phase arrest and apop-
tosis. Specifically, isosteviol treatment caused G1 arrest on 
SGC-7901, HCT-8 and HCT-116, S arrest on HepG2, Huh-7 
and HepG3B, G2 arrest on MGC-803, respectively.

Conclusions

In this work, a reaction coupled separation for preparing 
isosteviol was achieved, and for the first time, anticancer 
activity of isosteviol on human cancer cells was preliminar-
ily explored.

With an in-situ separation, simply with water-washing, 
the product with 92.98% purity of isosteviol was obtained 
with a stevioside conversion of 97.23% in a packet bed 
reactor. Compared to the assayed inorganic acid, organic 
acids and acidic ionic liquids, the acidic ion-exchange res-
ins provided high product selectivity towards isosteviol. 
Isosteviol presented similar inhibition on several human 
cancer cell lines as 5-Fluorouracil (5-FU) did, in a time and 
dose-dependent manner through inducing cell phase arrest; 
and it even performed stronger inhibition on Huh-7 and 
MGC-803 cells. Isosteviol treatment caused G1 arrest on 
SGC-7901, HCT-8 and HCT-116 cells, S arrest on HepG2, 
Huh-7 and HepG3B cells, and G2 arrest on MGC-803 cells, 

Fig. 6  Effect of isosteviol on cell cycle distribution in the human gastrointestinal and liver cancer cells
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respectively. This implies isosteviol a hopeful potential on 
anti-cancer activity.
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