Accepted Manuscript

Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors

Chen Chen, Xinying Yan, Hao Fang, Xuben Hou

PII: S0223-5234(19)30687-7

DOI: https://doi.org/10.1016/j.ejmech.2019.111563

Article Number: 111563

Reference: EJMECH 111563

To appear in: European Journal of Medicinal Chemistry

Received Date: 19 April 2019

Revised Date: 23 July 2019

Accepted Date: 23 July 2019

Please cite this article as: C. Chen, X. Yan, H. Fang, X. Hou, Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors, *European Journal of Medicinal Chemistry* (2019), doi: https://doi.org/10.1016/j.ejmech.2019.111563.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Сра.	IC ₅₀ (μM)	IC ₅₀ (μM)
5e	0.70±0.02	0.66±0.01

1 Design, synthesis and preliminary bioactivity evaluations of

2 8-hydroxyquinoline derivatives as matrix metalloproteinase

3 (MMP) inhibitors

4 Chen Chen^a, Xinying Yang^a, Hao Fang^a, Xuben Hou^{a,*}

6 ^a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education),

7 School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan,

- 8 Shandong, PR China
- 9

5

10

11 *Address correspondence to this author:

12 Prof. Xuben Hou, Department of Medicinal Chemistry, School of Pharmaceutical Sciences,

- 13 Shandong University, 44 West Wenhua Road, Jinan, PR China.
- 14 E-mail: hxb@sdu.edu.cn
- 15 Tel. 86-531-88382009
- 16 Fax. 86-531-88382548
- 17

18 Abstract: Matrix metalloproteinases (MMPs) play important roles in many diseases including 19 cancer. With moderate metal-binding affinity, 8-hydroxyquinoline has gained much interest in 20 current drug design and development. Specially, it has been reported that 8-hydroxyquinoline 21 derivatives serve as MMP-2 inhibitors with micromolar IC50 values. In the current study, a series 22 of 8-hydroxyquinoline derivatives were designed and synthesized as new MMP-2 and MMP-9 23 inhibitors. The most active compounds 5e and 5h not only displayed good inhibitory activities 24 against MMP-2/9 with IC_{50} at submicromolar level, but also possessed potent anti-proliferative, 25 anti-invasive and anti-angiogenesis activity in A549 cell line. Western blot also revealed that 5e 26 and 5h down-regulate the expression of MMP-2 and MMP-9 in A549 cell line. Moreover, flow 27 cytometry analysis indicated that compound 5e could promote apoptosis of A549 cells in vitro. 28 Molecular docking analysis also revealed favorable binding modes of 5e in the active sites of 29 MMP-2 and MMP-9.

3031 Keywords:

- 32 8-hydroxyquinoline
- 33 MMP-2/9 inhibitors
- 34 Anti-migration/invasion
- 35 Anti-angiogenesis
- 36
- 37
- 38
- 39
- 40

1 1. Introduction

11 12

13

2 Matrix metalloproteases (MMPs) are zinc-dependent endopeptidases that proteolytically 3 degrade various components of the extracellular matrix (ECM). To date, at least 24 MMPs have 4 been identified in human, which could be classified into five subfamilies based on their 5 specificities [1]. Among various MMPs, MMP-2 and MMP-9 (also known as gelatinase A and B) 6 serve as important gelatinases. The structures of both MMP-2 and MMP-9 consist of an 7 N-terminal predomain, a prodomain and a catalytic domain with a zinc-binding site (Fig. 1). The 8 predomain could guide gelatinases to the endoplasmic reticulum and the prodomain could 9 maintain the latency of the gelatinases. The catalytic domain of MMP-2 and MMP-9 also 10 comprises three repeatedly collagen-binding type II of fibronectin (Fi) inserts.

Fig. 1. Structures of MMP-2 and MMP-9.

14 MMP-2 and MMP-9 play critical roles in tumor proliferation, migration, invasion and 15 angiogenesis. For example, MMP-2 and MMP-9 could induce the release of 16 cell-membrane-precursors of growth factors, such as insulin-like growth factors (IGFs) and 17 epidermal growth factor receptor (EGFR) ligands, which promote tumor proliferation [2]. 18 Moreover, MMP-2 and MMP-9 could regulate proliferation signals by shedding and activating the 19 transforming growth factor TGF- β [3]. The ECM is a natural barrier that prevents tumor cell 20 invasion and metastasis [4]. Since MMP-2 and MMP-9 exert proteolytic activities and degrade 21 physical barriers, developing MMP-2/9 inhibitors should prevent tumor cell invasion and 22 metastasis. During tumor angiogenesis progression, MMP-2 and MMP-9 play critical roles through 23 participating in the degradation of the vascular basement membrane and remodeling of the ECM [5]. 24 MMP-2 and MMP-9 are also known as "angiogenic switches" which promote tumor vascularization 25 [6]. Expression of both MMP-2 and MMP-9 are upregulated in angiogenic lesions. MMP-9 can 26 release VEGF to render normal islets angiogenic [7]. When the MMP-2 expression is 27 down-regulated by antisense oligonucleotides, tumor cells lose their angiogenic ability and tumor 28 growth is inhibited [8]. It had been reported that MMP inhibitors could induce cell apoptosis [9, 29 10] and down-regulate MMP-2 or MMP-9 expression [9]. For example, previously reported 30 MMP-2/9 inhibitor could interact synergistically with ligands of the TNF receptor superfamily to 31 induce apoptosis in a cell-type-specific manner [11]. Therefore, inhibition of MMP-2/9 serves as a 32 potentially valuable strategy for anti-cancer drug design and development.

Hydroxamic acids derivatives are the most common MMPs inhibitors, however, several
hydroxamate-based MMP inhibitors failed in clinical trial due to low isoform selectivity and
various toxicities, such as joint stiffness, swelling and arthralgia[12]. Currently, development of
non-hydroxamate inhibitors against specific MMPs is of foremost interest. 8-Hydroxyquinoline is
an important scaffold in drug development [13] and its derivatives (e.g. Clioquinol) have already
been used in clinical therapy [14]. Previously, Jacobsen and coworkers screened hundreds of
fragments and found that 8-hydroxyquinoline possessed inhibitory activity against MMPs [15].

- 1 Further structural modification suggested that aromatic substitutions at either the 5- or 7-positions
- 2 of 8-hydroxyquinoline could yield MMP-2 inhibitors (Compound A and B in Fig. 2).

Fig. 2. Reported MMP inhibitors.

4 5

3

6 As far as the structure of MMPIs is concerned, it should contain a zinc binding group and a 7 chemical moiety protruding into the deep and hydrophobic S1' pocket [16]. For instance, known 8 MMP inhibitor **NNGH** (Fig.2, MMP-8, -9, -12, -13, and -20 with K_i values of 9, 2.6, 4.3, 3.1, and 9 17 nM, respectively) mainly interacts with the S1' pocket[17]. Docking analysis (Fig. 3) 10 suggested that 8-hydroxyquinoline chelated the zinc ion and lead compound \mathbf{B} is surrounded by 11 less occupied pockets (e.g. S1' pocket and S1 pocket). Inspired by these analyses above, we 12 designed a new series of MMP inhibitors using 8-hydroxyquinoline as the zinc binding group. 13 Flexible linkers with different lengths were introduced between 8-hydroxyquinoline and aromatic 14 substitutions of quinoline to improve interactions with these pockets, especially interactions with 15 S1' pocket. This paper describes the synthesis and evaluation of these compounds, as well as their 16 effects on cancer proliferation, migration, angiogenesis and apoptosis. 17

18 19

Fig. 3. Predicted binding mode of compound **B** against MMP-2.

20

21 2. Results and discussion

22 **2.1.** Chemistry

The synthetic routes of all target compounds are outlined in Schemes 1 and 2. As shown in Scheme 1, commercially available starting materials **1a-1e** were protected with a Boc group and then coupled with different amines. Amides **3a-3j** were converted to intermediates **4a-4j** by deprotection of the amine. Amines **4a-4j** were synthesized according to literatures [18, 19]. Then, compounds **4a-4j** were reacted with 5-chloro-8-hydroxyquinoline-7-carbaldehyde or

- 1 8-hydroxyquinoline-5-carbaldehyde *via* reductive amination to obtain target compounds **5a-5s**. As
- 2 shown in Scheme 2, compound 7 was synthesized by protecting the OH group of 6. Compounds
- 3 9a-9f were afforded via 8a-f reacting with N-methylaniline, 2-methylbenzimidazole and saccharin
- 4 according to published literatures [20-22]. Intermediate 7 underwent a coupling reaction with 9a-f
- 5 to provide **10a-11i**. Deprotection of the TBS group yielded the target compounds **11a-11i**.
- 6

7

8 Scheme 1. Synthesis of target compounds 5a-s. Reagents and conditions: (a) (Boc)₂O, 1,4-dioxane,
9 1M aq NaOH, rt, 8h; (b) R₁-NH₂, EDCI, HOBT, DCM, rt, 6h; (c) HCl-AcOEt (d)
10 5-chloro-8-hydroxyquinoline-7-carbaldehyde or 8-hydroxyquinoline-5-carbaldehyde, MeOH, rt,
11 4h; NaBH₄, rt, 1h.

12

Scheme 2. Synthesis of target compounds 11a-i. Reagents and conditions: (a) TBSCl, imidazole,
DCM; (b) R₃-H, K₂CO₃, DMF, rt or 120□; (c) oxalyl chloride, DCM, rt, 1h; NaHCO₃, DCM, rt,
5h; (d) HCl, MeOH.

16

17 2.2. MMP-2 and MMP-9 inhibitory activity

18 The inhibitory activities against MMP-2 and MMP-9 of these quinoline derivatives were 19 determined using Colorimetric Drug Discovery Kit (BML-AK408, BML-AK410, Enzo®Life 20 Sciences). Known MMP inhibitors (Compound A [15], NNGH [23] and Prinomastat [12]) were 21 used as positive control. As shown in Table 1, target compounds with aromatic substitutions at the 22 5-positions of quinoline are ineffective against MMP-2 and MMP-9, with only 5m, 5o, 5s, 11c and 23 11d exhibiting obvious MMP inhibition (IC₅₀ < 10 μ M). In contrast, compounds 5a-5j, which 24 possess aromatic substitutions at the 7-positions, showed good inhibitory activities against 25 MMP-2 and MMP-9. In addition, it seems that the various lengths of linkers have different 26 influence on MMP inhibitory activity. For compounds 5a-5e, 5e with five-methylene linker 27 displayed the most potent inhibitory activity against MMP-2. Among compounds 5f-5j, compound

- 1 **5h** with three-methylene linker showed the best inhibitory activity with lowest IC_{50} values. These
- 2 results revealed the importance of a suitable linker length in the inhibition of MMPs.

3 It should be noted that **5e** and **5h** are inhibitors of both MMP-2 and MMP-9 with IC_{50} values

4 ranging from 0.66 μ M to 1.23 μ M. On the other hand, compound 11c and 11d displayed

5 selectivity of MMP-2 over MMP-9 (more than 7-fold). The IC_{50} values of **11c** and **11d** against

6 MMP-2 are 7.46 μ M and 6.22 μ M, whereas their inhibition ratios for MMP-9 are 35% and 26% at

- 7 50 μ M (Supplementary material Table S2).
- 8 9

	R ₁ -N ()-I	IJ.	CI N OH				R ₃		н
	5a	-5j		он 5k-5s			>	11a-11I	
Cpd.	R ₁	n	MMP-2	MMP-9	Cpd.	R_3	n	MMP-2	MMP-9
			$IC_{50}^{a}(\mu M)$	$IC_{50}^{a}(\mu M)$		Ċ		$IC_{50}{}^{a}(\mu M)$	$IC_{50}{}^{a}(\mu M)$
5a	Ph-	1	3.2±0.52	2.1±0.33	11a	Qyx	2	>10	>10
5b	Ph-	2	3.3±0.01	3.5±0.01	11b	Qyx	3	>10	>10
5c	Ph-	3	3.8±0.48	3.2±0.09	11c	QNX	4	7.5±0.60	>10
5d	Ph-	4	3.0±0.57	3.6±0.21	11d	Qyx	5	6.2±0.83	>10
5e	Ph-	5	0.70 ± 0.02	0.66±0.01	11e	$\operatorname{Ch}_{\mathrm{N}}^{\mathrm{N}}$	2	>10	>10
5f	\propto	1	8.8±0.34	>10	11f	$\operatorname{Ci}_{\mathcal{F}}^{n}$	3	>10	>10
5g	\propto	2	>10	>10	11g		4	>10	>10
5h	ст ^х	3	0.81 ± 0.14	1.3±0.09	11h		5	>10	>10
5i	ст ^с	4	7.6±0.76	3.1±0.05	11i	сц ⁴ н	2	>10	>10
5ј	¢,	5	3.6±0.50	1.7±0.48	11j	Щ.	3	>10	>10
5k	Ph-	1	>10	>10	11k	СЦ ⁴	4	>10	>10
51	Ph-	2	>10	>10	111	ଔ୍	5	>10	>10
5m	Ph-	3	5.7±1.1	5.1±0.30					
5n	Ph-	4	>10	>10					
50	Ph-	5	8.8±0.19	6.0±0.21					
5p	Ph-	6	>10	>10					
5q	ск-́	2	>10	>10					
5r	of.	3	>10	>10					
5s	сц.)4	8.8±0.19	5.3±0.14					
Α			8.8±0.21	11±0.47					
NNGH			0.0091 ± 0.0021	0.0088 ± 0.0016					
Prinomasta	ıt		0.0018 ± 0.00034	0.0033 ± 0.00017					

¹⁰

^a IC₅₀ were expressed as the mean \pm standard deviation of three separate determinations

12 2.3. Molecular docking study

Molecular docking studies were performed to investigate the binding modes of our newinhibitors in the active sites of MMP-2 and MMP-9. The most potent MMP-2/9 inhibitor

15 compound **5e** displayed favorable interactions with both MMP-2 and MMP-9 (**Fig. 4** and **Fig. 5**).

¹¹

1 In the case of MMP-2 (Fig. 4), the 8-hydroxyquinoline of 5e chelates the zinc ion through the N 2 atom and the OH group. Importantly, the 6-(methyleneamino)-N-phenylhexanamide of 5e inserted 3 into the hydrophobic S1' pocket of MMP-2 enzyme formed by Leu82, Leu83, Tyr142, Ile141, 4 Pro140, Ala139 and Leu116. In addition, hydrogen bond interactions could be found between 5 compound **5e** and amino acid residues at the enzyme active site (Ala139 and Arg149). Regarding 6 the docking result of **5e** with MMP-9 (Fig. 5), the 8-hydroxyquinoline also chelates with zinc ion. 7 The side chain of 5e could enter into the hydrophobic S1' pocket surrounded by amino acid 8 residues Leu397, Tyr420, Leu188 and Glu402. Hydrogen bonds with Glu402 of MMP-9 were 9 observed in the predicted 5e-MMP-9 complex. Some literatures reported that the big and 10 hydrophobic S1' pocket was more important for MMP inhibition than the small S2' pocket [16]. Compared with the predicted binding mode of compound B (Fig. 3), the improved MMPs 11 12 inhibition activity of 5e may come from its good interactions with the S1' pockets.

13 Moreover, we predicted the binding modes of 5b and 5d in MMP-2. As shown in Fig. 6, 14 compounds **5b** and **5d** only partially occupy the S1' pocket due to their shorter linkers. Moreover, 15 the interactions between 8-hydroxyquinoline and zinc ion in 5b and 5d are weaker than 5e (Fig. 6). 16 These results would be helpful to understand the better MMP inhibitory activity of **5e** than **5b** and 17 5d. Furthermore, we performed molecular docking of 11c with MMP-2 and MMP-9 to investigate 18 its isoform selectivity. According to the calculated docking scores, the predicted binding affinity of 19 **11c** with MMP-2 (docking score=7.32) is higher than MMP-9 (docking score=4.98), possibly due 20 to the good interactions between 11c and S1' pocket in MMP-2 (Supplementary material, Figure 21 S1). This result may explain the reason why **11c** was more potent for MMP-2 (IC₅₀ =7.5 μ M) than 22 MMP-9 (IC₅₀ >50µM).

24 25

27 28

Fig. 6. (A) Comparison of the predicted binding modes of 5e and 5b in MMP-2. (B) Comparison

of the predicted binding modes of 5e and 5d in MMP-2.

1 2

3

4

5

2.4. In vitro anti-proliferative assay

6 We further evaluated the anti-proliferative activities of 5a, 5b, 5d, 5c, 5d, 5e, 5h and 5j, which 7 possessed good MMP-2/9 inhibitory activities, using MTT assays. All of these target compounds 8 were screened against different cancer cell lines (HL-60, K562, KG1, A549, PC-3 and MCF-7) 9 along with human umbilical vein endothelial cells (HUVECs). The IC₅₀ values were summarized 10 in Table 2. All compounds exhibited inhibitory activities against six cancer cell lines with 11 comparable or slightly improved anti-proliferative activities when compared to known MMP-2 12 inhibitor compound A. Interestingly, hematologic tumor cells (K562 and KG1) seem to be more 13 sensitive to our compounds than solid tumor cells (PC-3 and MCF-7). On the other hand, 14 hydroxamate-based MMP inhibitors NNGH exerted 29-187 µM anti-proliferation activities for 15 different cancer cell lines and Prinomastat possessed no cytotoxicity in these cancer cell lines.

16

17 Table. 2. Anti-proliferative activities of 5a, 5b, 5c, 5d, 5e, 5h, 5j, A, NNGH and Prinomastat.

Compound				$IC_{50}{}^a \ (\mu M)$			
	HL60	K562	KG1	A549	PC-3	MCF-7	HUVEC
5a	>5	2.9±0.03	2.3±0.43	7.4±0.37	10±0.95	13±0.03	>50
5b	1.3±0.09	1.7±0.20	1.1±0.07	9.7±0.55	1.9±0.10	13±1.7	>50
5c	1.9±0.04	1.9±0.05	1.6±0.11	17±0.31	7.7±0.06	9.0±1.0	>50
5d	1.9±0.19	2.9±0.04	1.6±0.10	13±0.24	8.4±0.18	7.4±0.64	>50
5e	1.8±0.11	2.3±0.07	2.3±0.09	11±0.14	8.3±0.10	4.6±0.14	>50
5h	4.0±0.57	1.8 ± 0.08	0.69 ± 0.09	6.4±0.69	22±0.29	7.8±0.63	>50
5j	2.6±0.12	4.2±0.69	4.7±0.02	>25	>25	12±0.61	>50
Α	4.6±0.03	3.6±0.04	4.6±0.12	51±1.2	18±1.2	42±1.6	>50
NNGH	29±1.1	143±9.5	52±4.4	96±4.3	52±0.02	187±10	>250
Prinomastat	>500	>500	>500	>500	>500	>500	>500

 a IC₅₀ were expressed as the mean \pm standard deviation of three separate determinations

20 2.5. Transwell migration and invasion assay

21 Since MMP-2 and MMP-9 were associated with increased tumor migration and invasion in lung

22 cancer[24] and overexpression of MMP-2 and MMP-9 leads to poor prognosis in patients with

23 NSCLC[25]. We further evaluated the effects of most active inhibitors (5e and 5h) on tumor cell

- 24 migration and invasion using A549 cell line (lung cancer).
- 25 The migration assay was performed using transwell chambers where fetal bovine serum (FBS)

¹⁹

acted as a chemoattractant. Briefly, A549 cells were incubated with compounds 5e, 5h and A for
 24h. Then cells were seeded into the upper compartment of transwell chambers, whereas 10%
 FBS was used as chemoattractant and placed in the lower compartment. After 24h incubation,
 cells in the upper side of the filter were removed and cells that migrated to the lower surface were
 fixed, stained, captured and counted.
 Results in Fig. 7 showed that addition of 1, 5 and 10 µM of compounds 5e and 5h lead to an

Results in Fig. 7 showed that addition of 1, 5 and 10 µM of compounds se and sn lead to an
inhibition of A549 migration as compared to known inhibitor compound A. Compound 5e display
the strongest inhibitory effect on A549 cells migration in a dose dependent manner.

9 The invasion assay is similar with migration assay and the only difference is that transwell
10 chambers are precoated with matrigel. Results in Fig. 8 showed that compounds 5e and 5h have
11 significant inhibitory effects on invasion of A549 cells as the concentration increases.

12 Furthermore, we compared anti-invasion activities of 5e, NNGH and Prinomastat. Although 13 compound 5e exhibited weaker MMP inhibitory activities than NNGH and Prinomastat (Table 14 1), compound 5e displayed similar anti-invasive activities to NNGH and better anti-invasive 15 activities than Prinomastat (Supplementary material, Figure S2). The LogP values of 5e, 16 Prinomastat and NNGH have been calculated (Supplementary material, Table S3). The results 17 found 5e to possess higher LogP values than Prinomastat and NNGH, which may lead to better 18 membrane permeability. This might be the reason that 5e displayed similar or slightly better 19 anti-invasive activities than reported inhibitors.

Fig. 7. Anti-migration activity of compounds against A549 cells at 1, 5 and 10 μM, imaging (left)
 and cell number (right) of migrated cells. All experiments were performed repeated three times.
 Means ± SEM are shown (** p < 0.05)

Fig. 8. Anti-invasion activity of compounds against A549 cells at 1, 5 and 10 μ M, imaging (left) and cell number (right) of migrated cells. All experiments were performed repeated three times. Means \pm SEM are shown (** p < 0.05)

6 2.6. HUVECs tuber formation assay

Since MMP-2 and MMP-9 are deeply involved in angiogenesis progression, we performed HUVECs tuber formation assay to examine whether compounds **5e** and **5h** could inhibit HUVECs tuber formation. According to **Table 2**, MTT assay indicated that **5e** and **5h** possess no cytotoxicity for HUVEC cells ($IC_{50} > 50 \mu M$). Then HUVECs tuber formation assay was performed *in vitro*. Results in **Fig. 9** showed that **5e** and **5h** significantly suppressed tube formation of HUVEC when compared with DMSO control. On the other hand, compound **A** exhibited moderate effects on tuber formation (**Fig. 9**).

14

1 2

3

4

5

Fig. 9. HUVECs tuber formation assay of 5e, 5h and compound A at concentration of 10 μ M.

1617 2.7. Apoptotic assay

18 In order to evaluate whether compounds **5e** and **5h** could induce apoptosis in cancer cells, an 19 Annexin-V/PI staining assay was conducted using A549 cells (**Fig. 10**). Briefly, A549 cells were 20 treated with **5e** and **5h** at the concentrations of 0, 1, 5 and 10 μ M for 48 h. At the concentrations of 21 1 μ M, compounds **5e** and **5h** could induce apoptosis with ratio of early apoptosis reaching 16%. 22 As the concentration of **5h** increase, the percentage of early and late stage apoptotic cells 23 increased to 38%. According to these results, we conclude that **5e** and **5h** can effectively induce 24 apoptosis in A549 cells.

1

Fig. 10. Effects of **5e**, **5h** and **A** on apoptosis of A549 cells at 1μ M, 5μ M and 10μ M after 48 h.

3

4 2.7. Western blot and Gelatine zymography assay

In order to further investigate the MMPs inhibitory activities of our new inhibitors at the
cellular level, western blot analysis was performed to measure the effects of 5e and 5h on
MMP-2/9 expression using A549 cells. Results in Fig. 11 indicated that 5e and 5h could markedly
decrease expression levels of both MMP-2 and MMP-9 as the compound concentration increase.

Furthermore, gelatin zymography assay was performed to confirm the inhibitory activities of
compound 5e and 5h on MMP-2 and MMP-9. As shown in Fig. 12, compound 5e and 5h
significantly decreased the gelatinolytic activity of MMP-2 and MMP-9 in a dose dependent
manner.

	10µM	5μΜ	1µM	10µM	5μΜ	1µM	1µM	5μМ	10µM	
MMP-9	500	1		100	1	-	-	14	-	-
MMP-2	35	1	-	10	-	-	-	-	-	-
GAPDH	_	1		-	-		_	-	-	control

- Fig. 11. Western blot analysis of MMP-2 and MMP-9 expressions in A549 cell after 24 h
 treatment with 5e, 5h at 1, 5 and 10 μM.
- 17

14

1

2 Fig. 12. Gelatine zymography analysis of MMP-2 and MMP-9 in A549 cell after 24 h treatment

- **3** with **5e**, **5h** at 1, 5 and 10 μM.
- 4

5 **3.** Conclusions

6 In summary, a series of 8-hydroxyquinoline derivatives were designed and synthesized as new 7 MMP-2/9 inhibitors. The most potent inhibitors 5e and 5h displayed anti-proliferation activities 8 against several cancer cell lines and exhibited anti-migration/invasion activities on A549 cells. 9 Moreover, HUVECs tuber formation assay was performed to measure the effects of compounds 5e 10 and 5h on HUVEC angiogenesis. Our results indicated that compounds 5e and 5h possess good 11 anti-invasion and anti-angiogenesis activity. Meanwhile, flow cytometry analysis showed that 12 compound 5e can promote A549 cell apoptosis in vitro. Furthermore, western blot analysis 13 confirmed that both 5e and 5h could induce down-regulation of MMP-2 and MMP-9 expressions. 14 Also, molecular docking studies not only revealed the favorable binding modes of 5e with 15 MMP-2/9, but also help us to understand the SAR of our new inhibitors. In the future, compound 16 5e could serve as lead compound to develop more potent non-hydroxamate MMP-2/9 inhibitors.

17 4. Experimental

18 4.1. Chemistry

19 Reagents and solvents used were of commercially available LR grade quality and without 20 further purification. All reactions were monitored by TLC on 0.25 mm silica gel plates (60 21 GF-254). UV light, chloride ferric and iodine vapor were used to visualize the spots. Melting 22 points were recorded by the RY-1G electrothermal melting point apparatus without correction. ¹H and ¹³C NMR spectra were recorded on a Brucker DRX spectrometer at 300 MHz or 400 MHz, d 23 24 in parts per million and J in hertz, using TMS as an internal standard. Significant ¹H NMR data 25 are reported in the following order: multiplicity (s, singlet; d, doublet; t, triplet; m, multiplet) 26 number of protons. High-resolution mass spectra (HRMS) were conducted on an Agilent 6510 27 Quadrupole Time-of-Flight LC/MS deliver.

28 4.2. General synthesis of compounds

29 4.2.1. General procedure for the synthesis of 5a-5s

5-Chloro-8-hydroxyquinoline-7-carbaldehyde (0.21g, 1 mmol) and compound 4a-j (1 mmol)
 was dissolved in MeOH (10ml) and reacted at RT for 4 h. Then NaBH₄ (3 equiv) was added to the
 reaction mixture, the solution was next stirred for 2h at RT. The MeOH was evaporated under
 reduced pressure and EtOAc was added. The EtOAc layer was washed with a saturated solution of

- 1 NaHCO₃ (×3), brine solution (×3) and then dried and evaporated. The crude product was purified
- 2 by column chromatography (DCM/MeOH, 30/1-20/1) yielding target compounds **5a-5s**.
- 3

4 2-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-phenylacetamide (5a)

Yellow solid (Yield 32%), Mp:116-118°C. ¹H NMR (400 MHz, DMSO) δ 9.91 (s, 1H), 8.99 –
8.91 (m, 1H), 8.47 (dd, J = 8.5, 1.1 Hz, 1H), 7.77 (s, 1H), 7.69 (dd, J = 8.5, 4.1 Hz, 1H), 7.64 (d, J
7 = 7.8 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.05 (t, J = 7.4 Hz, 1H), 3.97 (s, 2H), 3.35 (s, 2H). ¹³C
8 NMR (101 MHz, DMSO) δ 170.41, 151.23, 149.30, 139.23, 139.17, 132.83, 129.13, 128.77,
9 125.30, 123.69, 123.38, 122.99, 119.68, 118.43, 52.39, 47.72. HRMS (ESI) m/z Calcd [M+H]⁺
10 342.1004, found: 342.0981.

11

12 3-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-phenylpropanamide (5b)

Yellow solid (Yield 37%), Mp:120-122°C. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 8.85 (dd, *J* = 4.1, 1.3 Hz, 1H), 8.51 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.57 – 7.48 (m, 4H), 7.34 – 7.27 (m, 2H), 7.07
(t, *J* = 7.4 Hz, 1H), 4.12 (s, 2H), 3.05 (t, 2H), 2.57 (t, 2H). ¹³C NMR (101 MHz, DMSO) δ 170.62,
151.82, 149.33, 139.68, 139.37, 132.78, 129.07, 128.53, 125.33, 123.48, 122.95, 122.69, 119.60,
118.15, 47.93, 44.98, 36.80. HRMS (ESI) m/z Calcd [M+H]⁺ 356.1060, found: 356.1145.

18

19 4-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-phenylbutanamide (5c)

Yellow solid (Yield 27%), Mp:78-80°C. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, J = 3.2 Hz, 1H),
8.47 (d, J = 8.5 Hz, 1H), 7.49 (dd, J = 8.5, 4.1 Hz, 1H), 7.44 (d, J = 7.9 Hz, 2H), 7.37 (s, 1H), 7.25
- 7.20 (m, 2H), 7.04 (t, 1H), 4.10 (s, 2H), 2.81 (t, J = 6.0 Hz, 2H), 2.51 (t, J = 6.8 Hz, 2H), 2.01 –
1.90 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 170.41, 151.23, 149.30, 139.23, 139.17, 132.83,
129.13, 128.77, 125.30, 123.69, 123.38, 122.99, 119.68, 118.43, 52.39, 47.72. HRMS (ESI) m/z
Calcd [M+H]⁺ 370.1319, found: 370.1299.

26

27 5-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-phenylpentanamide (5d)

28 Yellow solid (Yield 34%), Mp:102-105°C. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, J = 3.1 Hz, 29 1H), 8.47 (dd, J = 8.5, 1.3 Hz, 1H), 8.06 (s, 1H), 7.62 (d, J = 7.9 Hz, 1H), 7.48 (dd, J = 8.5, 4.1 30 Hz, 1H), 7.35 (s, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.08 (t, J = 7.3 Hz, 2H), 4.13 (s, 2H), 2.73 (t, J =31 6.5 Hz, 2H), 2.34 – 2.26 (m, 2H), 1.88 – 1.79 (m, 2H), 1.69 – 1.61 (m, 2H). ¹³C NMR (101 MHz, 32 DMSO) δ 170.41, 151.23, 149.30, 139.23, 139.17, 132.83, 129.13, 128.77, 125.30, 123.69, 33 123.38, 122.99, 119.68, 118.43, 52.39, 47.72. HRMS (ESI) m/z Calcd [M+H]⁺ 384.1473, found: 34 384.1456.

35

36 6-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-phenylhexanamide (5e)

37Yellow solid (Yield 24%), Mp:116-118°C. ¹H NMR (400 MHz, DMSO) δ 9.86 (s, 1H), 8.91 (d,38J = 2.9 Hz, 1H), 8.45 (d, J = 8.5 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.58 (d, J = 7.9 Hz, 2H), 7.27 (t, J39= 7.8 Hz, 2H), 7.02 (d, J = 7.3 Hz, 1H), 3.96 (s, 2H), 2.54 (t, J = 6.9 Hz, 2H), 2.30 (t, J = 7.4 Hz,402H), 1.64 – 1.55 (m, 2H), 1.53 – 1.45 (m, 2H), 1.38 – 1.32 (m, 2H). ¹³C NMR (101 MHz, DMSO)41δ 170.41, 151.23, 149.30, 139.23, 139.17, 132.83, 129.13, 128.77, 125.30, 123.69, 123.38, 122.99,42119.68, 118.43, 52.39, 47.72. HRMS (ESI) m/z Calcd [M+H]⁺ 398.1629, found: 398.1611.

43

$\label{eq:2-linear} 44 \qquad 2-\{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino\}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]acet$

1 amide (5f)

2 Yellow solid (Yield 42%), Mp:113-116 . ¹H NMR (400 MHz, DMSO) δ 10.69 (s, 1H), 8.94 (dd, J = 4.1, 1.4 Hz, 1H), 8.48 (dd, J = 8.5, 1.3 Hz, 1H), 7.97 (t, J = 5.8 Hz, 1H), 7.73 - 7.66 (m, 3 4 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 6.95 (t, J = 10.9, 4.0 Hz, 1H), 6.91 (t, J = 10.9, 4.0 Hz, 1Hz, 1Hz, 1H), 6.91 (t, J = 10.9, 4.0 Hz, 1Hz, 1H 5 10.8, 3.9 Hz, 1H), 3.86 (s, 2H), 3.25 (dd, J = 14.2, 6.6 Hz, 2H), 3.11 (s, 2H), 2.76 (t, J = 7.5 Hz, 6 2H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 149.35, 148.66, 138.50, 135.32, 133.24, 7 131.91, 128.65, 128.41, 125.54, 122.33, 121.10, 121.06, 120.09, 119.28, 117.83, 110.40, 108.53, 8 77.38, 77.26, 77.06, 76.74, 51.78, 48.61, 39.45, 24.14, 11.65. HRMS (ESI) m/z Calcd [M+H]⁺ 9 423.1582, found: 423.1547.

10

3-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]pro panamide (5g)

Yellow solid (Yield 22%), Mp:120-122□. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.34 (d,
J = 8.2 Hz, 1H), 7.96 (d, J = 21.2 Hz, 2H), 7.50 (dd, J = 8.3, 4.2 Hz, 1H), 7.36 (d, J = 7.6 Hz, 1H),
7.18 (d, J = 7.7 Hz, 2H), 7.03 (dt, J = 14.5, 6.9 Hz, 2H), 6.13 (s, 1H), 3.90 (s, 2H), 3.45 (dd, J =
12.5, 6.3 Hz, 2H), 2.82 (t, J = 6.6 Hz, 2H), 2.55 (t, 2H), 2.21 (s, 3H), 1.69 (t, 2H). ¹³C NMR (101
MHz, CDCl₃) δ 171.28, 149.35, 148.66, 138.50, 135.32, 133.24, 131.91, 128.65, 128.41, 125.54,
122.33, 121.10, 121.06, 120.09, 119.28, 117.83, 110.40, 108.53, 77.38, 77.26, 77.06, 76.74, 51.78,
48.61, 39.45, 24.14, 11.65. HRMS (ESI) m/z Calcd [M+H]⁺ 437.1638, found: 437.1551.

20

4-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]but anamide (5h)

23 Yellow solid (Yield 39%), Mp:115-117 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.87 (dd, J = 4.2, 1.524 Hz, 1H), 8.47 (dd, J = 8.5, 1.6 Hz, 1H), 7.91 (s, 1H), 7.49 (dd, J = 8.6, 4.2 Hz, 1H), 7.46 (d, J = 25 7.4 Hz, 1H), 7.34 (s, 1H), 7.24 (s, 1H), 7.12 - 7.07 (m, 1H), 7.07 - 7.02 (m, 1H), 4.03 (s, 2H), 26 3.44 (d, J = 6.2 Hz, 2H), 2.86 (t, J = 6.8 Hz, 2H), 2.65 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3H), 2.19 (t, J = 6.7 Hz, 2H), 2.34 (s, 3 Hz, 2.19 (t, J = 6.7 Hz, 2.197.2 Hz, 2H), 1.85 – 1.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 149.35, 148.66, 138.50, 27 28 135.32, 133.24, 131.91, 128.65, 128.41, 125.54, 122.33, 121.10, 121.06, 120.09, 119.28, 117.83, 29 110.40, 108.53, 77.38, 77.26, 77.06, 76.74, 51.78, 48.61, 39.45, 24.14, 11.65. HRMS (ESI) m/z 30 Calcd [M+H]⁺ 451.1895, found: 451.1872.

31

32 5-{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]pen 33 tanamide (5i)

34 Yellow solid (Yield 25%), Mp:104-106 . ¹H NMR (400 MHz, CDCl₃) δ 8.90 (dd, J = 4.1, 1.535 Hz, 1H), 8.75 (s, 1H), 8.49 (dd, J = 8.5, 1.5 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.33 (s, 1H), 7.25 – 7.21 36 (m, 1H), 7.11 - 7.02 (m, 2H), 4.07 (s, 2H), 3.52 (dd, J = 12.6, 6.4 Hz, 2H), 2.92 (t, J = 6.6 Hz, 37 2H), 2.65 (t, J = 6.6 Hz, 2H), 2.37 (s, 3H), 2.07 (dd, J = 13.2, 5.5 Hz, 2H), 1.66 – 1.54 (m, 2H), 1.55 - 1.45 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 149.35, 148.66, 138.50, 135.32, 38 39 133.24, 131.91, 128.65, 128.41, 125.54, 122.33, 121.10, 121.06, 120.09, 119.28, 117.83, 110.40, 40 108.53, 77.38, 77.26, 77.06, 76.74, 51.78, 48.61, 39.45, 24.14, 11.65. HRMS (ESI) m/z Calcd 41 [M+H]⁺465.2051, found: 465.2023.

42

$\label{eq:constraint} 43 \qquad 6-\{[(5-chloro-8-hydroxyquinolin-7-yl)methyl]amino\}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]hex$

44 anamide (5j)

1	Yellow solid (Yield 32%), Mp:98-101°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.87 (d, $J = 2.8$ Hz,
2	1H), 8.47 (dd, J = 8.5, 1.4 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.35 (s, 1H), 7.29 – 7.24 (m, 2H), 7.19 –
3	6.99 (m, 3H), 4.09 (s, 2H), 3.54 – 3.45 (m, 2H), 2.89 (t, <i>J</i> = 6.6 Hz, 2H), 2.65 (t, <i>J</i> = 7.0 Hz, 2H),
4	2.34 (s, 3H), 2.08 – 2.04 (m, 2H), 1.61 – 1.46 (m, 4H), 1.29 – 1.23 (m, 2H). ¹³ C NMR (101 MHz,
5	$CDCl_{3}) \ \delta \ 171.28, \ 149.35, \ 148.66, \ 138.50, \ 135.32, \ 133.24, \ 131.91, \ 128.65, \ 128.41, \ 125.54, \ 122.33, $
6	121.10, 121.06, 120.09, 119.28, 117.83, 110.40, 108.53, 77.38, 77.26, 77.06, 76.74, 51.78, 48.61,
7	39.45, 24.14, 11.65. HRMS (ESI) m/z Calcd [M+H] ⁺ 479.2208, found: 479.2194.
8	
9	2-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylacetamide (5k)
10	Yellow solid (Yield 33%), Mp:115-118 \Box . ¹ H NMR (400 MHz, CDCl ₃) δ 9.00 (s, 1H), 8.82 (dd,
11	J = 4.1, 1.2 Hz, 1H), 8.49 (dd, $J = 8.5, 1.2$ Hz, 1H), 7.52 (dd, $J = 8.5, 4.2$ Hz, 1H), 7.45 – 7.37 (m,
12	3H), 7.29 (t, <i>J</i> = 8.0 Hz, 1H), 7.12 (d, <i>J</i> = 7.7 Hz, 1H), 7.08 (t, <i>J</i> = 7.4 Hz, 1H), 4.21 (s, 2H), 3.50
13	(s, 2H). ¹³ C NMR (101 MHz, CDCl ₃) δ 169.48, 152.21, 147.73, 138.84, 137.44, 132.37, 129.00,
14	128.51, 126.96, 125.07, 124.17, 122.00, 119.17, 109.16, 52.73, 51.03. HRMS (ESI) m/z Calcd
15	[M+H] ⁺ 308.1393, found: 308.1378.
16	
17	3-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylpropanamide (51)
18	Yellow solid (Yield 39%), Mp:121-124 \Box . ¹ H NMR (400 MHz, CDCl ₃) δ 9.96 (s, 1H), 8.80 (dd,
19	<i>J</i> = 4.2, 1.4 Hz, 1H), 8.46 (dd, <i>J</i> = 8.5, 1.4 Hz, 1H), 7.44 (d, <i>J</i> = 7.4 Hz, 1H), 7.42 – 7.39 (m, 1H),
20	7.35 – 7.28 (m, 2H), 7.24 (t, 2H), 7.13 (d, <i>J</i> = 7.7 Hz, 1H), 7.05 (t, <i>J</i> = 7.3 Hz, 1H), 4.20 (s, 2H),
21	3.12 (t, 2H), 2.56 (t, 2H). ¹³ C NMR (101 MHz, DMSO) δ 171.02, 152.93, 148.10, 139.70, 139.25,
22	133.91, 129.11, 128.01, 127.84, 127.04, 123.44, 121.82, 119.49, 110.56, 50.55, 45.76, 37.35.
23	HRMS (ESI) m/z Calcd [M+H] ⁺ 322.1550, found: 322.1522.
24	
25	4-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylbutanamide(5m)
26	Yellow solid (Yield 34%), Mp:140-143 \Box . ¹ H NMR (400 MHz, CDCl ₃) δ 8.75 (dd, J = 4.2, 1.5
27	Hz, 1H), 8.47 (dd, <i>J</i> = 8.5, 1.5 Hz, 1H), 8.16 (s, 1H), 7.43 – 7.40 (m, 1H), 7.39 (d, <i>J</i> = 2.8 Hz, 1H),
28	7.34 (d, <i>J</i> = 7.8 Hz, 2H), 7.23 (d, <i>J</i> = 8.2 Hz, 2H), 7.08 (d, <i>J</i> = 7.7 Hz, 1H), 7.05 (d, <i>J</i> = 7.3 Hz,
29	1H), 4.14 (s, 2H), 2.85 (t, $J = 6.4$ Hz, 2H), 2.46 (t, $J = 6.9$ Hz, 2H), 1.98 – 1.88 (m, 2H). ¹³ C NMR
30	(101 MHz, CDCl ₃) δ 171.61, 151.66, 147.50, 138.70, 138.64, 133.19, 128.65, 127.73, 127.24, 126.54,
31	123.50, 121.61, 119.65, 108.97, 77.58, 77.46, 77.26, 76.94, 50.90, 49.06, 40.47, 40.26, 40.05, 39.85,
32	39.64, 39.42, 35.35, 25.62. HRMS (ESI) m/z Calcd [M+H] ⁺ 336.1706, found: 336.1687.

33

34 5-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylpentanamide (5n)

35Yellow solid (Yield 31%), Mp:122-124□. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 3.1 Hz,361H), 8.55 - 8.47 (m, 1H), 7.48 - 7.36 (m, 4H), 7.29 (d, J = 7.6 Hz, 2H), 7.09 (d, J = 7.6 Hz, 2H),374.11 (s, 2H), 2.76 (t, J = 6.8 Hz, 2H), 2.35 (t, J = 7.2 Hz, 2H), 1.83 - 1.76 (m, 2H), 1.64 - 1.56 (m,382H). ¹³C NMR (101 MHz, DMSO) δ 171.72, 152.78, 148.07, 139.84, 139.23, 133.84, 129.09,39127.84, 127.79, 127.32, 123.36, 121.81, 119.49, 110.51, 50.80, 49.30, 36.82, 29.57, 23.53. HRMS40(ESI) m/z Calcd [M+H]⁺ 350.1863, found: 350.1863.

41

42 6-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylhexanamide (50)

Yellow solid (Yield 28%), Mp:125-128 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.80 – 8.74 (m, 1H), 1 2 8.52 (d, 1H), 7.49 (d, J = 9.1 Hz, 2H), 7.47 – 7.44 (m, 1H), 7.38 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 2H), 7.08 (d, J = 7.7 Hz, 2H), 4.11 (s, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.34 (t, J = 7.4 Hz, 3 2H), 1.76 – 1.71 (m, 2H), 1.59 – 1.55 (m, 2H), 1.45 – 1.39 (m, 2H). ¹³C NMR (101 MHz, DMSO) 4 5 δ 171.72, 152.81, 148.05, 139.85, 139.24, 133.83, 129.08, 127.84, 127.78, 127.32, 123.35, 121.78, 6 119.49, 110.52, 50.82, 49.47, 36.91, 29.73, 27.06, 25.59. HRMS (ESI) m/z Calcd [M+H]⁺ 7 364.2019, found: 364.2005. 8 9 7-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-phenylheptanamide (5p) 10 Yellow solid (Yield 31%), Mp:96-98°C.¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 3.0 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.40 (d, J = 7.7 Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 11 12 7.17 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 6.8 Hz, 2H), 4.12 (s, 2H), 2.70 (t, J = 7.1 Hz, 2H), 2.32 (t, J = 7.5 Hz, 2H), 1.74 (d, J = 26.9 Hz, 2H), 1.51 (d, J = 26.9 Hz, 2H), 1.42 – 1.30 (m, 4H). ¹³C NMR 13 14 (101 MHz, DMSO) δ 171.72, 152.79, 148.06, 139.84, 139.22, 133.84, 129.09, 127.84, 127.80, 15 127.32, 123.35, 121.79, 119.47, 110.51, 50.83, 49.54, 36.87, 29.84, 29.13, 27.16, 25.63. HRMS 16 (ESI) m/z Calcd $[M+H]^+$ 378.2176, found: 378.2162. 17 18 3-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]propanamid 19 e(5q) 20 Yellow solid (Yield 36%), Mp:92-94 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.74 (dd, J = 4.2, 1.421 Hz, 1H), 8.19 (dd, J = 8.5, 1.4 Hz, 1H), 7.61 (s, 1H), 7.43 – 7.38 (m, 1H), 7.32 – 7.29 (m, 1H), 22 7.18 (d, J = 7.7 Hz, 1H), 7.14 – 7.10 (m, 1H), 7.04 (ddd, J = 6.5, 3.7, 1.9 Hz, 3H), 3.88 (s, 2H),

 110 (d, J = 12.8, 6.5 Hz, 2H), 2.87 - 2.78 (m, 4H), 2.35 - 2.29 (m, 2H), 2.27 (d, J = 6.3 Hz, 3H). 13 C NMR (101 MHz, DMSO) δ 171.74, 153.33, 152.93, 148.11, 139.25, 135.65, 133.83, 132.51, 13 C NMR (101 MHz, DMSO) δ 171.74, 153.33, 152.93, 148.11, 139.25, 135.65, 133.83, 132.51, $^{128.78}$, 127.83, 126.90, 121.83, 120.36, 118.54, 117.76, 110.82, 110.55, 108.09, 55.87, 50.47, $^{45.82}$, 36.20, 24.70, 11.67. HRMS (ESI) m/z Calcd [M+H]⁺ 403.2128, found: 403.2090.

27

4-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]butanamide
 (5r)

30 Yellow solid (Yield 27%), Mp:95-98 \Box . ¹H NMR (400 MHz, CDCl₃) δ 8.76 (dd, J = 4.2, 1.4Hz, 1H), 8.44 (dd, J = 8.5, 1.5 Hz, 1H), 7.46 (d, J = 7.4 Hz, 1H), 7.44 (d, J = 4.1 Hz, 1H), 7.42 (d, 31 32 *J* = 4.2 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 1H), 7.23 (d, 1H), 7.12 (d, 1H), 7.08 (d, *J* = 3.2 Hz, 1H), 7.07 33 -7.05 (m, 1H), 4.00 (s, 2H), 3.45 (dd, J = 12.8, 6.6 Hz, 2H), 2.86 (t, J = 6.7 Hz, 2H), 2.65 (t, J = 6.7 6.7 Hz, 2H), 2.31 (s, 3H), 2.17 (t, J = 7.2 Hz, 2H), 1.78 (t, 2H). ¹³C NMR (101 MHz, DMSO) δ 34 35 172.66, 153.16, 152.92, 148.22, 139.13, 135.63, 133.71, 132.54, 128.77, 128.24, 127.79, 125.35, 36 121.95, 120.39, 118.58, 117.75, 110.84, 110.58, 108.07, 50.06, 48.83, 33.87, 25.56, 24.62, 11.61. 37 HRMS (ESI) m/z Calcd [M+H]⁺ 417.2285, found: 417.2270.

38

39 5-{[(8-hydroxyquinolin-5-yl)methyl]amino}-N-[2-(2-methyl-1H-indol-3-yl)ethyl]pentanamide
 40 (5s)

- 41 Yellow solid (Yield 33%), Mp:134-136□. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 4.2, 1.5
 42 Hz, 1H), 8.50 (dd, J = 8.5, 1.5 Hz, 1H), 7.87 (s, 1H), 7.49 7.44 (m, 2H), 7.39 (d, J = 7.7 Hz, 1H),
- 43 7.13 7.02 (m, 4H), 4.08 (s, 2H), 3.50 3.44 (m, 2H), 2.88 (t, J = 8.7, 4.6 Hz, 2H), 2.66 (t, J = 100

6.9 Hz, 2H), 2.34 (s, 3H), 2.06 (t, J = 11.8, 4.3 Hz, 2H), 1.65 - 1.55 (m, 2H), 1.53 - 1.45 (m, 2H).
 ¹³C NMR (101 MHz, CDCl₃) δ 172.85, 151.78, 147.57, 138.63, 135.32, 134.15, 133.20, 131.99,
 129.57, 128.62, 127.64, 127.24, 125.54, 121.14, 119.33, 117.75, 110.39, 108.80, 50.86, 49.19,
 39.90, 36.41, 29.34, 25.77, 24.15, 11.60. HRMS (ESI) m/z Calcd [M+H]⁺ 431.2441, found:
 431.2403.

6

7 4.2.2. General procedure for the synthesis of 10a-10l

8 Compound 9a-l (1.2 mmol, 1.2 equiv) was dissolved in 20 mL DCM and one drop DMF was 9 added. Then oxalyl chloride (0.2 mL, 2.4 mmol, 2.4 equiv) was added dropwise and the reaction 10 was stirred at RT for 1h. After the mixture was evaropated, the residue was dissolved in DCM and 11 again concentrated in vacuo to offer quantitatively the crude chloride. A solution of chloride in 12 DCM (10 mL) was suspended with NEt₃ (0.3g, 3 equiv) and compound 7 (0.27g, 1mmol) was 13 added dropwise with stirring. After the addition, the reaction was stirred for 4 h. Then the mixture 14 was washed with 1M citric acid(\times 3), saturate solution of NaHCO₃(\times 3) and brine solution(\times 3). The 15 solution was concentrated in vacuo, then purified via chlomatography on silica (PE/EA = 3:1) to 16 get 10a-l as a white solid.

17

N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-3-[methyl(phenyl)amino]propanamide(10a)
White solid (Yield 57%), Mp:149-151□.¹H NMR (400 MHz, CDCl₃) δ 8.77 (dd, J = 4.0, 1.4
Hz, 1H), 8.20 (s, 1H), 7.87 (dd, J = 8.5, 1.4 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 8.6 Hz,
2H), 7.18 (dd, J = 8.5, 4.0 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 6.80 (dd, J = 16.1, 7.9 Hz, 3H), 3.68
(t, J = 6.4 Hz, 2H), 2.93 (s, 3H), 2.66 - 2.58 (m, 2H), 1.05 (s, 9H), 0.24 (s, 6H).

23

29

N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-4-[methyl(phenyl)amino]butanamide (10b)
White solid (Yield 66%), Mp:144-146□. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 2.9 Hz,
1H), 7.95 (d, J = 7.7 Hz, 1H), 7.53 (s, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.30 – 7.18 (m, 4H), 7.08 (d,
J = 8.2 Hz, 1H), 6.74 (d, J = 8.2 Hz, 2H), 6.69 (t, J = 7.3 Hz, 1H), 3.39 (t, J = 7.0 Hz, 2H), 2.90 (s,
3H), 2.44 (t, J = 7.1 Hz, 2H), 2.00 (dd, J = 14.1, 7.0 Hz, 2H), 1.06 (s, 9H), 0.25 (s, 6H).

N-{8-[(tert-butyldimethylsily])oxy]quinolin-5-yl}-5-[methyl(phenyl)amino]pentanamide(10c)
Colourless oil (Yield 69%). ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, J = 3.0 Hz, 1H), 8.07 - 7.97
(m, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.36 (dd, J = 8.4, 3.9 Hz, 1H), 7.22 (d, J = 8.1 Hz, 2H), 7.13 (d,
J = 8.2 Hz, 1H), 6.76 - 6.65 (m, 3H), 3.40 (s, 2H), 2.95 (s, 3H), 2.49 (t, J = 7.2 Hz, 2H), 1.88 1.79 (m, 2H), 1.77 - 1.70 (m, 2H), 1.06 (s, 9H), 0.26 (s, 6H).

35

36N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-6-[methyl(phenyl)amino]hexanamide (10d)37Colourless oil oil (Yield 61%). ¹H NMR (400 MHz, CDCl₃) δ 8.84 (t, J = 15.7 Hz, 1H), 8.00 (d,38J = 8.5 Hz, 1H), 7.41 (dd, J = 7.6, 2.6 Hz, 1H), 7.34 – 7.24 (m, 1H), 7.20 (d, J = 7.6 Hz, 2H), 7.0739(d, J = 8.2 Hz, 1H), 6.67 (dd, J = 11.3, 7.9 Hz, 3H), 3.30 (dd, J = 8.9, 5.5 Hz, 2H), 2.89 (d, J = 4.940Hz, 3H), 2.36 (t, J = 7.7 Hz, 2H), 1.74 (s, 2H), 1.59 (d, J = 7.5 Hz, 2H), 1.43 – 1.35 (m, 2H), 1.0641(s, 9H), 0.25 (s, 6H).

42

43 N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-3-(2-methyl-1H-benzo[d]imidazol-1-yl)pro
44 panamide (10e)

1	Colourless oil (Yield 41%). ¹ H NMR (400 MHz, CDCl ₃). ¹ H NMR (400 MHz, DMSO) δ 9.84
2	(s, 1H), 8.83 (dd, J = 4.0, 1.3 Hz, 1H), 7.84 (dd, J = 8.6, 1.3 Hz, 1H), 7.55 (dd, J = 10.0, 3.8 Hz,
3	2H), 7.38 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.35 (d, <i>J</i> = 8.2 Hz, 1H), 7.20 – 7.14 (m, 2H), 7.13 (d, <i>J</i> = 8.2
4	Hz, 1H), 4.54 (s, 2H), 2.97 (s, 2H), 2.59 (s, 3H), 1.01 (s, 9H), 0.20 (s, 6H).
5	
6	$N-\{8-[(tert-butyldimethylsilyl) oxy] quinolin-5-yl\}-4-(2-methyl-1H-benzo[d]imidazol-1-yl) buta$
7	namide (10f)
8	White solid (Yield 49%), Mp:133-135 \Box . ¹ H NMR (400 MHz, DMSO) δ 9.79 (s, 1H), 8.81 (dd,
9	<i>J</i> = 4.0, 1.4 Hz, 1H), 8.10 (dd, <i>J</i> = 8.6, 1.4 Hz, 1H), 7.40–7.30 (m, 4H), 7.10–7.00 (m, 3H), 4.15
10	(t, J = 7.0 Hz, 2H), 2.46 (s, 3H), 2.35 - 2.30 (m, 2H), 1.72 - 1.69 (m, 2H), 0.93 (s, 9H), 0.18 (s, 2H), 0.18
11	6H).
12	
13	$N-\{8-[(tert-butyldimethylsilyl) oxy] quinolin-5-yl\}-5-(2-methyl-1H-benzo[d] imidazol-1-yl) pentrum and the second secon$
14	anamide (10g)
15	White solid (Yield 52%), Mp:142-144 \Box . ¹ H NMR (400 MHz, DMSO) δ 9.74 (s, 1H), 8.79 (dd,
16	<i>J</i> = 4.0, 1.4 Hz, 1H), 8.18 (dd, <i>J</i> = 8.6, 1.4 Hz, 1H), 7.46 – 7.35 (m, 4H), 7.10 – 7.00 (m, 3H), 4.15
17	(t, J = 7.0 Hz, 2H), 2.46 (s, 3H), 2.42 - 2.39 (m, 2H), 1.77 - 1.68 (m, 2H), 1.65 - 1.54 (m, 2H)
18	0.93 (s, 9H), 0.13 (s, 6H).
19	
20	$N-\{8-[(tert-butyldimethylsilyl) oxy] quinolin-5-yl\}-6-(2-methyl-1H-benzo[d]imidazol-1-yl) hexallow (2-methyl-1H-benzo[d]imidazol-1-yl) hexallow (2-methyl-$
21	namide (10h)
22	White solid (Yield 53%), Mp:132-134 \Box . ¹ H NMR (400 MHz, DMSO) δ 9.76 (s, 1H), 8.87 (dd,
23	<i>J</i> = 4.0, 1.3 Hz, 1H), 8.27 (dd, <i>J</i> = 8.6, 1.4 Hz, 1H), 7.56 – 7.42 (m, 4H), 7.18 – 7.10 (m, 3H), 4.20
24	(t, <i>J</i> = 7.1 Hz, 2H), 2.54 (s, 3H), 2.41 (t, <i>J</i> = 7.1 Hz, 2H), 1.81 – 1.73 (m, 2H), 1.71 – 1.64 (m, 2H),
25	1.42 – 1.35 (m, 2H), 1.02 (s, 9H), 0.21 (s, 6H).
26	
27	$N-\{8-[(tert-butyldimethylsilyl) oxy] quinolin-5-yl\}-3-\{1,1-dioxido-3-oxobenzo[d] isothiazol-2(3-1), 0,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$
28	H)-yl}propanamide (10i)
29	White solid (Yield 63%), Mp:102-104 . ¹ H NMR (400 MHz, CDCl ₃) δ 8.83 (dd, $J = 4.0, 1.3$
30	Hz, 1H), 8.09 (dd, J = 11.2, 4.1 Hz, 2H), 7.99 – 7.80 (m, 3H), 7.56 (d, J = 8.2 Hz, 1H), 7.47 (s,
31	1H), 7.33 (dd, <i>J</i> = 8.5, 4.1 Hz, 1H), 7.12 (d, <i>J</i> = 8.2 Hz, 1H), 4.31 (t, <i>J</i> = 7.2 Hz, 2H), 3.08 (t, <i>J</i> =
32	7.2 Hz, 2H), 1.05 (s, 9H), 0.25 (s, 6H).
33	
34	$N-\{8-[(tert-butyldimethylsilyl) oxy] quinolin-5-yl\}-4-\{1,1-dioxido-3-oxobenzo[d] isothiazol-2(3-1), 0,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3$
35	H)-yl}butanamide (10j)
36	White solid (Yield 59%), Mp:98-100 \Box . ¹ H NMR (400 MHz, DMSO) δ 9.87 (s, 1H), 9.34 (d, $J =$
37	1.8 Hz, 1H), 8.91 (dd, J = 4.0, 1.5 Hz, 1H), 8.76 (dd, J = 8.4, 2.0 Hz, 1H), 8.42 - 8.35 (m, 2H),
38	7.58 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.54 (d, <i>J</i> = 8.2 Hz, 1H), 7.20 (d, <i>J</i> = 8.2 Hz, 1H), 3.93 (t, <i>J</i> = 7.0
39	Hz, 2H), 2.64 (t, <i>J</i> = 7.2 Hz, 2H), 2.21 – 2.10 (m, 2H), 1.06 (s, 9H), 0.26 (s, 6H).
40	
41	N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-5-{1,1-dioxido-3-oxobenzo[d]isothiazol-2(3
42	H)-yl}pentanamide (10k)
43	White solid (Yield 74%), Mp:120-122 \Box . ¹ H NMR (400 MHz, DMSO) δ 9.83 (s, 1H), 8.88 (dd,
44	<i>J</i> = 4.0, 1.5 Hz, 1H), 8.33 (d, <i>J</i> = 8.1 Hz, 2H), 8.13 (d, <i>J</i> = 7.3 Hz, 1H), 8.11 – 7.97 (m, 2H), 7.54

1	(dd, J = 8.5, 4.0 Hz, 1H), 7.51 (d, J = 8.2 Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 3.80 (t, J = 7.0 Hz,
2	2H), 1.93 – 1.82 (m, 2H), 1.80 – 1.69 (m, 2H), 1.04 (s, 9H), 0.23 (s, 6H).
3	
4	N-{8-[(tert-butyldimethylsilyl)oxy]quinolin-5-yl}-6-{1,1-dioxido-3-oxobenzo[d]isothiazol-2(3
5	H)-yl}hexanamide (10l)
6	White solid (Yield 63%), Mp:118-120 \Box . ¹ H NMR (400 MHz, CDCl ₃) δ 8.82 (dd, J = 3.9, 1.2
7	Hz, 1H), 8.09 (dd, <i>J</i> = 8.5, 1.2 Hz, 1H), 7.96 (d, <i>J</i> = 6.8 Hz, 1H), 7.86 – 7.74 (m, 3H), 7.61 (s, 1H),
8	7.46 (d, J = 8.2 Hz, 1H), 7.34 (dd, J = 8.5, 4.1 Hz, 1H), 7.07 (d, J = 8.2 Hz, 1H), 3.81 (t, J = 7.2
9	Hz, 2H), 2.46 (t, J = 7.4 Hz, 2H), 1.96 – 1.89 (m, 2H), 1.87 – 1.78 (m, 2H), 1.59 – 1.50 (m, 2H),
10	1.06 (s, 9H), 0.25 (s, 6H).
11	
12	4.2.3. General procedure for the synthesis of 11a-111
13	The solution of 10a (0.22g) in MeOH(4ml) was acidified by 2M hydrochloric acid solution to
14	pH 2. The mixture was stirred at room temperature for 4h. Saturated aqueous NaHCO3 solution
15	was added and a yellow solid was acquired. The mixture was filtered to get the white solid as the
16	crude product. The crude product was purified by recrystallization (EtOAc) to give the desired
17	product as white solid.
18	
19	N-(8-hydroxyquinolin-5-yl)-3-[methyl(phenyl)amino]propanamide (11a)
20	White solid (Yield 61%), Mp:165-168°C. ¹ H NMR (400 MHz, DMSO) δ 9.82 (s, 1H), 8.85 (dd,
21	J = 4.1, 1.5 Hz, 1H), 8.24 (dd, $J = 8.6, 1.5$ Hz, 1H), 7.52 (dd, $J = 8.6, 4.1$ Hz, 1H), 7.40 (d, $J = 8.2$
22	Hz, 1H), 7.21 (dd, $J = 8.7, 7.3$ Hz, 2H), 7.05 (d, $J = 8.2$ Hz, 1H), 6.81 (d, $J = 8.0$ Hz, 2H), 6.65 (t,
23	J = 7.2 Hz, 1H), 3.72 (t, $J = 7.0$ Hz, 2H), 2.94 (s, 3H), 2.66 (t, $J = 7.0$ Hz, 2H). ¹³ C NMR (101
24	MHz, DMSO) δ 171.22, 151.82, 149.31, 148.50, 138.74, 132.64, 129.53, 124.92, 124.82, 124.59,
25	121.86, 116.45, 112.82, 110.86, 49.14, 38.29, 33.62. HRMS (ESI) m/z Calcd [M+H] ⁺ 322.1550,
26	found: 322.1541.
27	
28	N-(8-hydroxyquinolin-5-yl)-4-[methyl(phenyl)amino]butanamide (11b)
29	White solid (Yield 65%), Mp:177-180°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, $J = 3.4$ Hz,
30	1H), 8.03 (d, $J = 8.3$ Hz, 1H), 7.41 (d, $J = 7.9$ Hz, 2H), 7.30 (s, 1H), 7.23 (d, $J = 7.7$ Hz, 2H), 7.11
31	(d, $J = 8.0$ Hz, 1H), 6.78 (d, $J = 8.2$ Hz, 2H), 6.72 (t, $J = 7.2$ Hz, 1H), 3.46 (t, $J = 6.9$ Hz, 2H),
32	2.95 (s, 3H), 2.53 (t, $J = 7.0$ Hz, 2H), 2.16 – 2.05 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.27,
33	151.79, 149.54, 148.51, 138.76, 132.57, 129.48, 124.99, 124.92, 124.67, 121.91, 115.98, 112.37,
34	110.90, 51.84, 38.33, 33.26, 22.56. HRMS (ESI) m/z Calcd [M+H] 336.1706, found: 336.1698.
35	
36	N-(8-hydroxyquinolin-5-yl)-5-[methyl(phenyl)amino]pentanamide (11c)
37	white solid (Yield 51%), Mp:123-126 C. ¹ H NMR (400 MHz, CDCl ₃) δ 8./8 (d, $J = 3.6$ Hz,
30 20	1H), 8.06 (d, $J = 8.5$ Hz, 1H), 7.44 (d, $J = 7.9$ Hz, 2H), 7.22 (d, $J = 7.7$ Hz, 2H), 7.17 – 7.10 (m,
39	2H), 0.73 (d, $J = 8.3$ Hz, 2H), 0.09 (t, $J = 7.3$ Hz, 1H), 3.40 (t, $J = 7.0$ Hz, 2H), 2.95 (s, 3H), 2.50 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 2.95 (s, 3H), 2.50 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 2.95 (s, 3H), 2.50 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2H), 2.95 (s, 3H), 2.50 (t, $J = 7.2$ Hz, 2H), 1.80 (t, $J = 7.2$ Hz, 2
40 11	$(I, J = 7.2 \text{ HZ}, 2\Pi), 1.69 - 1.79 (III, 2\Pi), 1.77 - 1.68 (III, 2H). C NMK (101 MHZ, CDCl3) of 172.46 151.17 140.28 147.88 128.08 121.48 120.27 125.22 124.55 122.22 121.84 116.20$
+ı ⊿0	172.40, 131.17, 147.20, 147.00, 130.00, 131.40, 127.27, 123.22, 124.33, 123.23, 121.84, 110.20, 112.28, 100.25, 52.44, 28.48, 26.62, 26.52, 22.45, UDMS (ESI) m/r Calad IM (11) ⁺ 250.1962
42 12	112.20, 107.23, 32.44, 30.40, 30.03, 20.33, 23.43. IRMIS (ESI) II/2 Calcu [M+H] 330.1803, found: 350.1858
4 3 ДЛ	Iouna, 550.1050.

1 N-(8-hydroxyquinolin-5-yl)-6-[methyl(phenyl)amino]hexanamide (11d)

2 White solid (Yield 55%), Mp:132-135°C. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 3.4 Hz, 3 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.46 (d, J = 7.1 Hz, 2H), 7.25 – 7.20 (m, 2H), 7.13 (d, J = 7.5 Hz, 4 1H), 6.71 (d, J = 8.5 Hz, 2H), 6.67 (d, J = 7.3 Hz, 1H), 3.35 (t, J = 7.3 Hz, 2H), 2.93 (s, 3H), 2.48 5 (t, J = 7.3 Hz, 2H), 1.91 – 1.79 (m, 2H), 1.71 – 1.63 (m, 2H), 1.51 – 1.44 (m, 2H). ¹³C NMR (101 6 MHz, DMSO) δ 172.48, 151.73, 149.51, 148.49, 138.75, 132.50, 129.47, 124.95, 124.62, 121.89, 7 115.83, 112.32, 110.89, 52.14, 38.37, 36.13, 26.76, 26.27, 25.74. HRMS (ESI) m/z Calcd [M+H]⁺ 8 364.2019, found: 364.1997.

9

10 N-(8-hydroxyquinolin-5-yl)-3-{2-methyl-1H-benzo[d]imidazol-1-yl}propanamide (11e)

White solid (Yield 57%), Mp:234-236°C.¹H NMR (400 MHz, DMSO) δ 9.77 (s, 1H), 8.77 (d, J
3.9 Hz, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.37 (dd, J = 8.5, 4.1 Hz, 1H), 7.21
(dd, J = 8.5, 4.8 Hz, 1H), 7.19 – 7.12 (m, 2H), 6.94 (d, J = 8.2 Hz, 1H), 4.54 (t, J = 6.6 Hz, 2H),
2.94 (t, J = 6.6 Hz, 2H), 2.58 (s, 3H), 2.09 (s, 1H). ¹³C NMR (101 MHz, DMSO) δ 170.05, 152.36,
152.28, 148.43, 142.93, 138.79, 135.39, 132.31, 124.90, 124.72, 124.15, 121.88, 121.77, 121.68,
118.64, 110.85, 110.66, 36.04, 14.01. HRMS (ESI) m/z Calcd [M+H]⁺ 347.1502, found:
347.1504.

18

19 N-(8-hydroxyquinolin-5-yl)-4-{2-methyl-1H-benzo[d]imidazol-1-yl}butanamide (11f)

20 White solid (Yield 69%), Mp:217-220 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 8.77 (d, J = 21 3.2 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.52 – 7.41 (m, 3H), 7.35 (d, J = 8.2 Hz, 1H), 7.15 – 7.03 (m, 2H), 6.98 (d, J = 8.2 Hz, 1H), 4.20 (t, J = 7.2 Hz, 2H), 2.50 (s, 3H), 2.43 (d, J = 4.7 Hz, 2H), 2.09 – 1.98 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 171.73, 152.13, 151.87, 148.51, 142.86, 138.77, 135.65, 132.59, 124.97, 124.77, 124.66, 121.90, 121.88, 121.59, 118.67, 110.90, 110.29, 43.04, 32.59, 25.45, 13.95. HRMS (ESI) m/z Calcd [M+H]⁺ 361.1659, found: 361.1638.

26

27 N-(8-hydroxyquinolin-5-yl)-5-{2-methyl-1H-benzo[d]imidazol-1-yl}pentanamide (11g)

28 White solid (Yield 45%), Mp:197-200°C. ¹H NMR (400 MHz, DMSO) δ 9.66 (s, 1H), 8.75 (dd, 29 J = 4.0, 1.2 Hz, 1H), 8.13 (dd, J = 8.5, 1.3 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.30 (d, J = 8.2 Hz, 1H), 30 7.05 (td, J = 6.9, 1.0 Hz, 2H), 6.94 (d, J = 8.2 Hz, 1H), 4.13 (t, J = 7.1 Hz, 2H), 2.45 (s, 3H), 2.39 31 – 2.34 (m, 2H), 1.77 – 1.66 (m, 2H), 1.62 – 1.54 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 172.22, 32 152.03, 151.79, 148.51, 142.80, 138.75, 135.63, 132.45, 124.93, 124.83, 124.65, 121.89, 121.82, 33 121.54, 118.66, 110.89, 110.28, 43.26, 35.64, 29.45, 23.10, 13.99. HRMS (ESI) m/z Calcd 34 [M+H]⁺ 375.1815, found: 375.1827

35

36 N-(8-hydroxyquinolin-5-yl)-6-{2-methyl-1H-benzo[d]imidazol-1-yl}hexanamide (11h)

37 White solid (Yield 35%), Mp:125-128°C. ¹H NMR (400 MHz, DMSO) δ 9.76 (s, 1H), 9.70 (s, 38 1H), 8.86 (dd, *J* = 4.1, 1.4 Hz, 1H), 8.23 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.56 (dd, *J* = 8.6, 4.1 Hz, 1H), 39 7.51 (t, J = 6.6 Hz, 2H), 7.37 (d, J = 8.2 Hz, 1H), 7.19 – 7.10 (m, 2H), 7.03 (d, J = 8.2 Hz, 1H), 40 4.21 (t, J = 7.2 Hz, 2H), 2.55 (s, 3H), 2.40 (t, J = 7.3 Hz, 2H), 1.83 – 1.73 (m, 2H), 1.72 – 1.65 (m, 2H), 1.43 – 1.35 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 172.37, 152.03, 151.74, 148.48, 142.76, 41 42 138.72, 135.60, 132.46, 124.93, 124.88, 124.61, 121.89, 121.80, 121.51, 118.62, 110.87, 110.28, 43 43.40, 35.95, 29.58, 26.43, 25.44, 13.99. HRMS (ESI) m/z Calcd [M+H]⁺ 389.1972, found: 44 389.1943.

1	
2	$\label{eq:constraint} 3-\{1,1-dioxido-3-oxobenzo[d] isothiazol-2(3H)-yl\}-N-(8-hydroxyquinolin-5-yl) propanamide$
3	(11i)
4	White solid (Yield 38%), Mp:210-213 $^{\circ}C$. ¹ H NMR (400 MHz, DMSO) δ 9.93 (s, 1H), 8.85 (dd,
5	<i>J</i> = 4.0, 1.4 Hz, 1H), 8.39 – 8.31 (m, 2H), 8.15 (d, <i>J</i> = 7.6 Hz, 1H), 8.11 – 8.05 (m, 1H), 8.02 (t, <i>J</i>
6	= 7.1 Hz, 1H), 7.54 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.45 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H),
7	4.10 (t, $J = 7.3$ Hz, 2H), 2.97 (t, $J = 7.3$ Hz, 2H). ¹³ C NMR (101 MHz, DMSO) δ 169.32, 158.93,
8	152.08, 148.47, 138.78, 137.34, 136.31, 135.77, 132.68, 126.84, 125.58, 124.96, 124.72, 124.43,
9	122.04, 121.85, 110.86, 35.63, 34.76. HRMS (ESI) m/z Calcd [M+H] ⁺ 398.1702, found: 398.1711
10	
11	4-{1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl}-N-(8-hydroxyquinolin-5-yl)butanamide
12	(11j)
13	White solid (Yield 40%), Mp:221-223 $^{\circ}$ C. ¹ H NMR (400 MHz, DMSO) δ 9.77 (d, 2H), 9.30 (s,
14	1H), 8.86 (d, $J = 4.0$ Hz, 1H), 8.73 (d, 1H), 8.41 – 8.26 (m, 2H), 7.58 (dd, $J = 8.6$, 4.1 Hz, 1H),
15	7.43 (d, J = 8.2 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 3.89 (t, 2H), 2.59 (t, J = 7.3 Hz, 2H), 2.18 -
16	2.06 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 171.53, 157.61, 152.27, 151.81, 148.51, 138.74,
17	138.13, 132.65, 131.61, 130.75, 127.27, 124.99, 124.85, 124.63, 121.90, 118.48, 110.88, 32.77,
18	24.32. HRMS (ESI) m/z Calcd [M+H] ⁺ 412.0961, found: 412.0950.
19	
20	$5-\{1,1-dioxido-3-oxobenzo[d] isothiazol-2(3H)-yl\}-N-(8-hydroxyquinolin-5-yl) pentanamide$
20 21	5-{1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl}-N-(8-hydroxyquinolin-5-yl)pentanamide (11k)
20 21 22	5-{1,1-dioxido-3-oxobenzo[d]isothiazol-2(3H)-yl}-N-(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, J = 2.7 Hz,
20 21 22 23	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m,
20 21 22 23 24	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> =
20 21 22 23 24 25	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101
20 21 22 23 24 25 26	5-{1,1-dioxido-3-oxobenzo[<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82,
20 21 22 23 24 25 26 27	5-{1,1-dioxido-3-oxobenzo[<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI)
20 21 22 23 24 25 26 27 28	5-{1,1-dioxido-3-oxobenzo[<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105.
20 21 22 23 24 25 26 27 28 29	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105.
20 21 22 23 24 25 26 27 28 29 30	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105.
20 21 22 23 24 25 26 27 28 29 30 31	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105.
20 21 22 23 24 25 26 27 28 29 30 31 32	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, <i>J</i> = 3.5 Hz,
20 21 22 23 24 25 26 27 28 29 30 31 32 33	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, <i>J</i> = 3.5 Hz, 1H), 8.11 (d, <i>J</i> = 8.5 Hz, 1H), 7.95 (d, <i>J</i> = 6.7 Hz, 1H), 7.86 – 7.74 (m, 3H), 7.49 – 7.41 (m, 2H),
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, $J = 2.7$ Hz, 2H), 8.86 (dd, $J = 4.1$, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, $J = 7.5$ Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, $J = 8.6$, 4.1 Hz, 1H), 7.42 (d, $J = 8.2$ Hz, 1H), 7.04 (d, $J = 8.2$ Hz, 1H), 3.79 (t, $J =$ 7.1 Hz, 2H), 2.48 (t, $J = 7.0$ Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, $J = 3.5$ Hz, 1H), 8.11 (d, $J = 8.5$ Hz, 1H), 7.95 (d, $J = 6.7$ Hz, 1H), 7.86 – 7.74 (m, 3H), 7.49 – 7.41 (m, 2H), 7.38 (s, 1H), 7.08 (d, $J = 8.1$ Hz, 1H), 3.85 (t, $J = 7.0$ Hz, 2H), 2.50 (t, $J = 7.3$ Hz, 2H), 1.99 – 1.92
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154 °C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, $J = 2.7$ Hz, 2H), 8.86 (dd, $J = 4.1$, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, $J = 7.5$ Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, $J = 8.6$, 4.1 Hz, 1H), 7.42 (d, $J = 8.2$ Hz, 1H), 7.04 (d, $J = 8.2$ Hz, 1H), 3.79 (t, $J =$ 7.1 Hz, 2H), 2.48 (t, $J = 7.0$ Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146 °C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, $J = 3.5$ Hz, 1H), 8.11 (d, $J = 8.5$ Hz, 1H), 7.95 (d, $J = 6.7$ Hz, 1H), 7.86 – 7.74 (m, 3H), 7.49 – 7.41 (m, 2H), 7.38 (s, 1H), 7.08 (d, $J = 8.1$ Hz, 1H), 3.85 (t, $J = 7.0$ Hz, 2H), 2.50 (t, $J = 7.3$ Hz, 2H), 1.99 – 1.92 (m, 2H), 1.93 – 1.85 (m, 2H), 1.62 – 1.55 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.39, 159.09,
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154 [°] C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, <i>J</i> = 2.7 Hz, 2H), 8.86 (dd, <i>J</i> = 4.1, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, <i>J</i> = 7.5 Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, <i>J</i> = 8.6, 4.1 Hz, 1H), 7.42 (d, <i>J</i> = 8.2 Hz, 1H), 7.04 (d, <i>J</i> = 8.2 Hz, 1H), 3.79 (t, <i>J</i> = 7.1 Hz, 2H), 2.48 (t, <i>J</i> = 7.0 Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(<i>3H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146 [°] C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, <i>J</i> = 3.5 Hz, 1H), 8.11 (d, <i>J</i> = 8.5 Hz, 1H), 7.95 (d, <i>J</i> = 6.7 Hz, 1H), 7.86 – 7.74 (m, 3H), 7.49 – 7.41 (m, 2H), 7.38 (s, 1H), 7.08 (d, <i>J</i> = 8.1 Hz, 1H), 3.85 (t, <i>J</i> = 7.0 Hz, 2H), 2.50 (t, <i>J</i> = 7.3 Hz, 2H), 1.99 – 1.92 (m, 2H), 1.93 – 1.85 (m, 2H), 1.62 – 1.55 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.39, 159.09, 151.72, 148.47, 138.72, 137.26, 136.25, 135.73, 132.56, 126.78, 125.53, 124.99, 124.94, 124.66,
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	5-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)pentanamide (11k) White solid (Yield 46%), Mp:152-154°C. ¹ H NMR (400 MHz, DMSO) δ 9.76 (d, $J = 2.7$ Hz, 2H), 8.86 (dd, $J = 4.1$, 1.5 Hz, 1H), 8.37 – 8.25 (m, 2H), 8.13 (d, $J = 7.5$ Hz, 1H), 8.10 – 7.97 (m, 2H), 7.57 (dd, $J = 8.6$, 4.1 Hz, 1H), 7.42 (d, $J = 8.2$ Hz, 1H), 7.04 (d, $J = 8.2$ Hz, 1H), 3.79 (t, $J = 7.1$ Hz, 2H), 2.48 (t, $J = 7.0$ Hz, 2H), 1.90 – 1.80 (m, 2H), 1.81 – 1.67 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.17, 159.09, 151.76, 148.50, 138.74, 137.26, 136.24, 135.73, 132.58, 126.82, 125.54, 124.98, 124.90, 124.65, 121.99, 121.91, 110.87, 39.03, 35.48, 28.08, 23.03. HRMS (ESI) m/z Calcd [M+H] ⁺ 426.1118, found: 426.1105. 6-{1,1-dioxido-3-oxobenzo [<i>d</i>]isothiazol-2(3 <i>H</i>)-yl}- <i>N</i> -(8-hydroxyquinolin-5-yl)hexanamide (11) White solid (Yield 44%), Mp:143-146°C. ¹ H NMR (400 MHz, CDCl ₃) δ 8.76 (d, $J = 3.5$ Hz, 1H), 8.11 (d, $J = 8.5$ Hz, 1H), 7.95 (d, $J = 6.7$ Hz, 1H), 7.86 – 7.74 (m, 3H), 7.49 – 7.41 (m, 2H), 7.38 (s, 1H), 7.08 (d, $J = 8.1$ Hz, 1H), 3.85 (t, $J = 7.0$ Hz, 2H), 2.50 (t, $J = 7.3$ Hz, 2H), 1.99 – 1.92 (m, 2H), 1.93 – 1.85 (m, 2H), 1.62 – 1.55 (m, 2H). ¹³ C NMR (101 MHz, DMSO) δ 172.39, 159.09, 151.72, 148.47, 138.72, 137.26, 136.25, 135.73, 132.56, 126.78, 125.53, 124.99, 124.94, 124.66, 121.98, 121.89, 110.85, 39.17, 35.91, 28.20, 26.34, 25.27. HRMS (ESI) m/z Calcd [M+H] ⁺

39

40 4.3. Colorimetric Screening against MMP-2 and MMP-9.

MMP-2 and MMP-9 inhibitory activities of all target compounds were evaluated by MMP-2
and MMP-9 Colorimetric Drug Discovery Kit (BML-AK408, BML-AK410, Enzo®Life Sciences).
All assays were carried out in clear Costar 96-well, half-area, flat-bottom assay plates. Each well
contained a total volume of 90µL including 50µL assay buffer, 20µL human recombinant MMP-2

1 or MMP-9 and 20μ L test inhibitors. The enzymes were not added to the blanks and the test 2 inhibitors were not added to the controls. After a 30 min incubation period at 37 °C, the reaction 3 was initiated by the addition of 10 μ L of chromogenic MMP substrate. Absorbance was monitored 4 at 412 nm using a microtiterplate reader, and measurements were recorded every minute for 20 5 min.

6

7 4.4. Molecular docking

8 Surflex-dock program in Sybyl-X 2.1.1 was used with default values for all docking studies.
9 Ligands were optimized using concord method and assigned with Gasteiger-Hückel charges. The
10 structure of MMP-2 and MMP-9 was downloaded from the Protein Data Bank server with PDB
11 code: 1HOV and 1GKC. The top-scored pose of selected compounds were selected as the
12 representative structures.

13

14 **4.5. MTT** assay

All cell lines were cultured in RPMI1640 medium (10% FBS) at 37°C in a 5% CO₂ humidified
incubator. Briefly, Cancer cells were plated at 4000-5000 cells per well (100µL/well) in 96-well
plates for 8 h and then treated with different concentrations of compounds (100µL/well) for 48 h.
0.5% MTT solution (10µL/well) was added and incubation for 4 h. DMSO (150µL/well) was
added to extract formazan formed from MTT. Absorbance was determined using a microtiter-plate
reader at 570 nm. The IC₅₀ values were calculated according to the inhibition ratios.

21

22 4.6. Cell migration and invasion assay

A549 cell was plated at 200,000 cells per well (1000μL/well) in 12-well plates for 8 h and then
 treated with compound 5e or 5h (1000μL/well) for 24 h. Then cells were harvested and
 resuspended as single cells in 1000μL serum-free RPMI1640.

26 For the migration experiments, we took 30,000 cells in 200µL serum-free RPMI1640. Cells 27 were added to the upper chamber and the lower chamber was filled with 600µL RPMI1640 28 supplemented with 10% FBS. Cells were allowed to migrate for 24 h at 37°C in a 5% CO₂ 29 humidified incubator. The experiment was terminated by discarding the medium and fixing the 30 cells with MeOH/Acetic acid (3:1) for 20 min. Non-invading cells on the upper side of the insert 31 were removed by a cotton-tipped applicator. Staining of the cells on the bottom of the membrane 32 was performed with crystal violet (0.1%) for 20 min at room temperature and washed with PBS. 33 Then lower surface was captures and counted. Cells were either counted manually or with the help 34 of the Image J software.

For the invasion experiments, the chamber membrane was covered with 50μL matrigel (1:10
diluted) for 2 hours at 37°C and the rest of the protocol was identical to that described in the
migration assay.

38

39 4.7. HUVECs tuber formation assay

HUVEC were plated at 200,000 cells per well (1000μL/well) in 12-well plates for 8h and then
treated with compound 5e or 5h (1000μL/well) for 24h using serum-free RPMI1640. Then cells
were harvested and resuspended as single cells in 1000μL serum-free RPMI1640.

43 The wells of 96-well plates were covered with 100µL matrigel (no diluting) for 2 hours at 37°C.

44 Then cells were carefully layered on the top of the polymerized matrigel. After 6h incubation on

1 matrigel, the dimensional organization of the cells was examined under an inverted microscope.

- 2 The number of meshes where measured as a direct parameter for HUVEC angiogenesis efficiency,
- 3 using the Angiogenesis tool and Image J software.
- 4

5 4.8. Apoptosis Assay.

6 A549 cells $(1 \times 10^5 \text{ cells/mL})$ were seeded in 12-well plates and treated with compounds **5e**, **5h** 7 and **A** of 1, 5 and 10 μ M for 48h. The cells were then harvested and washed with cold PBS. After 8 the centrifugation and removal of the supernatants, cells were resuspended in 200 μ L of binding 9 buffer, which was then added to 5 μ L of annexin V-FITC and 10 μ L of PI. Then the cells were 10 incubated at room temperature for another 15min in the dark. The stained cells were analyzed by a 11 flow cytometer.

12

13 4.9. Western blot

14 A549 cells were treated with **5e**, **5h** and **A** for 24h. The assay protocol has been described 15 previously [26]. Cell lysates were prepared using SDS-PAGE loading bu□er and subjected to 16 SDS-PAGE, they were then transferred to PVDF membranes using the Trans-Blot Turbo Transfer 17 system (Bio-Rad). After blocking with 10% dry milk in TBST, membranes were probed with 18 rabbit anti-MMP-2, rabbit anti-MMP-9 or rabbit anti-GAPDH antibody, then were incubated with 19 secondary antibodies. Images were acquired using Amersham Imager 680.

20 Zymography in 10% polyacrylamide gel containing 0.1% gelatin was performed according to 21 the earlier method^[27]. Gelatin was used to detect MMP-2 and MMP-9 activity in the culture 22 medium. Cell supernatants were electrophoresed on an 8% SDS-PAGE containing 2% gelatin. The 23 gels were washed with 0.25% triton three times. Then the gels were cut and incubated in the 24 zymography buffer (0.15 M NaCl, 5 mM CaCl₂, 0.05% NaN₃ and 50 mM Tris-HCl buffer, pH 7.5) 25 at 37°C for 48 h. After incubation, the gels were stained with 0.25% Coomassie Brilliant Blue 26 R250, and detained with acetic acid, methanol and water. MMP activity was represented by a 27 white band of gelatin digestion.

28

29 Acknowledgments

This work was supported by National Natural Science Foundation of China (81874288 and 21672127), Key Research and Development Project of Shandong Province (Grant No. 2017CXGC1401), the Fundamental Research Funds of Shandong University (Grant No. 2019GN045) and The Joint Research Funds for Shandong University and Karolinska Institute (SDU-KI-2019-06).

3536 References

- 37
- [1] C.A. Kontogiorgis, P. Papaioannou, D.J. Hadjipavlou-Litina, Matrix metalloproteinase inhibitors: a
 review on pharmacophore mapping and (Q)SARs results, Curr. Med. Chem., 12 (2005) 339-355.
- 40 [2] M. Nakamura, S. Miyamoto, H. Maeda, G. Ishii, T. Hasebe, T. Chiba, M. Asaka, A. Ochiai, Matrix
- 41 metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like
- 42 growth factor bioavailability, Biochem. Biophys. Res. Commun., 333 (2005) 1011-1016.
- 43 [3] M. Tian, J.R. Neil, W.P. Schiemann, Transforming growth factor- β and the hallmarks of cancer,
- 44 Cell. Signal., 23 (2011) 951-962.

- 1 [4] Z. Werb, ECM and Cell Surface Proteolysis: Regulating Cellular Ecology, Cell, 91 (1997) 439-442.
- 2 [5] H. Zheng, H. Takahashi, Y. Murai, Z. Cui, K. Nomoto, H. Niwa, K. Tsuneyama, Y. Takano,
- 3 Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and
- 4 angiogenesis of gastric carcinoma, Anticancer Res., 26 (2006) 3579-3583.
- 5 [6] J.E. Rundhaug, Matrix metalloproteinases and angiogenesis, J. Cell. Mol. Med., 9 (2005) 267-285.
- 6 [7] G. Bergers, R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S.
- 7 Itohara, Z. Werb, D. Hanahan, Matrix metalloproteinase-9 triggers the angiogenic switch during
 8 carcinogenesis, Nat. Cell Biol., 2 (2000) 737-744.
- 9 [8] J. Fang, Y. Shing, D. Wiederschain, L. Yan, C. Butterfield, G. Jackson, J. Harper, G.
- 10 Tamvakopoulos, M.A. Moses, Matrix metalloproteinase-2 is required for the switch to the angiogenic
- 11 phenotype in a tumor model, Proc. Natl. Acad. Sci. U. S. A., 97 (2000) 3884-3889.
- 12 [9] A. Mukherjee, N. Adhikari, T. Jha, A pentanoic acid derivative targeting matrix
 13 metalloproteinase-2 (MMP-2) induces apoptosis in a chronic myeloid leukemia cell line, Eur. J. Med.
 14 Chem., 141 (2017) 37-50.
- [10] C. Daniel, J. Duffield, T. Brunner, K. Steinmann-Niggli, N. Lods, H.P. Marti, Matrix
 metalloproteinase inhibitors cause cell cycle arrest and apoptosis in glomerular mesangial cells, J.
 Pharmacol. Exp. Ther., 297 (2001) 57-68.
- [11] O. Nyormoi, L. Mills, M. Bar-Eli, An MMP-2/MMP-9 inhibitor, 5a, enhances apoptosis induced
 by ligands of the TNF receptor superfamily in cancer cells, Cell Death Differ., 10 (2003) 558-569.
- 20 [12] D. Bissett, K.J. O'Byrne, J. von Pawel, U. Gatzemeier, A. Price, M. Nicolson, R. Mercier, E.
- Mazabel, C. Penning, M.H. Zhang, M.A. Collier, F.A. Shepherd, Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer, J. Clin. Oncol., 23 (2005)
 842-849.
- 24 [13] V. Oliveri, G. Vecchio, 8-Hydroxyquinolines in medicinal chemistry: A structural perspective,
- 25 Eur. J. Med. Chem., 120 (2016) 252-274.
- [14] S.R. Bareggi, U. Cornelli, Clioquinol: Review of its Mechanisms of Action and Clinical Uses in
 Neurodegenerative Disorders, 18 (2012) 41-46.
- [15] J.A. Jacobsen, J.L. Fullagar, M.T. Miller, S.M. Cohen, Identifying chelators for metalloprotein
 inhibitors using a fragment-based approach, J. Med. Chem., 54 (2011) 591-602.
- 30 [16] T.S. Rush, 3rd, R. Powers, The application of x-ray, NMR, and molecular modeling in the design
 31 of MMP inhibitors, Curr. Top. Med. Chem., 4 (2004) 1311-1327.
- 32 [17] E. Attolino, V. Calderone, E. Dragoni, M. Fragai, B. Richichi, C. Luchinat, C. Nativi,
- Structure-based approach to nanomolar, water soluble matrix metalloproteinases inhibitors (MMPIs),
 Eur. J. Med. Chem., 45 (2010) 5919-5925.
- 35 [18] X. Jin, Z. Yang, T. Li, B. Wang, Y. Li, M. Yan, C. Liu, J. An,
- 8-hydroxyquinoline-5-carbaldehyde-(benzotriazol-1'-acetyl)hydrazone as a potential Mg2+ fluorescent
 chemosensor, J. Coord. Chem., 66 (2013) 300-305.
- 38 [19] A. Hazra, Y.P. Bharitkar, A. Maity, S. Mondal, N.B. Mondal, Synthesis of tetracyclic
- 39 pyrrolidine/isoxazolidine fused pyrano[3,2-h]quinolines via intramolecular 1,3-dipolar cycloaddition in
- 40 ionic liquid, Tetrahedron Lett., 54 (2013) 4339-4342.
- 41 [20] J. Murray, D. Nowak, L. Pukenas, R. Azhar, M. Guillorit, C. Walti, K. Critchley, S. Johnson, R.S.
- 42 Bon, Solid phase synthesis of functionalised SAM-forming alkanethiol-oligoethyleneglycols, Journal
- 43 of materials chemistry. B, 2 (2014) 3741-3744.
- 44 [21] S.S. Chhajed, P. Manisha, V.A. Bastikar, H. Animeshchandra, V.N. Ingle, C.D. Upasani, S.S.

1 Wazalwar, Synthesis and molecular modeling studies of

2 3-chloro-4-substituted-1-(8-hydroxy-quinolin-5-yl)-azetidin-2-ones as novel anti-filarial agents,

- **3** Bioorg. Med. Chem. Lett., 20 (2010) 3640-3644.
- 4 [22] X. Yan, Y. Yu, P. Ji, H. He, C. Qiao, Antitumor activity of endoperoxide-iron chelator
- 5 conjugates-design, synthesis and biological evaluation, Eur. J. Med. Chem., 102 (2015) 180-187.
- 6 [23] L.J. MacPherson, E.K. Bayburt, M.P. Capparelli, B.J. Carroll, R. Goldstein, M.R. Justice, L. Zhu,
- 7 S. Hu, R.A. Melton, L. Fryer, R.L. Goldberg, J.R. Doughty, S. Spirito, V. Blancuzzi, D. Wilson, E.M.
- 8 O'Byrne, V. Ganu, D.T. Parker, Discovery of CGS 27023A, a non-peptidic, potent, and orally active
- 9 stromelysin inhibitor that blocks cartilage degradation in rabbits, J. Med. Chem., 40 (1997) 2525-2532.
- 10 [24] P.D. Brown, R.E. Bloxidge, N.S. Stuart, K.C. Gatter, J. Carmichael, Association between
- 11 expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma, J.
- 12 Natl. Cancer Inst., 85 (1993) 574-578.
- 13 [25] B.J. Lim, S.S. Jung, S.Y. Choi, C.S. Lee, Expression of metastasis-associated molecules in
- 14 non-small cell lung cancer and their prognostic significance, Mol Med Rep, 3 (2010) 43-49.
- 15 [26] D. Cuffaro, E. Nuti, V. Gifford, N. Ito, C. Camodeca, T. Tuccinardi, S. Nencetti, E. Orlandini, Y.
- 16 Itoh, A. Rossello, Design, synthesis and biological evaluation of bifunctional inhibitors of membrane
- 17 type 1 matrix metalloproteinase (MT1-MMP), Biorg. Med. Chem., 27 (2019) 196-207.
- 18 [27] C. Medina, S. Videla, A. Radomski, M.W. Radomski, M. Antolin, F. Guarner, J. Vilaseca, A.
- 19 Salas, J.R. Malagelada, Increased activity and expression of matrix metalloproteinase-9 in a rat model
- 20 of distal colitis, Am. J. Physiol. Gastrointest. Liver Physiol., 284 (2003) G116-122.

Highlights

- 1. Thirty-one 8-hydroxyquinoline derivatives were designed and synthesized.
- 2. Compounds **5e** and **5h** show good MMP-2/9 inhibitory activity.
- 3. Compounds **5e** and **5h** exert good anti-proliferative, anti-invasive and anti-angiogenetic activity.
- 4. Compounds **5e** and **5h** down-regulate expression of MMP-2 and MMP-9.

Chillip Mark