

Metal–Organic Frameworks

Isoreticular Expansion of Metal–Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO₂ Capture

Kartik Maity,^[a] Karabi Nath,^[a] Michael A. Sinnwell,^[c] Radha Kishan Motkuri,^[b] Praveen K. Thallapally,^[c] and Kumar Biradha^{*[a]}

Abstract: The deliberate construction of isoreticular eeametal-organic frameworks (MOFs) (Cu-eea-1, Cu-eea-2 and Cu-eea-3) and rtl-MOFs (Co-rtl-1 and Co-rtl-2) has been accomplished based on the ligand-to-axial pillaring of supermolecular building layers. The use of different metal ions resulted in two types of supermolecular building layers (SBLs): Kagome (kgm) and square lattices (sql) which further interconnect to form anticipated 3D-MOFs. The isoreticular expansion of (3,6)-connected Cu-MOFs has been achieved with desired eea-topology based on kgm building layers. In addition, two (3,6)-connected Co-rtl-MOFs were also successfully constructed based on sql building layers. The Cu-eea-MOFs were shown to act as hydrogen storage materials with appreciable amount of hydrogen uptake abilities. Moreover Cu-eea-MOFs have also exhibited remarkable CO₂ capture ability at ambient condition compared to nitrogen and methane, due to the presence of amide functionalities.

Metal–organic frameworks (MOFs) have grown rapidly as effective porous materials in the last couple of decades due to their utility in various applications.^[1–8] The MOFs provide a unique advantage for the introduction of desired functionalities, and therefore properties, by the judicious selection of appropriate organic building block prior to assembly of the components. The substantial challenge of reticular chemistry is associated with the synthesis of crystalline materials using appropriate organic linkers for connecting symmetrical secondary building units (SBUs) into extended frameworks with predefined topologies. For such isoreticular synthesis of series of MOFs, the ri-

[a]	Dr. K. Maity, K. Nath, Prof. K. Biradha Department of Chemistry, Indian Institute of Technology Kharagpur 721302 (India) E-mail: kbiradha@chem.iitkgp.ernet.in
[b]	Dr. R. K. Motkuri Energy and Environment Directorate Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
[c]	Dr. M. A. Sinnwell, Dr. P. K. Thallapally Physical and Computational Sciences Directorate Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
D	Supporting information and the ORCID identification number(s) for author(s) of this article can be found under: https://doi.org/10.1002/chem.201902491.

Chem. Eur. J. 2019, 25, 1-7

gidity and symmetry of the organic linkers should be maintained while increasing the size of the linkers. In addition, the reaction conditions play a significant role in obtaining series of isoreticular MOFs as the formation of the same inorganic SBUs is essential.^[9-13] The first series of isoreticular MOFs were produced by connecting octahedral-shaped inorganic SBUs through various linear di-carboxylate linkers to produce 16 compounds with identical topologies. These MOFs were found to exhibit high methane and hydrogen storage capacity.^[9]

The paddlewheel cluster M2(COO)4 is one of the most common SBUs that has been observed to form with a wide range of metal ions. This binuclear metal cluster can act as a square building unit, as well as an octahedral building unit depending upon the nature of the polytopic ligands. Kagome lattice (kqm) and square lattice (sql) are the two edge transitive 2D-nets, which can be generated from a square building unit.^[14-20] Pillaring of these 2D-layered nets containing paddlewheel units into a 3D-porous architecture has been studied recently and the approach has been termed as supermolecular building layers (SBLs). Pillaring methods of SBLs involve several strategies which include linking axial-to-axial (A-A), ligand-toligand (L-L) and ligand-to-axial (L-A). Recently amide and amine functionalized 3-connected organic ligands have been shown to form Cu-MOFs with eea and rtl topology, respectively, based on the L-A pillaring strategy. These Cu-MOFs were explored for CO₂ capture ability and hydrocarbon separations.^[18]

Design and synthesis of porous MOFs is of importance for gas storage and separation purposes, impacting day-to-day aspects of society, such as environmental protection and energy utilization. In particular, the capture of carbon dioxide from the atmosphere is a necessity to minimize the greenhouse effect, and the storage of hydrogen and methane gases is absolutely crucial for the global utilization of clean energy.^[21,22] For the last few decades, the world's flourishing energy demand is being furnished by the combustion of fossil fuels, resulting in an ever increasing CO_2 concentration in the atmosphere.^[23-34] The combined effect of CO₂ emission on climate, and an inadequate supply of fossil fuels have prompted the development of alternative fuel sources. Hydrogen is considered as one of the more favourable energy sources for the replacement of coal and gasoline, due to its high gravimetric heat of combustion and zero carbon emission. Therefore, the use of hydrogen as fuel, for automobiles and various other purposes, necessitates the exploration of hydrogen storage materials.^[35-38]

These are not the final page numbers! **77**

Wiley Online Library

the

In this contribution, the gradual expansion of the frameworks has been achieved for an isoreticular series of Cu-MOFs by maintaining the underlying *eea*-topology. The isophthalate moieties of the ligands form the anticipated 2D-layers with *kgm*-topology (Scheme 1) in combination with the metal pad-

Scheme 1. Two possible edge transitive 2D-nets from square building unit: Kagome and square lattice.

dlewheel, whereas the pyridyl group, a second functionality, connects the adjacent layers to lead to the formation of (3,6)-connected 3D-MOFs. Further the use of Co^{II} salt instead of Cu^{II} salt resulted in the formation of *sql* building layers. The resulting Cu-*eea*-MOFs have been explored for selective capture of CO₂ over nitrogen and methane. Further the Cu-MOFs were also found to exhibit remarkable hydrogen storage capability. However the Co^{II}-based *rtl* MOFs hardly showed porous nature, possibly due to collapse of the pores in one case and the presence of interpenetration that totally occupied the voids in another case.

The organic building units used in this work (Scheme 2) are the elongated version of the previously explored T-shaped ligand, 5-(isonicotinamido) isophthalic acid (H₂INIA).^[16,18] The ligands, 5-(3-(pyridin-3-yl)acrylamido)isophthalic acid (H₂PIA1), 5-(3-(pyridin-4-yl)acrylamido)isophthalic acid (H₂PIA2) and 5-(4-(2-(pyridin-4-yl)vinyl)benzamido)isophthalic acid (H₂PIA3) were synthesized by condensation reactions of dimethyl-5-aminoisophthalate with 3-pyridylacrylic acid, 4-pyridylacrylic acid and 4-(2-(pyridin-4-yl)vinyl)benzoic acid, respectively, followed by hydrolysis. The synthesized molecules were characterized by ¹H NMR spectroscopy prior to their use for MOFs synthesis.

The solvothermal reaction of copper nitrate and H₂PIA1 in a DMF-EtOH-H₂O solvent mixture resulted in needle-shaped

Scheme 2. Molecular structure of the organic building blocks.

Chem. Eur. J. 2019, 25, 1–7

www.chemeurj.org

2

green coloured single crystals of Cu-MOF. The crystal structure of the as synthesized MOF was confirmed by single-crystal Xray diffraction and has been formulated as {[(PIA1)₆Cu₆](solv.)_x}_n, (**Cu-eea-1**). The structural analysis revealed that **Cu-eea-1** crystallised in the $R\bar{3}$ space group and the asymmetric unit contains one unit each of PIA1 and Cu^{II} ions. The Cu^{II} ion was found to exhibit a distorted square pyramidal coordination geometry and two such types of square pyramidal Cu^{II} centre produce the Cu₂(COO)₄ paddlewheel SBU. The Cu^{II} centres of the dinuclear Cu₂-paddlewheel are equatorial coordinated by four carboxylate oxygen atoms and the pyridyl nitrogen from two different ligands occupied two apical positions.

The isophthalate moieties in Cu-eea-1 are involved in bridging of the square building Cu₂-paddlewheel in order to produce 2D-kgm layers. Further these 2D-kgm layers are interconnected by the pyridyl moieties through the L-A pillaring method to produce a porous 3D-framework. The PIA1 unit with a T-shaped geometry acts as a 3-connected node, whereas the Cu₂-paddlewheel serves as a 6-connected node to form a (3,6)-connected framework with the desired eea-topology. The pillaring of the kgm-layers occurs in such a way that the six-membered ring window of a layer interconnects two threemembered ring windows from the adjacent kgm-sheets to generate a large and prolate-ellipsoid-shaped Cage A. Further in between a pair of Cage A, another type of cage has been formed by the connection between a pair of three-membered ring windows from the adjacent two layers, which is more spherical in nature (cage B). Cage A is encircled by six PIA1 units and twelve Cu₂-paddlewheel clusters (length 26 Å), whereas Cage B is surrounded by six Cu₂-paddlewheel clusters and six PIA1 units (length \approx 16 Å, width \approx 12 Å) (Figure 1).

It has been observed that size of the cavities and the separation between the *kgm*-layers are larger in **Cu-eea-1** compared to the previously studied Cu-based (**Cu-INIA**) *eea*-MOF, constructed by using INIA. As our aim was to build a series of *eea*-MOFs with reticular expansion of the framework, so another

Figure 1. Illustrations for Cu-*eea*-MOFs: a) *kgm*-layers formed by the isophthalate moieties; b) two types of cages: cage A (yellow, prolate-ellipsoid shaped) and cage B (pink, spherical); c) overall (3,6)-connected MOF with *eea*-topology.

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FR These are not the final page numbers!

couple of ligands were designed, H₂PIA2 and H₂PIA3, by shifting the position of N-donor coordination sites of the pyridine ring, and also increasing the length of the spacer between isophthalate and pyridyl moieties. The solvothermal reaction of H₂PIA2 and H₂PIA3 with copper nitrate in DMF/acetic acid solvent system afforded block-shaped green coloured single crystals of the corresponding Cu-MOFs. The crystal structures were determined by single-crystal X-ray diffraction and the formulas were found to be $\{[(PIA2)_6Cu_6](solv.)_x\}_n$, (**Cu-eea-2**) and $\{[(PIA3)_6Cu_6](solv.)_x\}_n, (Cu-eea-3).$

As anticipated the two expanded MOFs, Cu-eea-2 and Cueea-3 were found to be isoreticular with the previous one, having eea-topology. The sizes of the two types of cages have also been found to increase. The crystallographic parameters revealed a gradual increase of *c*-axis length compared to the earlier synthesized eea-MOF as: 37.8 Å (Cu-INIA), 42.6 Å (Cueea-1), 44.7 Å (Cu-eea-2) and 52.2 Å (Cu-eea-3). As the length of the middle spacer for the ligands were increased, the separation between the kgm-layers have been also found to be increased (Figure 2). The inter-layer distances between the two successive kgm-layers are 12.67 Å (Cu-INIA), 14.19 Å (Cu-eea-1), 14.89 Å (Cu-eea-2) and 17.42 Å (Cu-eea-3).

Figure 2. Gradual expansion of the cavity sizes as well as separation between the kgm-layers in a) Cu-INIA; b) Cu-eea-1; b) Cu-eea-2; d) Cu-eea-3.

As discussed earlier, the square building unit has an ability to generate sql SBL other than the kgm-sheet; these organic building units were further employed to construct MOFs with another transition metal in order to explore the versatility of the SBL approach. The solvothermal reaction of H₂PIA2 with cobalt nitrate in DMA-H₂O solvent system afforded dark purple coloured block-shaped single crystals. The crystal structure was determined by single crystal X-ray diffraction, and the MOF has been formulated as $\{[(PIA2)_2Co_2](solv.)_x\}_{n'}$ (**Co-rtl-1**). The structural analysis revealed that **Co-rtl-1** crystallised in $P2_1/c$ space group and the asymmetric unit contains one unit each of Co^{II} and PIA2 ions. Co^{II} ions exhibited a distorted square-pyramidal geometry with four equatorial positions coordinated by carboxylates and the apical position being occupied by the pyridyl moiety. Two such penta-coordinated Co^{II} centres produced a Co₂-paddlewheel cluster in a similar fashion as in Cu-eea MOFs.

Interestingly, the square building unit, Co₂-paddlewheel cluster preferred the formation of sql-layers through isophthalate linkers, over the kgm-sheet observed in Cu-eea MOFs. In this case the sql-layers are also interconnected through the pyridyl coordination in an L-A pillaring mode to produce 3D-frameworks. The overall 3D-network was found to have a (3,6)-connected rtl-topology, where the ligand acted as a 3-connected node and the Co₂-paddlewheel as 6-connected node. The square windows from sql-layers are comprised of four isophthalate units; the adjacent pairs of benzene moieties point up, while the other two benzene moieties point down. The distances between two successive sql-layers was found to be 13.6 Å and pillaring of the sql-layers generates a rectangular grid-type cage with the dimension of approximately $10 \times 10 \times$ 13.6 Å (Figure 3).

Figure 3. Illustrations for Co-rtl-1: a) sql-layers formed by the isophthalate moieties; b) overall (3,6)-connected MOF with rtl-topology; side view of the rectangular grid type cage: c) Co-rtl-1; d) Co-rtl-2.

The ligand H₂PIA3 was employed along with cobalt(II) salts for the construction of desired rtl-MOFs, anticipating the increase in size of the cages as for the Cu-eea MOFs series. The solvothermal reaction of H₂PIA3 and cobalt nitrate in DMF-EtOH-H₂O resulted in deep-purple coloured block-shaped crystals. The single-crystal X-ray diffraction analysis revealed the space group was $P2_1/c$ and the asymmetric unit was composed of one unit each of Co^{II} and PIA3 ions, with the formula $\{[(PIA3)_2Co_2](solv.)_x\}_n$, (**Co-rtl-2**). Further structural analysis showed that Co-rtl-2 exhibited a (3,6)-connected two-fold interpenetrated 3D-framework with rtl-topology. The desired expansion in terms of size of the cage (dimension approximately $10 \times 10 \times 20$ Å) was achieved, but the huge voids of the frameworks were occupied by the two-fold interpenetration of the networks. The interlayer separation of sql-layers within the rtlframework was found to be \approx 20 Å (Figure 3).

The permanent porosities of Cu-eea MOFs were investigated by nitrogen isotherms at 77 K for the activated phase of those MOFs. The nitrogen uptake of Cu-eea-1 exhibited an adsorption isotherm with an unusual stepwise uptake, which led to generation of a prominent hysteresis between the adsorption and desorption curves, and which may be due to the flexibility of the frameworks. The amount of nitrogen uptake up to the

Chem. Eur. J. 2019 , 25, 1–7	www.chemeurj.org	3
These are not the	final page numbers! 77	

CHEMISTRY A European Journal Communication

first step was found to be $\approx 219 \text{ cm}^3 \text{g}^{-1}$, whereas the total amount of nitrogen adsorption by the framework at 1 bar was $\approx 278 \text{ cm}^3 \text{g}^{-1}$. The Brunauer–Emmett–Teller (BET) surface area for **Cu-eea-1** was estimated to be 687 m²g⁻¹. Further the nitrogen adsorption isotherms for **Cu-eea-2** and **Cu-eea-3** were also measured and the corresponding BET surface areas were found to be 873 and 922 m²g⁻¹ respectively, with reversible type-I isotherms. A small hysteresis was observed in the case of **Cu-eea-2**, due to the presence of a slight plateau in the desorption isotherm (Figure 4). We note here that the framework of **Co-rtl-1** was found to collapse during the activation process, and it hardly showed any kind of porous behaviour. The presence of two-fold interpenetration in **Co-rtl-2** makes it a non-porous material.

All the MOFs, Cu-eea-1, Cu-eea-2 and Cu-eea-3, were analysed for their ability towards the storage of hydrogen at ambient pressure. Cu-eea-1 was found to be capable of storing 142 cm³g⁻¹ (1.27 wt.%) of hydrogen at 77 K and one bar pressure without any sort of hysteresis in adsorption and desorption isotherms, in contrast to its nitrogen adsorption isotherm. The other two MOFs, Cu-eea-2 and Cu-eea-3, also exhibited a significant amount of hydrogen uptake capacity of 180 cm³g⁻¹ (1.61 wt.%) and 202 cm³g⁻¹ (1.8 wt.%), respectively, at 77 K and ambient pressure. It can be concluded that the change in position of pyridyl nitrogen, and also the expansion of the spacer, led to the increase in the hydrogen uptake values (Figure 4). The hydrogen storage capabilities exhibited by these MOFs are comparable with some of the highly porous MOFs which include IRMOF-6, MOF-177 and PCN-68. (Table S3, Supporting Information)

Apart from the hydrogen storage ability, these materials were explored for their CO₂ capture ability due to the presence of amide-decorated cages and channels within the network of the MOFs. As anticipated, the Cu-eea-1, Cu-eea-2 and Cu-eea-3 have shown remarkable CO₂ capture ability at ambient conditions, along with gradual increases in adsorption values as the pore size increases. The MOF containing smaller cavities, **Cu-eea-1** can uptake $105 \text{ cm}^3 \text{g}^{-1}$ of CO₂ whereas **Cu-eea-2** with somewhat bigger cavities showed better CO₂ uptake capacity (114 cm³g⁻¹) at 273 K and 1 bar pressure. Further Cueea-3, with larger cages and channels compared to the other two, can capture $143 \text{ cm}^3 \text{g}^{-1}$ of CO_2 which was found to be the highest among the present Cu-eea-MOFs (Figure 4). The CO₂ uptake capacities for the present MOFs are comparable with some of the previously explored Cu-based MOFs for CO₂ capture (e.g., JUC-1000: 125 cm³q⁻¹; Cu-NTTA: 115.6 cm³q⁻¹; LIFM-10: 129.5 mL g^{-1} ; LIFM-11: 129.5 mL g^{-1}).^[5, 30, 16, 33] (Table S2, Supporting Information) The adsorption enthalpies (Q_{st}) for CO_2 adsorption were found to be 27.5, 36 and 17.7 kJ mol⁻¹ for Cu-eea-1, Cu-eea-2 and Cu-eea-3, respectively, at zero coverage.

The selective capture of CO_2 over nitrogen at ambient temperature and pressure was analysed for all the Cu-*eea* MOFs given their practical importance in removal of CO_2 from flue gas (mixture of N_2 and CO_2) produced in the coal-fired power plants. All the MOFs were found to exhibit significant CO_2 uptake capacity at ambient condition, whereas they hardly adsorb nitrogen under similar conditions. **Cu-eea-1** was found to adsorb 4 cm³g⁻¹ of nitrogen at 298 K and 1 atm pressure, whereas it can capture about 66.9 cm³g⁻¹ of CO_2 at the same

Figure 4. a) Nitrogen isotherm for Cu-*eea* MOFs at 77 K and 1 bar pressure; b) hydrogen uptake isotherm for the Cu-*eea* MOFs at 77 K and 1 bar; c) CO₂ adsorption isotherms for the Cu-*eea* MOFs at 273 K and 1 bar; Selective adsorption of CO₂ over nitrogen and methane at ambient conditions (298 K and 1 bar pressure): d) **Cu-eea-1**; e) **Cu-eea-2**; f) **Cu-eea-3**.

Chem. Eur. J. **2019**, 25, 1–7

www.chemeurj.org

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

R These are not the final page numbers!

conditions. The other two MOFs have also exhibited similar behaviour as **Cu-eea-2** and **Cu-eea-3** were found to uptake 60 and 81.7 cm³g⁻¹ of CO₂ at 298 K and 1 atm pressure, respectively, but they exhibited little nitrogen adsorption ability under the same conditions (3.2 and 2.4 cm³g⁻¹). The adsorption selectivity was also maintained at 273 K as the Cu-*eea*-MOFs adsorbed a lesser amount of nitrogen (10, 7 and 4 cm³g⁻¹, respectively) compared to CO₂ (105, 114 and 143 cm³g⁻¹, respectively) (Figure 4).

Further, Cu-eea-MOFs were also analysed for their methane adsorption propensity at ambient conditions. The methane adsorption isotherm revealed that the Cu-eea MOFs have very little tendency towards its storage. The Cu-eea MOFs were found to uptake 17, 14 and 9 cm³g⁻¹ of methane, respectively, at 298 K and 1 bar pressure which are much less than the amounts of CO₂ adsorbed (66.9, 60, and 81.7 cm³ g^{-1}) at the same conditions. The methane adsorption studies were also carried out at 288 and 278 K, but did not show much improvement in adsorption values. At 278 K and 1 bar pressure the amounts of methane adsorbed were found to be 25.8, 26.1 and 13.2 cm³g⁻¹, respectively, whereas the methane uptake capacities were 24.6, 20.8 and 13.6 cm^3g^{-1} at 288 K and 1 bar pressure (Figure 4). The adsorption selectivity of Cu-eea MOFs towards CO₂ over CH₄ is very important in the removal of unwanted CO₂ from landfill gases, which contain about 50% CO₂.

In summary, three elongated trigonal ligands were designed and synthesized successfully for the deliberate construction of isoreticular (3,6)-connected Cu-eea MOFs and Co-rtl MOFs, based on the supermolecular building layer approach. The ligands utilized here for the MOFs synthesis contain larger spacers compared to previously explored ones, and consequently the gradual expansion of framework dimensions has been achieved for the desired MOFs whilst retaining the underlying eea-topology. Further the change of metal ions from Cu^{II} to Co^{II} resulted in the construction of (3,6)-connected interpenetrated and non-interpenetrated Co-rtl MOFs. The amidedecorated isoreticular Cu-eea MOFs exhibit remarkable and selective CO₂ capture ability at ambient conditions. Cu-eea-3 can uptake a significant amount of CO₂ at 273 K and 1 bar pressure, and the uptake is comparable with recently reported highly porous MOFs used for CO₂ capture purpose. However, all these MOFs hardly adsorbed nitrogen and methane at ambient conditions, which can be utilized for the separation of CO_2 from the mixture of CO_2/N_2 and CO_2/CH_4 . Moreover, the Cu-based MOFs were also found to exhibit remarkable hydrogen storage ability. The hydrogen uptake capacities of these eea-MOFs are comparable with some of the earlier explored well known porous MOFs.

Experimental Details

Full details of synthesis and characterisation of the ligands and MOFs can be found in the Supporting Information.

CCDC 1918819, 1918820, 1918821, 1918822, and 1918823 contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

These are not the final page numbers! 77

Acknowledgements

We acknowledge SERB (EMR/2017/001499), New Delhi, India, for financial support and DST-FIST for the single-crystal X-ray diffractometer. K.M. thanks UGC and IIT Kharagpur for research fellowship.

Conflict of interest

The authors declare no conflict of interest.

Keywords: CO₂ capture · hydrogen storage · isoreticular · metal–organic frameworks · supermolecular building layers

- [1] H.-C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012, 112, 673-674.
- [2] P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, *Nature* 2013, 495, 80–84.
- [3] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 2009, 38, 1450–1459.
- [4] H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415-5418.
- [5] H. He, Q. Sun, W. Gao, J. A. Perman, F. Sun, G. Zhu, B. Aguila, K. Forrest,
 B. Space, S. Ma, Angew. Chem. Int. Ed. 2018, 57, 4657–4662; Angew.
 Chem. 2018, 130, 4747–4752.
- [6] B. Chen, S. Xiang, G. Qian, Acc. Chem. Res. 2010, 43, 1115-1124.
- [7] M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2001, 123, 4368–4369.
- [8] B. Moulton, J. Lu, A. Mondal, M. J. Zaworotko, Chem. Commun. 2001, 863–864.
- [9] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi, *Science* **2002**, 295, 469–472.
- [10] S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange, G. Ferey, Chem. Commun. 2006, 284–286.
- [11] V. Colombo, C. Montoro, A. Maspero, G. Palmisano, N. Masciocchi, S. Galli, E. Barea, J. A. R. Navarro, J. Am. Chem. Soc. 2012, 134, 12830–12843.
- [12] H. Furukawa, Y. B. Go, N. Ko, Y. K. Park, F. J. Uribe-Romo, J. Kim, M. O'Keeffe, O. M. Yaghi, *Inorg. Chem.* 2011, *50*, 9147–9152.
- [13] F. Moreau, D. I. Kolokolov, A. G. Stepanov, T. L. Easun, A. Dailly, W. Lewis, A. J. Blake, H. Nowell, M. J. Lennox, E. Besley, S. Yang, M. Schröder, Proc. Natl. Acad. Sci. USA 2017, 114, 3056–3061.
- [14] J. F. Eubank, L. Wojtas, M. R. Hight, T. Bousquet, V. C. Kravtsov, M. Eddaoudi, J. Am. Chem. Soc. 2011, 133, 17532–17535.
- [15] A. Schoedel, W. Boyette, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2013, 135, 14016–14019.
- [16] Y. Xiong, Y. Z. Fan, R. Yang, S. Chen, M. Pan, J. J. Jiang, C. Y. Su, Chem. Commun. 2014, 50, 14631–14634.
- [17] L. Du, S. Yang, L. Xu, H. Mina, B. Zheng, CrystEngComm 2014, 16, 5520– 5523.
- [18] Z. Chen, K. Adil, L. J. Weselinski, Y. Belmabkhout, M. Eddaoudi, J. Mater. Chem. A 2015, 3, 6276–6281.
- [19] O. Benson, I. da Silva, S. P. Argent, R. Cabot, M. Savage, H. G. W. Godfrey, Y. Yan, S. F. Parker, P. Manuel, M. J. Lennox, T. Mitra, T. L. Easun, W. Lewis, A. J. Blake, E. Besley, S. Yang, M. Schröder, J. Am. Chem. Soc. 2016, 138, 14828–14831.
- [20] Y. Xiong, Y.-Z. Fan, D. D. Borges, C.-X. Chen, Z.-W. Wei, H.-P. Wang, M. Pan, J.-J. Jiang, G. Maurin, C.-Y. Su, *Chem. Eur. J.* 2016, 22, 16147–16156.
- [21] H. Li, K. Wang, Y. Sun, C. T. Lollar, J. Li, H.-C. Zhou, *Mater. Today* 2018, 21, 108–121.
- [22] C. E. Wilmer, O. K. Farha, Y.-S. Bae, J. T. Hupp, R. Q. Snurr, *Energy Environ. Sci.* 2012, *5*, 9849–9856.
- [23] Z. Zhang, Y. Zhao, Q. Gong, Z. Li, J. Li, Chem. Commun. 2013, 49, 653– 661.
- [24] J. A. Mason, T. M. McDonald, T. H. Bae, J. E. Bachman, K. Sumida, J. J. Dutton, S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2015, 137, 4787–4803.

Chem. Eur. J. **2019**, 25, 1–7

www.chemeurj.org

5

- [25] L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, *Nat. Commun.* **2017**, *8*, 1233–1242.
- [26] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O. M. Yaghi, *Science* **2008**, *319*, 939–943.
- [27] S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 3663 – 3666.
- [28] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, *Chem. Rev.* 2012, *112*, 724–781.
- [29] B. Zheng, J. Bai, J. Duan, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. 2011, 133, 748-751.
- [30] X. Guo, Z. Zhou, C. Chen, J. Bai, C. He, C. Duan, ACS Appl. Mater. Interfaces 2016, 8, 31746–31756.
- [31] S. Nandi, S. Collins, D. Chakraborty, D. Banerjee, P. K. Thallapally, T. K. Woo, R. Vaidhyanathan, J. Am. Chem. Soc. 2017, 139, 1734–1737.
- [32] P. Chandrasekhar, A. Mukhopadhyay, G. Savitha, J. N. Moorthy, J. Mater. Chem. A 2017, 5, 5402-5412.

- [33] J. Jiang, Z. Lu, M. Zhang, J. Duan, W. Zhang, Y. Pan, J. Bai, J. Am. Chem. Soc. 2018, 140, 17825–17829.
- [34] M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. G. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030.
- [35] B. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4745–4749; Angew. Chem. 2005, 117, 4823–4827.
- [36] O. K. Farha, A. M. Spokoyny, K. L. Mulfort, M. F. Hawthorne, C. A. Mirkin, J. T. Hupp, J. Am. Chem. Soc. 2007, 129, 12680–12681.
- [37] M. P. Suh, H. J. Park, T. K. Prasad, D. W. Lim, Chem. Rev. 2012, 112, 782– 835.
- [38] M. Dincă, J. R. Long, J. Am. Chem. Soc. 2005, 127, 9376-9377.

Manuscript received: May 31, 2019 Accepted manuscript online: September 6, 2019 Version of record online:

COMMUNICATION

Pillar to post: Ligand-to-axial pillaring of supermolecular building layers leads to a number of isoreticular metal–organic frameworks. The copper compounds can act as hydrogen stores, and show remarkable, and selective, CO₂ capture.

Metal–Organic Frameworks

K. Maity, K. Nath, M. A. Sinnwell, R. K. Motkuri, P. K. Thallapally, K. Biradha*

Isoreticular Expansion of Metal– Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO₂ Capture