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Abstract : Addition of enaminoester (R)-7 to methyl methacrylate 8 led to adduct (2S, I'R)-9 with a complete stereoselectivity. 

It has been reported that chiral [~-enaminoesters 3, derived from cyclic ~-ketoesters 1 and optically 

active 1-phenylethylamine 2, add to electron-deficient alkenes 4 leading, after hydrolytic work-up, to adducts 5 

with a high yield and an excellent stereoselectivity. 1-5 This reaction has been applied to the approach to several 

naturally occurring compounds, for example (-)-malyngolide 2 and Nitraria alkaloids. 3 
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In this paper, we show that the addition of methyl methacrylate 8 to enaminoester 7 furnished 

adduct 9 as a single compound (de and ee > 95 %), thereby al lowing the s imultaneous,  complete  s tereocontrol  o f  

a quaternary carbon center and  a tertiary one in the fl-position. Enaminoester (R)-(-)-76 was prepared from keto- 

ester 6 and enantiopure (R)-1-phenylethylamine ([CX]D 20 = +40.6, neat) (12 h in refluxing benzene, Dean-Stark 

trap, 86 % yield). This enaminoester was then added to methyl methacrylate 8 (Et20, 20 °C, 7 days, 1.2 eq of 

anhydrous MgBr 2 and 3.6 eq of 8, both added in 12 times). After hydrolytic work-up (10 % AcOH in water, 20 

°C, 24 h) adduct (2S, l'R)-(+)-97 was isolated with a 72 % overall yield by flash chromatography on silica gel. 
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This adduct proved to be homogeneous by (non-chiral)-GC analysis, 13C and 1H NMR 

spectroscopy (including in the latter case experiments using Eu(FOD) 3 and Eu(hfc) 3 as shift reagents). For 

comparison, a racemic specimen of 9, accompanied with its diastereomer (+)-10, was prepared in a non- 

stereoselective fashion by addition [6+8] in the presence of Triton® B (3 eq of 8, 0.1 eq of Triton ® B, 12 h in 

refluxing THF). 

O 
11 COOMe 

9 ( + e n t - 9 )  + ~ " ' ' H ~ " M  COOMee 

10 (+ ent-lO) 

The relative configuration of the two stereogenic centers in 9 was assigned by chemical 

correlation. For this purpose 9 was first cyclized into lactam 11 by addition of ammonia (NH 3 in MeOH, 48 h at 

20 °C). Dehydration of 11 (Burgess inner salt 128, 3 h in refluxing toluene) then led to (3S, 4aR)-(+)-139 (72 % 

overall yield), in which the methyl group at C-3 and the angular carbomethoxy substituent exhibit the syn 

relationship (by 1H NMR, by comparison with diastereomer (+)-1410, prepared from (+)-10, in a similar 
fashion to conversion [9--->13]). 

O O O 

HN ..~ Et3N-SO2N-COOMe .,, 
9 ~ H  Me 12 ~ Me (+)-10 ~ H 

"COOMe ~ "COOMe ~ "COOMe 

11 13 14 (+ ent-14) 

The absolute configuration at the quaternary carbon center in adduct 9 (I'R) was determined as 

follows. Compound (R)-(+)-I51,11 (prepared with an ee _> 95 % by condensation of enaminoester 7 with methyl 
acrylate in the presence of MgBr 2) was protected 12 as ketal derivative (R)-(+)-16.13 Sequential deprotonation of 

16 (LDA, THF, -78 °C) and methylation (MeI, -78 °C, 3 h) next produced with 76 % yield a mixture of 

diastereomers (2R, l'R)-(+)-I714 and (2S, l'R)-(-)-1815, easily separated by flash chromatography on silica gel 

(eluent: AcOEt/cyclohexane: 30/"/0), in the ratio of 4.5:1. Acidic hydrolysis of the minor isomer 18 led to the 

corresponding ketoester which proved to be identical in all respects with (+)-97, thereby establishing the R 
configuration of this adduct. 
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The remarkable complete stereocontrol of the two stereogenic centers in adduct 9 may be interpreted by 
evoking, as proposed earlier for related additions, 5 that reaction [6+7-->9] proceeds through the compact 

approach 19 involving a synclinal arrangement of the enaminoester and the electrophilic alkene. According to 

such a model, the alkylaton takes place anti to the phenyl ring of the chiral amine moiety, depicted in its 

energetically preferred conformation (the C-H nearly eclipsing the cyclohexane ring), thereby delivering the R 

configuraton at the quaternary carbon center. The complete stereocontrol observed at the C-2 tertiary center 

requires that the N-H proton of enaminoester 7 should be transferred to the C-2 vinylic atom of methyl 

methacrylate 8, concertedly to the creation of the C-C bond. Furthermore, in order to account for the observed 

stereochemistry, the electrophilic alkene should be arranged as indicated, namely the carbomethoxy group 

orientated in the exo-position relatively to the enaminoester partner. It should be pointed out that approach 22, 

closely related to 19, has been previously proposed in the addition of imine 20 to methyl 2-phenylthioacrylate 
21.16 

H•N•_ COOMe Ph Me 
H "2~ N 

OOMe ~ M e  P h S T C O O M e  

19 20 21 22 

If, as a rule,5 the asymmetric Michael reaction using chiral imines (or enaminoesters) implicates compact 

approaches of the two reactants such as 19 and 22, the exo-spafial arrangement of the electrophilic partner found 

in these two approaches does not appear to be general. We have thus recently demonstrated that additions of 

methyl 2-acetoxyacrylate or ethyl 2-deuteroacrylate to imine 20 arise both in the endo-fashion. 17 Factors 
responsible for the endo/exo orientation of the electrophile are currently under investigation. 
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