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Abstract: The asymmetric synthesis of D-galactose has been com-
pleted in eight steps and in >14% yield from simple starting materi-
alsviaan iterative syn-glycolate aldol strategy.
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Monosaccharides represent a unique family of polyfunc-
tional moleculesthat play an essential part in biochemical
processes. The most common approach for their synthesis
utilises the selective derivatisation and elaboration of the
pre-existing functionality contained within a given
monosaccharide for the synthesis of higher homologues.*
Efficient, asymmetric methodology for the manipulation
of simple, achiral materialsinto monosaccharidesisthere-
fore of considerable merit. Toward this aim a variety of
asymmetric approaches have been developed, including
the use of asymmetric Diels-Alder? and dihydroxylation
reactions® as well as chemoenzymatic approaches*
amongst others.> Perhaps the most general asymmetric ap-
proach to date is that employed by Sharplesset al.,° delin-
eating the synthesis of the L-hexoses via asymmetric
epoxidation from afour carbon starting unit, furnishing L-
galactose in 3% overall yield over nine steps. Any im-
proved asymmetric synthesis of monosaccharides must
utilise efficient and predictable methodology for the con-
trolled production of the multiple stereogenic centres re-
guired in these important targets.

The asymmetric aldol reaction is one of the most reliable
synthetic protocols, capable of the selective formation of
a C—C bond and two stereogenic centres in a predictable
syn- or anti-fashion. Iterative aldol strategies have en-
abled the synthesis of molecular fragments containing
multiple stereogenic centres,” notably for the synthesis of
polypropionates.® The related asymmetric glycolate aldol
reactions of N-acyl oxazolidinones have shown applica-
bility in the synthesis of complex molecular fragments,®
although the generality of this protocol has yet to be fully
realised.’®!! Previous work from this laboratory utilising
SuperQuat oxazolidinone'? chiral auxiliaries have shown
that reduction of N-acyl 5,5-dimethyl-oxazolidinones
with DIBALH allows direct access to highly enantiomer-
ically enriched aldehydes.*® This approach offers signifi-
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cant advantages over the two step reduction and oxidation
protocol typically used to generate aldehydes from N-
acyl oxazolidinones.® The extension and application of
this methodology for the asymmetric synthesis of a hex-
ose monosaccharide is described herein. It was predicted
that the combination of an asymmetric glycolate aldol re-
action combined with subsequent DIBALH reduction
would allow direct access to homochiral O-protected
tetrose 1. Subseguent iterative glycolate aldol reaction
would constitute a further two carbon chain extension,
furnishing polyfunctionalised N-acyl oxazolidinone 2,
which after cleavage of the auxiliary and subsequent re-
duction would furnish the desired hexose 3 (Figure 1).
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The use of two auxiliary directed syn-aldol reactions in
this sequence from N-glycolate oxazolidinone 4 was pre-
dicted to give rise to a hexose with the absolute configu-
ration of D-galactose. Treatment of (S)-N-gylcolate
oxazolidinone 4 with Et,BOTf and i-PrNEt, and subse-
guent reaction with benzyloxyacetaldehyde gave the ex-
pected syn-aldol product (4S2’S3'R)-5. H NMR
spectroscopic analysis of the crude reaction mixture
showed that the d.e. of the reaction was 94%, with purifi-
cation furnishing syn-aldol (452'S3'R)-5 asa single dia-
stereoisomer in 73% vyield.’®® Attempted DIBALH
reduction of unprotected (4S5,2’S.3'R)-5 resulted in a
complex mixture of products, so the hydroxyl functional-
ity was protected as its silyl ether via treatment with
TBDMSCI and imidazole, giving O-silyl protected
(4S52’S3'R)-6 in high yield. As our previous studies
concerning thereduction of a-alkyl substituted N-acyl-ox-
azolidinones with DIBALH had allowed direct access to
the enantiomerically enriched aldehyde,*® reduction of
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protected aldol 6 was similarly expected to yield the re-
quired tetrose 8 directly. However, treatment of 6 with
DIBALH gave the stable N-1'-hydroxy species 7 asasin-
gle diastereoi somer of unknown absolute configuration at
the C(1’) stereogenic centre in 76% isolated yield.'” Al-
though both the high degree of stereoselectivity observed
in this reduction and the intriguing kinetic stability of 7
areof interest, further studieswere directed toward the de-
velopment of aconvenient experimental procedure for the
fragmentation of 7 to the required tetrose. Treatment of 7
with K,COj; (1.4 equiv) in MeOH-H,O (4:1) for fifteen
minutes promoted the required fragmentation, giving the
O-protected D-threose derivative (2S3R)-8' in good
yield and in >95% de (Scheme 1).
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Scheme1l Reagentsand Conditions: (i) Et,BOTf, i-Pr,NEt, benz-
yloxyacetaldehyde, THF, —78 °C; (ii) TBDMSCI, imidazole, DMAP,
DMF, r.t.; (iii) DIBALH, DCM; (iv) K,CO;4 (1.4 equiv), MeOH-H,O
(4:1),r.t.

With homochiral aldehyde (2S,3R)-8 in hand, iteration of
the aldol procedure using (R)-N-glycolate oxazolidinone
4 was pursued, furnishing the syn-aldol product
(4R2R3I'SAR5R)-9 in >95% de by 'H NMR spectro-
scopic analysis of the crude reaction mixture. Purification
on silicafurnished (4R, 2’R,3'S4'R5R)-9 as asingle dia-
stereoisomer in 63% yield. Cleavage of the oxazolidinone
auxiliary was readily achieved by treatment of
(4R2R3ISHRER)-9 with TBAF in HOAc-THF?X
which promoted both desilylation of the C(4) TBDMS
protected hydroxyl group and in situ cyclisation to furnish
lactone 10in 98% yield.?° *H NOE difference experiments
served to confirm the relative configuration within lactone
10, with the absolute configuration following from the
known stereodirecting preference of oxazolidinone auxil-
iariesin simple glycolate aldol reactions (Scheme 2).
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Scheme2 Reagentsand Conditions: (i) Et,BOTf, i-Pr,NEt, THF, —
78 °C; (ii) TBAF, HOAC, THF, r.t.

Reduction of lactone 10 with DIBALH gave 11 asa 2:1
mixture of anomersin 83% yield. Subsequent hydrogena-
tion and recrystallisation gave D-galactose 12 {[a]p?®
+79.8(c 0.5, H,0, 15 min, [a] ,?° +76.8 (c 0.5, H,0, 24 h);
specific rotation of an authentic sample,?* [a]p?° +76.7 (C
0.55, H,0, 15 min), [a]p? +73.3 (¢ 0.55, H,O, 24 h)} with
spectroscopic properties identical to those (including
mixed *H NMR) of an authentic sample (Scheme 3).
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Scheme3 Reagents and Conditions: (i) DIBALH, DCM; (ii) Pd/C,
H, (1 atm), EtOAc-EtOH (5:1).

In conclusion, the use of an auxiliary controlled, iterative
glycolate aldol strategy has enabled the efficient synthesis
of D-galactose 12 in eight steps and in >14% yield. As
both R- and S-enantiomers of the SuperQuat oxazolidino-
ne auxiliary are used in this strategy, this protocol is
equally applicable to the synthesis of L-galactose. Further
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work is currently being directed toward the extension of
this strategy to allow the incorporation of both syn- and
anti-aldol combinations in this iterative, three stage, two
carbon homologation protocol for the synthesis of the set

of D-

and L-hexoses and its application to higher homo-

logues. The automation of this processfor the synthesis of
libraries of monosaccharidesis simultaneously underway.
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Experimental Procedure for Aldol Reactions: CF;SO;H (1.2
equiv) was added to BEt; (1 M in hexanes, 1.2 equiv) at r.t.
then warmed to 40 °C for 10 minutes before cooling to 0 °C
and subsequent addition via cannulato a solution of N-acyl-
oxazolidin-2-one (1 equiv) in CH,Cl,. After 10 minutes, i-
Pr,NEt (1.4 equiv) was added and the reaction mixture
stirred for afurther 20 minutes before cooling to—78 °C and
the addition of freshly distilled aldehyde (1.1 equiv). After
30 minutes the reaction mixture was warmed to 0 °C and
stirred for afurther hour before the addition of MeOH-H,0,
(v/v, 1:1). The reaction mixture was extracted with CH,Cl,,
washed with brine, dried and concentrated in vacuo before
purification by flash column chromatography.
Experimental Procedure for DIBALH Reduction: DIBALH
(1 M in hexanes, 2 equiv) was added to a stirred solution of
N-acyl-oxazolidin-2-one (1 equiv) in anhydrous CH,Cl, at
—78 °C. After 30 minutes, the reaction mixture was
guenched with saturated agueous NH,Cl solution and stirred
for afurther 20 minutes. The resultant emulsion wasfiltered
through Celite®, dried and concentrated in vacuo before
purification by flash column chromatography.

IH NMR datafor tetrose 8; 8, (400 MHz, CDCl,) 0.01, 0.04
[2x 3H, s, Si(CHy),t-Bu], 0.86 [9 H, s, SIC(CH,)4], 3.53[1
H, dd, J=9.8 Hz, 4.9, C(4)H,], 3.61[1 H, dd, J = 9.8 Hz,
5.6, C(4)Hg], 3.88 [1 H, dd, J=4.5Hz, 1.3, C(2H], 4.16—
4.19[1H, m, C(3)H], 448 [2H, ABq, J = 12.2 Hz,
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OCH,Ph], 457 [1 H, AB, J = 12.0 Hz, C(2)OCHHgPh],
4.77[1H, AB, J=12.0Hz, C(2)OCHHgPh], 7.27-7.37 (10
H, m, PhH), 9.76 (1 H, d, J = 1.3 Hz, CHO).

(a) Smith, A. B. Ill; Ott, G. R. J. Am. Chem. Soc. 1996, 118,
13095. (b) Smith, A. B. l11; Chen, S. S-Y.; Nelson, F. C.;
Reichert, R. C.; Salvatore, B. A. J. Am. Chem. Soc. 1995,
117, 12017.

IH NMR datafor lactone 10; 8, (400 MHz, CDCl;) 2.56 (1
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C(2)OCH HgPh], 4.85[1H, d, J= 11.2 Hz,
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C(2)OCH,HgPh], 7.21-7.43 (15 H, m, PhH).
Commercially available from the Aldrich Chemical
company.
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