1-Imidazolyl(alkyl)-Substituted Di- and Tetrahydroquinolines and Analogues: Syntheses and Evaluation of Dual Inhibitors of Thromboxane A₂ Synthase and Aromatase

Christoph Jacobs,[†] Martin Frotscher,[†] Gerd Dannhardt,[‡] and Rolf W. Hartmann^{*,†}

Fachrichtung 12.1 Pharmazeutische und Medizinische Chemie, Universität des Saarlandes, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, and Institut für Pharmazie, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

Received October 29, 1999

A series of 1-imidazolyl(alkyl)-substituted quinoline, isoquinoline, naphthalene, benzo[*b*]furan, and benzo[*b*]thiophene derivatives was synthesized as dual inhibitors of thromboxane A_2 synthase (P450 TxA₂) and aromatase (P450 arom). Dual inhibition of these enzymes could be a novel strategy for the treatment of mammary tumors and the prophylaxis of metastases. The most potent dual inhibitors, 5-(2-imidazol-1-ylethyl)-7,8-dihydroquinoline **(31)** (P450 TxA₂: IC₅₀ = 0.29 μ M; P450 arom: IC₅₀ = 0.50 μ M) and its 5,6-saturated analogue **30** (P450 TxA₂: IC₅₀ = 0.68 μ M; P450 arom: IC₅₀ = 0.38 μ M), showed a stronger inhibition of both target enzymes than the reference compounds (dazoxiben: IC₅₀ = 1.1 μ M; aminoglutethimide: IC₅₀ = 18.5 μ M). For the determination of the in vivo activity, the influence of selected compounds on serum TxB₂ concentration was examined in rats. Compound **30** (8.5 mg/kg body weight) led to a reduction of the TxB₂ serum level of 78%, 71%, and 51% after 3, 5, and 8 h, respectively (dazoxiben: 60%, 34%, and 36%). Selectivity was studied toward some enzymes of the steroidogenic and eicosanoid pathways. P450 17 was inhibited by selected compound **31** did not affect cyclooxygenase and lipoxygenase.

Introduction

Aromatase (P450 arom) is a microsomal enzyme complex consisting of a cytochrome P450 hemoprotein and a NADPH cytochrome reductase.¹ It catalyzes the conversion of androgens into estrogens, a process involving three enzymatic hydroxylations. Recently, highly active inhibitors of P450 arom have been developed. some of which turned out to be effective therapeutics for estrogen-dependent breast cancer.²⁻⁵ Thromboxane A₂ synthase (P450 TxA₂) is an enzyme involved in the arachidonic acid metabolism converting prostaglandin H₂ into thromboxane A₂.⁶ In contrast to P450 arom it is not a mixed function oxidase but an isomerase. There is some homology between P450 arom and P450 TxA₂ (36%, identical amino acids 23%).⁷ The region of greatest homology is the heme binding region which is closely located to the active site.

P450 TxA₂ might be a promising target for the prophylaxis of tumor metastases. Several tumor tissues contain elevated concentrations of TxA₂,⁸ and in various cancer cell lines proliferation can be induced by the addition of TxA₂ analogues.^{9,10} Prostacyclin, the functional antagonist of TxA₂, and its stable analogues display antimetastatic activity in spontaneously metastasizing tumors.¹¹ Moreover, experimental metastases can be prevented by the application of P450 TxA₂ inhibitors.¹² Inhibition of both enzymes, P450 arom and P450 TxA₂, could be a novel strategy for the treatment of mammary tumors and the prophylaxis of metastases.

Chart 1. Compound **A** and the Title Compounds

The heme iron plays a pivotal role in the catalytic mechanism of both enzymes.^{13,14} Very important for the inhibition of both enzymes is a heterocyclic nitrogen capable of complexing the heme iron.^{15,16}

In the class of pyridyl- and azolylmethyl-substituted tetrahydronaphthalenes, we have performed several structure-activity studies^{17,18} resulting in some highly active aromatase inhibitors.¹⁸ Systematic screening of these compounds for inhibition of P450 TxA₂ led to a large number of mediocre P450 TxA₂ inhibitors, which we have used for the development of a pharmacophore model.¹⁹ Using this model, a strategy was derived to increase P450 TxA₂ inhibition by introduction of a nitrogen into the benzene nucleus of the tetrahydronaphthalene moiety. This heteroatom should be capable of interacting with the binding site of the C15 hydroxy group of prostaglandin H₂. Following this strategy, compound A (Chart 1) was discovered to be a potent inhibitor of P450 TxA₂ recently (IC₅₀ = 1.6μ M; dazoxiben: $IC_{50} = 1.1 \,\mu$ M).²⁰ However, it is not suitable as a candidate for drug development because it is subject to acidic hydrolysis.²⁰

The present study describes structural modifications aimed at the development of hydrolytically stable dual

^{*} Corresponding author. Tel: +49 681 302 3424. Fax: +49 681 302 4386. E-mail: rwh@rz.uni-sb.de.

[†] Universität des Saarlandes.

[‡] Johannes Gutenberg-Universität.

Scheme 1^a

^a Reagents and conditions: (method A) (EtO)₂POCH₂COOEt, NaOEt; (method B) LiAlH₄; (method C) Pd/C, H₂; (method E) PPh₃, CBr₄; (method F) imidazole, NaI, Na₂CO₃, acetone; (method G) imidazole sodium salt; (method H) 1,1'-carbonyldiimidazole; (a) PPh₃, CBr₄.

inhibitors of P450 TxA₂ and P450 arom. In the following the syntheses of imidazolyl(alkyl)-substituted quinoline, isoquinoline, naphthalene, benzo[*b*]furan, and benzo[*b*]thiophene derivatives are described as well as the evaluation of the compounds for inhibition of the target enzymes in vitro. For the determination of the in vivo activity, the influence of selected compounds on serum TxB₂ concentration was examined in rats. Selectivity was studied toward certain enzymes of the steroidogenic and eicosanoid pathways (P450 17, P450 scc, cyclooxygenase, and lipoxygenase).

Chemistry

In Schemes 1 and 2 the synthesis of compounds with an ethyl spacer is shown. The ketones 1,²¹ 2,²² and 4^{23} were prepared as described. Compounds 1-4 were reacted in a Wittig–Horner reaction to give the esters 5-9 (method A). In contrast to the literature²⁴ not only the thiophene ester **6** was formed but also the corresponding endo isomer **7**. The furan derivative led to exo product (**5**) only, while the six-membered compounds **3** and **4** resulted in endo products only (compounds **8** and **9**). The *E*,*Z* mixtures **5** and **6** were reduced with LiAlH₄ to the corresponding *E*,*Z* alcohols **14** and **15**,²⁵ which were reacted with CDI (1,1'-carbonyldiimidazole) to give the 1-imidazolylethylidene-substituted compounds **3**4E'

^a Reagents and conditions: (method A) (EtO)₂POCH₂COOEt, NaOEt; (method B) LiAlH₄; (method C) Pd/C, H₂; (method D) SOCl₂; (method F) imidazole, NaI, Na₂CO₃, acetone; (a) Pd/C, mesitylene, 170 °C.

34Z and 35E/35Z. The separation of the isomers was accomplished by column chromatography. Structural assignment was performed by ¹H NMR.²⁴ In the case of the *E* isomers the signals of the vinyl protons appear as double doublets at 6.19 ppm (**35***E*), whereas in the case of the Z isomers the signals appear as triplets at 5.90 ppm (**35***Z*). The unsaturated esters **5**, **6**, **8**, and **9** were catalytically hydrogenated to give the racemic esters 10, 11,²⁴ 12, and 13 (method C). The latter were reduced with LiAlH₄ to give the alcohols **18**, **19**,²⁵ **20**, and **21** (method B). The benzo[*b*]furan **18** and the benzo-[b]thiophene **19** were reacted with CBr₄ and PPh₃ to give the bromides 23 and 24 (method E). Subsequent treatment with imidazole sodium salt yielded the racemic compounds 27 and 28 (method G). The naphthalene 20 and the quinoline 21 were transformed to the chlorides 25 and 26 by treatment with thionyl chloride (method D) and then reacted with NaI, imidazole, and Na₂CO₃ to yield compounds **29** and **30** as racemates (method F). Reduction of the esters 7 and 9 with LiAlH₄ gave the corresponding alcohols 16 and 17 (method B). The quinoline **17** was transformed to the chloride **22** by treatment with thionyl chloride (method D) and then reacted with NaI, imidazole, and Na₂CO₃ to give the 7,8dihydroquinoline **31** (method F). Subsequent dehydrogenation with Pd/C in mesitylene yielded the corresponding quinoline **33**. Treatment of the alcohol **16** with CBr₄ and PPh₃ led to a mixture of products, which was

^{*a*} Reagents and conditions: (method D) SOCl₂; (method I) imidazole, K₂CO₃, DMF; (a) POCl₃, Et₃N.

Scheme 4^a

^{*a*} Reagents and conditions: (a) (CH₃)₃SI, NaH, DMSO/THF; (b) imidazole, NaH, DMF; (c) CH₃COOH, H_2SO_4 ; (d) CH₃COOH, H_2SO_4 ; Pd/C, H₂, 9 bar.

subsequently reacted with NaI, imidazole, and Na_2CO_3 in acetone. From the reaction mixture the benzo[*b*]-thiophene **32** was obtained in reasonable yields.

Scheme 3 shows the synthesis of the 1-imidazolylsubstituted compounds **40** and **41**. The alcohol **36** was prepared as described.²³ The *N*-oxide **37** was obtained from 5,6,7,8-tetrahydroquinoline²⁶ by reaction with H_2O_2 in acetic acid. The alcohol **36** was transformed to the corresponding chloride **38** by treatment with thionyl chloride (method D). Compound **37** was converted with POCl₃ and triethylamine to the chloride **39**. The halo compounds **38** and **39** were reacted with imidazole and K_2CO_3 in DMF to give the 1-imidazolyl-substituted compounds **40** and **41** (method I).

In Scheme 4 the synthesis of compounds with a methyl spacer is outlined. The ketone 4 was reacted, as described for similar compounds,²⁷ with trimethyl-sulfonium iodide and NaH in DMSO/THF to give the oxirane 42. Treatment with imidazole sodium salt in DMF yielded the tertiary alcohol 43, which was dehydrated by acetic acid and concentrated H₂SO₄. From the resulting mixture either the 7,8-dihydroquinoline 44 was isolated or the racemic tetrahydroquinoline 45 was obtained after catalytic hydrogenation.

The propyl spacer-containing compounds were prepared according to Scheme 5. The chloride **22** (method D) was reacted with NaCN in DMSO to give the nitrile **46**, which was hydrolyzed under acidic conditions to yield the corresponding carboxylic acid **47**. Reduction with LiAlH₄ gave the alcohol **48**, which was transformed to the chloride **49** by treatment with thionyl chloride

Scheme 5^a

^a Reagents and conditions: (a) NaCN, DMSO; (b) H_2SO_4 , 110 °C; (c) LiAlH₄; (method D) SOCl₂; (method F) imidazole, NaI, Na₂CO₃, acetone; (method C) Pd/C, H₂.

Scheme 6^a

 a Reagents and conditions: (a) 1. O₃, 2. Na₂CO₃, (CH₃)₂S, 3. NH₃(aq); (b) Cu, imidazole sodium salt; (c) 1. NCS, *hv*, 2. imidazole, NaI, Na₂CO₃, acetone.

(method D). Compound **49** was reacted with NaI, imidazole, and Na_2CO_3 in acetone to yield the dihydroquinoline **50** (method F). Catalytic hydrogenation gave the tetrahydroquinoline **51** (method C).

Scheme 6 shows the synthesis of compounds with an isoquinoline basic structure. The chloroindene 52^{28} and the methylisoquinoline 55^{29} were prepared as described. The chloroisoquinoline 53 was obtained by ozonolysis of 52, subsequent reduction with dimethyl sulfide, and cyclization with NH₃. Compound 53 was reacted with imidazole sodium salt and copper in DMF to give compound 54. Compound 55 was halogenated by *N*-chlorosuccinimide and subsequently reacted with NaI, imidazole, and Na₂CO₃ to yield 56.

Biological Properties

Inhibition of TxA₂ Synthase in Vitro. Using the procedure recently described by us,³⁰ the compounds were tested against P450 TxA₂ (Table 1). IC₅₀ values were determined for compounds exhibiting inhibition values higher than 80%. Elongation of the spacer in compound 40, which is a weak inhibitor, leads to a strong increase in inhibition. The maximum effect is reached at a spacer length of n = 2 (compound **30**). Introduction of a $\Delta 5$ -double bond results in an increase in activity (compounds 44, 31, and 50). As seen with the saturated compounds maximum activity is shown by the ethylene compound **31**, the most active compound of this study. Aromatization of **31** to the quinoline **33** diminishes activity by a factor of 4. Replacement of the pyridine moiety in the saturated ethylene compound **30** by benzene (29), furan (27), or thiophene (28) also decreases activity. The introduction of an exocyclic double bond in compounds 34 and 35 reduces activity Table 1. Inhibition of the Target Enzymes P450 TxA_2 and P450 Arom in Vitro

	structure	х	n	double bonds	P450 TxA ₂ ^a		P450 arom ^{b}
no.					% ^{c,d}	IC ₅₀ , μM^d	IC ₅₀ , μM^d
40	Ι	Ν	0		72		6.40
45	Ι	Ν	1			2.00	0.16
44	Ι	Ν	1	$\Delta 5$		1.50	0.17
30	Ι	Ν	2			0.63	0.38
31	Ι	Ν	2	$\Delta 5$		0.29	0.50
33	Ι	Ν	2	$\Delta 5, \Delta 7$		1.20	0.35
29	Ι	CH	2			3.4	0.70
51	Ι	Ν	3			2.30	0.35
50	Ι	Ν	3	$\Delta 5$		0.68	0.22
27	II	0				1.01	0.92
28	II	S				1.23	0.44
34 <i>E</i>	II	0		$\Delta 4$		3.55	2.40
34 <i>Z</i>	II	0		$\Delta 4$		4.10	6.00
35 <i>E</i>	II	S		$\Delta 4$		1.70	0.68
35 <i>Z</i>	II	S		$\Delta 4$		1.26	3.90
32						5.30	3.56
41					49		111
54					70		3.06
56						5.4	1.38

 a Human whole blood; collagen challenge (53.6 $\mu L/mL$); TxA2 synthase-catalyzed formation of malondialdehyde determined by thiobarbituric acid assay^{30} (IC_{50} value of dazoxiben under identical experimental conditions: 1.1 μ M). b Human placental microsomes; testosterone concentration: 2.5 μ M (experimental procedure, ref 31; IC_{50} value of aminoglutethimide under identical experimental conditions: 18.5 μ M). c Concentration of inhibitor: 50 μ M. d Mean values of at least two experiments; the standard deviations were within $\pm 5\%$.

only in the case of the furan compound. The configuration of the double bond affects activity only marginally.

Table 2. Effect of Selected Compounds on the TxB_2 Serum Level in Rats^{*a*}

Restriction of the conformational flexibility of the ethylene compound **33** leads to a decrease in activity as shown with the isoquinolines **54** and **56**.

Inhibition of Aromatase in Vitro. The inhibitory activities of the compounds toward aromatase were determined using human placental microsomes and $[1\beta, 2\beta^{-3}H]$ testosterone according to the previously described procedure³¹ (Table 1). The saturated methylene compound 45 and its 5,6-dehydro analogue 44 were found to be the best inhibitors in this study. They showed a competitive type of inhibition exhibiting K_{i} values of approximately 10 nM (data not given). Compound **40** lacking the spacer shows a strong decrease in inhibition, whereas elongation of the spacer results in a moderate reduction of inhibitory potency in the case of the saturated compounds 30 and 51. The introduction of one (Δ 5) or two (Δ 5 and Δ 7) double bonds does not strongly affect inhibition. In the case of the propylene compound 51, it leads to a moderate enhancement of potency. Compound 50 is almost as active as 45. Replacement of the pyridine moiety in the ethylene compound **30** by furan (**27**) and benzene (**29**) decreases inhibition slightly; replacement by thiophene (28) does not change activity. Aromatization of 28 to the benzo-[b]thiophene 32 diminishes activity strongly. The introduction of an exocyclic double bond in compounds 27 and **28** reduces activity (compounds **34** and **35**). The E isomers show higher activity than the corresponding Zisomers. Restriction of the conformational flexibility of 33 resulting in the isoquinolines 54 and 56 leads to a decrease in activity.

In Vivo Activity: TxB_2 Formation. For the assessment of the in vivo inhibition, P450 TxA_2 was chosen rather than P450 arom³¹ because the former assay is easier to perform. After stability at pH 7.4 and 2.0 had been demonstrated (no degradation observed after 24 h), homologous compounds **29–31** were applied to rats and the serum TxB_2 levels were determined after 2, 3, 5, and 8 h by radioimmunoassay³² (Table 2). The test compounds and dazoxiben show a strong reduction of the TxB_2 concentration after 2 h. In the case of compound **31**, which is the most active inhibitor in vitro, no inhibition was observed after 5 h indicating that the Δ 5 double bond diminishes in vivo activity. In contrast

		reduction of the TxB ₂ serum level, % inhib (mean \pm SD) ^b				
no.	dose, mg/kg bw ^c	2 h	3 h	5 h	8 h	
29	8.4	$83^d\pm 5.0$	$59^d\pm 6.0$	$62^d \pm 12.5$	16 ± 12.1	
	4.2		$50^d \pm 6.1$		-8 ± 7.6	
30	8.5	$77^d \pm 4.8$	$78^d \pm 2.9$	$71^d \pm 8.0$	$51^d \pm 8.5$	
	4.2		$56^d \pm 4.9$		6 ± 11.8	
31	8.4	$67^d \pm 9.1$		13 ± 16.4		
	4.2	$64^d \pm 4.1$		-8 ± 10.6		
dazoxiben	10.0	$56^d \pm 8.1$	$60^d \pm 3.8$	$34^d \pm 8.0$	$36^d\pm7.4$	

^{*a*} Each group consisted of 6–8 male Sprague–Dawley rats; the animals received a single dose of the inhibitor, po, dissolved in 0.01 N HCl. ^{*b*} Blood withdrawal at the indicated time after application. ^{*c*} Dose of inhibitor: equimolar to dazoxiben HCl; bw = body weight. ^{*d*} Significantly different from control group (Student's *t*-test), $p \le 0.05$.

Table 3. Inhibition of P450 17^a by Selected Compounds

		-	-
no.	% inhibition ^b	no.	% inhibition ^b
29	> 80 ^d	44	69
30	49 ^c	45	11
31	21	50	79
33	22	51	59
40	14		

^{*a*} Rat testicular microsomes; progesterone concentration: $25 \,\mu$ M; inhibitor concentration: $125 \,\mu$ M; reference ketoconazole: 62% inhibition (experimental procedure, ref 33). ^{*b*} The given values are mean values of at least two experiments; the standard deviations were within $\pm 5\%$. ^{*c*} IC₅₀ = $125 \,\mu$ M. ^{*d*} IC₅₀ = $20 \,\mu$ M.

Table 4. Selective Inhibition of P450 TxA₂ by Compound **31**: Effect on Formation of PGE₂, 12-HETE, and 12-HHT^{*a*}

^{*a*} Bovine platelet suspension; stimulated by calcium ionophore A 23187 (final concentration: 20 μ M; experimental procedure, ref 34); reverse-phase HPLC analysis. ^{*b*} UV detection at 192 nm. ^{*c*} UV detection at 232 nm. ^{*d*} Mean values of 2 experiments, control group: 4 experiments; ni = no inhibition.

to **31**, compound **30** exhibits a strong, long-lasting effect; after 8 h the serum level is still decreased by 51% (Table 2).

Inhibition of P450 17 and P450 scc. The inhibitory activities of selected compounds toward P450 17 were determined for the assessment of possible effects on glucocorticoid biosynthesis. Rat testicular microsomes were used as the enzyme source and nonlabeled progesterone as the substrate.³³ Only compounds **29**, **30**, **44**, **50**, and **51** show inhibitory activity at the high concentration used (125 μ M; Table 3).

The best in vivo inhibitor of this study, compound **30**, was tested toward P450 scc,³¹ the key enzyme of steroidogenesis. It shows only marginal activity, inhibiting the enzyme by 13% at a concentration of 25 μ M.

Selective Inhibition of P450 TxA₂. The best in vitro inhibitor of P450 TxA₂, compound **31**, was tested for selectivity to the target enzyme³⁴ (Table 4). Compound **31** affects neither cyclooxygenase nor another preceding enzyme of the arachidonic acid cascade nor lipoxygenase.

Discussion

The present paper shows that it is possible to inhibit both target enzymes P450 arom and P450 TxA₂ strongly without affecting other P450 enzymes markedly. As expected it is not the same compound showing maximum inhibitory activity toward both P450 arom and P450 TxA₂. The most potent aromatase inhibitors are the imidazolylmethyl compounds **44** and **45**, whereas the most active P450 TxA₂ inhibitor is the imidazolylethyl compound **31**. Compounds showing strong dual inhibition are **30**, **31**, and **50**. In vivo, the saturated racemic compound **30** is superior to the $\Delta 5$ compounds as shown with **30** and **31**.

In conclusion, the application of a dual inhibitor of both target enzymes might be an appropriate strategy to enhance remission rates in hormone-dependent breast cancer. Because of its superiority in the in vivo studies, compound **30** seems to be a suitable candidate for further development.

Experimental Section

Melting points were determined on a Kofler melting point apparatus (Thermopan, Reichert) and are uncorrected. Elemental analyses were performed by the University of Saarland, FR 11.1 Inorganic Chemistry, and are within $\pm 0.4\%$ of the calculated values. ¹H NMR spectra were measured on a Bruker AW 80 (80 MHz) or Bruker AM 400 (400 MHz). ¹³C NMR spectra were measured on a Bruker AM 400 (100 MHz) or Bruker Avance PRX 500 (120 MHz). Column chromatography was performed on Macherey-Nagel Kieselgel 60, flash chromatography on sds Silice 60 A.C.C., and TLC analyses on Macherey-Nagel ALUGRAM SIL G/UV₂₅₄. IR spectra were performed on a Perkin-Elmer infrared spectrometer 398. GCMS spectra were measured on a Hewlett-Packard G 1800 A (GCD; column HP 5). The following HPLC equipment was used: pump, Jasco 880-PU; detector, Jasco 870-UV; column, Macherey-Nagel ET 250/4 Nucleosil 120-5 C₁₈; flow, 1 mL/min; eluent, water/methanol 40:60 (v:v) 0.5 mM triethylamine; JCL6000 chromatography data system (Jones Chromatography Ltd.).

Method A. Synthesis of Ethyl (7,8-Dihydroquinolin-5-yl)acetate, 9. Sodium (1.6 g, 68.0 mmol) was added to dry ethanol (70 mL) under a nitrogen atmosphere. To the resulting solution was added triethyl phosphonoacetate (15.5 g, 68.0 mmol) in one portion. After stirring for 10 min 4 (10.0 g, 68.0 mmol) was added within 5 min and the mixture was stirred for 2.5 h at 80 °C. The reaction mixture was cooled to room temperature, diluted with water (140 mL) and extracted with ethyl acetate. The organic phases were washed with water and dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was distilled to yield 9 (67%) as a colorless oil: bp_{0.01} 90–110 °C; ¹H NMR (80 MHz, CDCl₃) δ 1.20 (t, ${}^{3}J = 7.2$ Hz, 3H, -*CH*₃); 2.41–2.57 (m, 2H, *H*7); 2.90– 3.11 (m, 2H, *H8*); 3.40 (d, ${}^{4}J$ = 1.0 Hz, 2H, -*CH*₂-COOR); 4.13 (q, ${}^{3}J = 7.2$ Hz, 2H, $-CH_{2}$ -CH₃); 6.04 (t, ${}^{3}J = 4.0$ Hz, 1H, H6); 7.07 (dd, ${}^{3}J = 8.0$ and 4.8 Hz, 1H, H3; 7.43 (dd, ${}^{3}J = 8.0, {}^{4}J$ = 4.8 Hz, 1H, H4); 8.29 (dd, ${}^{3}J$ = 4.8 Hz, ${}^{4}J$ = 1.6 Hz, 1H, H2).

Ethyl (6,7-Dihydro-5*H***-benzo[***b***]furan-4-ylidene)acetate, 5. Prepared from 1, purified by column chromatography with hexane/ethyl acetate 12:1, yield 81% as a yellow oil (***E***/***Z* **mixture). For analytical reasons some** *E* **isomer was separated: ¹H NMR (400 MHz, CDCl₃) \delta 1.30 (t, ³***J* **= 7.1 Hz, 3H, -***CH***₃); 1.96 (qt, ³***J* **= 6.2 Hz, 2H,** *H6***); 2.73 (t, ³***J* **= 6.2 Hz, 2H,** *H7***); 3.08 (td, ³***J* **= 6.2 Hz, ⁴***J* **= 1.8 Hz, 2H,** *H5***); 4.18 (q, ³***J* **= 7.1 Hz, 2H, -***CH***₂-CH₃); 5.86 (t, ⁴***J* **= 1.8 Hz, 1H, -***CH***-COOR); 6.49 (d, ³***J* **= 2.2 Hz, 1H,** *H3***); 7.27 (t, ³***J* **= 2.2 Hz, 1H,** *H2***); IR (film) (cm⁻¹) 3140, 3120, 2980, 2940, 2900, 2840, 1700, 1630, 1620, 1515, 1335, 1190, 1180, 1032, 870, 760.**

Ethyl (6,7-Dihydro-5*H***-benzo[***b***]thiophen-4-ylidene)acetate, 6**.²⁴ Prepared from **2**, purified by column chromatography with *n*-hexane/ethyl acetate 15:1, yield 72% as a yellow oil (*E*/*Z* mixture). For analytical reasons some *E* isomer was separated: ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, ³*J* = 7.1 Hz, 3H, -*CH*₃); 1.95 (qt, ³*J* = 6.2 Hz, 2H, *H6*); 2.88 (t, ³*J* = 6.2 Hz, 2H, *H7*); 3.14 (td, ³*J* = 6.2 Hz, ⁴*J* = 1.8 Hz, 2H, *H5*); 4.17 (q, ³*J* = 7.1 Hz, 2H, -*CH*₂-CH₃); 6.11 (t, ⁴*J* = 1.8 Hz, 1H, -*CH*-COOR); 7.06 (d, ³*J* = 5.3 Hz, 1H, *H3*); 7.20 (t, ³*J* = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3100, 2970, 2930, 2860, 1705, 1610, 1395, 1305, 1280, 1170, 1145, 1048, 868,710.

Ethyl (6,7-Dihydrobenzo[*b***]thiophen-4-yl)acetate, 7.** Prepared from **2**, purified by column chromatography with *n*-hexane/ethyl acetate 15:1, yield 8% as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 1.24 (t, ³*J* = 7.1 Hz, 3H, -*CH*₃); 2.40–2.46 (m, 2H, H6); 2.85 (t, ³*J* = 8.8 Hz, 2H, *H7*); 3.34 (d, ⁴*J* = 0.9 Hz, 2H, $-CH_{2}$ -COOR); (q, ${}^{3}J = 7.1$ Hz, 2H, $-CH_{2}$ -CH₃); 5.68 (tt, ${}^{3}J = 4.4$ Hz, ${}^{4}J = 0.9$ Hz, 1H, H5); 6.95 (d, ${}^{3}J = 5.3$ Hz, 1H, H3); 7.20 (t, ${}^{3}J = 5.3$ Hz, 1H, H2); IR (film) (cm⁻¹) 3100, 2880, 2930, 2820, 1735, 1610, 1435, 1330, 1250, 1155, 1030, 870, 650.

Ethyl (7,8-Dihydronaphthalen-5-yl)acetate, 8. Prepared from **3**, yield 74% as a colorless oil: bp_{0.01} 115–120 °C; ¹H NMR (80 MHz, CDCl₃) δ 1.19 (t, ³*J* = 7.2 Hz, 3H, -*CH*₃); 2.21–2.41 (m, 2H, *H7*); 2.68–2.88 (m, 2H, *H8*); 3.40 (s, 2H, -*CH*₂-COOR); 4.12 (q, ³*J* = 7.2 Hz, 2H, -*CH*₂-CH₃); 5.97 (t, ³*J* = 4.8 Hz, 1H, *H6*); 7.08–7.19 (m, 4H, *Ar-H*).

Method B. Synthesis of 2-(5,6,7,8-Tetrahydroquinolin-5-yl)ethanol, 21. LiAlH₄ (0.8 g, 21.0 mmol) was suspended in dry ether under a nitrogen atmosphere. A solution of 13 (5.0 g, 23.0 mmol) in dry ether was added dropwise to keep the reaction mixture slightly boiling. After stirring for 1 h at room temperature, the suspension was carefully hydrolyzed with water till no more hydrogen was produced. The solid was filtered off and washed thoroughly with ether. The filtrate was dried over Na₂SO₄ and the solvent was removed under reduced pressure to yield **21** (89%) as a colorless oil. The crude product was submitted to the next step without further purification: ¹H NMR (80 MHz, CDCl₃) δ 1.60–2.08 (m, 6H, $\hat{H6}$, H7, - CH_{z} CH₂-OH); 2.37 (br s, 1H, -OH); 2.85-3.09 (m, 3H, H5, H8); 3.78 (t, ${}^{3}J = 6.4$ Hz, 2H, $-CH_{2}$ -OH); 7.03 (dd, ${}^{3}J = 8.0$ Hz, ${}^{3}J =$ 4.8 Hz, 1H, H3); 7.48 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H4); 8.32 (dd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H2); IR (film) (cm⁻¹) 3250, 2920, 2880, 1580.

2-(6,7-Dihydrobenzo[*b***]thiophen-4-yl)ethanol, 16.** Prepared from **7**, yield 95% as a yellow oil, pure compound, checked by TLC: ¹H NMR (400 MHz, CDCl₃) δ 2.30 (td, ³*J* = 4.4 Hz, ³*J* = 8.8 Hz, 2H, *H6*); 2.48 (td, ³*J* = 7.1 Hz, ⁴*J* = 4.4 Hz, 2H, -*CH*₂-CH₂-OH); 2.74 (t, ³*J* = 8.8 Hz, 2H, *H7*); 3.52 (td, ³*J* = 7.1 Hz, ³*J* = 5.3 Hz, 2H, -*CH*₂-OH); 4.52 (t, ³*J* = 5.3 Hz, 1H, -*OH*); 5.55 (tt, ³*J* = 4.4 Hz, ⁴*J* = 1.3 Hz, 1H, *H5*); 7.01 (d, ³*J* = 5.3 Hz, 1H, *H3*); 7.24 (d, ³*J* = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3320, 2930, 2880, 2830, 1735.

2-(6,7-Dihydro-5*H***-benzo[***b***]furan-4-ylidene)ethanol, 14.** Prepared from 5, yield 76% as a yellow oil, pure compound, checked by TLC (*E*/*Z* mixture). For analytical reasons some *E* isomer was separated: ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.80 (qt, ³*J* = 6.2 Hz, 2H, *H6*); 2.33 (t, ³*J* = 5.5 Hz, 2H, *H5*); 2.63 (t, ³*J* = 6.2 Hz, 2H, *H7*); 4.08 (t, ³*J* = 6.0 Hz, 2H, *-CH*₂OH); 4.56 (t, ³*J* = 5.3 Hz, 1H, *-OH*); 5.64 (t, ³*J* = 6.6 Hz, 1H, *-CH*-CH₂-OH); 6.61 (d, ³*J* = 1.8 Hz, 1H, *H3*); 7.45 (d, ³*J* = 1.8 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3320, 2930, 2860, 2840, 1658, 1522, 1440, 1430, 1335, 1230, 1135, 1000, 900, 750.

2-(6,7-Dihydro-5*H***-benzo[***b***]thiophen-4-ylidene)ethanol, 15.** Prepared from **6**, yield 79% as a yellow oil, pure compound, checked by TLC (*E*/*Z* mixture). For analytical reasons some *E* isomer was separated: ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.80 (t, ³*J* = 6.2 Hz, 2H, *H*6); 2.37 (t, 2H, *H5*); 2.77 (t, ³*J* = 6.2 Hz, 2H, *H7*); 4.11 (t, ³*J* = 5.7 Hz, 2H, *-CH*₂-OH); 4.61 (t, ³*J* = 5.3 Hz, 1H, *-OH*); 5.90 (t, ³*J* = 6.6 Hz, 1H, *-CH*-CH₂-OH); 7.22 (d, ³*J* = 5.3 Hz, 1H, *H3*); 7.24 (d, ³*J* = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3320, 2930, 2860, 2840, 1640.

2-(7,8-Dihydroquinolin-5-yl)ethanol, 17. Prepared from **9**, yield 80% as a yellow oil, pure compound, checked by TLC: ¹H NMR (400 MHz, CDCl₃) δ 2.17 (br s, 1H, -*OH*); 2.25–3.03 (m, 6H, *H7*, *H8*, -*CH*₂-CH₂-OH); 3.78 (t, ³J = 6.4 Hz, 2H, -*CH*₂-OH); 5.98 (t, ³J = 4.0 Hz, 1H, *H6*); 7.08 (dd, ³J = 8.0 Hz, ³J = 4.8 Hz, 1H, *H3*); 7.48 (dd, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 1H, *H4*); 8.32 (dd, ³J = 4.8 Hz, ⁴J = 1.6 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3250, 3040, 2920, 2870, 1640, 1570.

2-(4,5,6,7-Tetrahydrobenzo[*b*]**furan-4-yl**)**ethanol, 18.** Prepared from **10**, yield 91% as a yellow oil, pure compound, checked by TLC: ¹H NMR (400 MHz, CDCl₃) δ 1.36–1.49 (m, 1H, *H5*; 1H, -*OH*); 1.61–1.78 (m, 1H, *H5*; 1H, -*CH*₂-CH₂-OH); 1.88–1.92 (m, 1H, -*CH*₂-CH₂-OH; 2H, *H6*); 2.57 (t, ³*J* = 5.7 Hz, 2H, *H7*); 2.71–2.78 (m, 1H, *H4*); 3.78 (t, ³*J* = 6.6 Hz, 2H, -*CH*₂-OH); 6.26 (d, ³*J* = 1.8 Hz, 1H, *H3*); 7.24 (d, ³*J* = 1.8 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3340, 2940, 2860, 1500.

2-(4,5,6,7-Tetrahydrobenzo[*b*]**thiophen-4-yl)ethanol, 19.** Prepared from **11**, yield 95% as a yellow oil, pure compound, checked by TLC: ¹H NMR (400 MHz, CDCl₃) δ 1.42 (s, 1H, -*OH*); 1.50–1.58 (m, 1H, *H5*); 1.68–1.81 (m, 1H, -*CH*₂·CH₂-OH; 1H, *H5*); 1.89–1.98 (m, 2H, *H6*); 2.01–2.10 (m, 1H, -*CH*₂-CH₂-OH); 2.76 (t, ${}^{3}J$ = 5.7 Hz, 2H, *H7*); 2.85–2.93 (m, 1H, *H4*); 3.78 (t, ${}^{3}J$ = 6.6 Hz, 2H, -*CH*₂·OH); 6.86 (d, ${}^{3}J$ = 5.3 Hz, 1H, *H3*); 7.05 (d, ${}^{3}J$ = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3320, 2940, 2860.

2-(1,2,3,4-Tetrahydronaphthalen-1-yl)ethanol, 20. Prepared from **12**, yield 84% as a colorless oil, pure compound, checked by TLC: ¹H NMR (80 MHz, CDCl₃) δ 1.38 (br s, 1H, -*OH*); 1.62–2.05 (m, 6H, *H2*, *H3*, -*CH*₂-CH₂-OH); 2.63–3.04 (m, 3H, *H1*, *H4*); 3.76 (t, ³*J* = 6.4 Hz, 2H, -*CH*₂-OH); 7.03–7.15 (m, 4H, *Ar-H*); IR (film) (cm⁻¹) 3340, 3060, 2940, 2880.

Method C. Synthesis of Ethyl (5,6,7,8-Tetrahydroquinolin-5-yl)acetate, 13. Compound 9 (0.78 g, 3.6 mmol) was dissolved in ethanol (40 mL) and 10% Pd/C (0.1 g) was added. The reaction mixture was evacuated three times and then hydrogenated under atmospheric pressure on a shaker till no more hydrogen was consumed (\approx 4 h). The catalyst was filtered off and washed with ethanol. The solvent was removed under reduced pressure and the residue was purified by bulb distillation to yield 13 (94%) as a colorless oil: bp_{0.01} 95–100 °C; ¹H NMR (80 MHz, CDCl₃) δ 1.24 (t, ³*J* = 7.2 Hz, 3H, -*CH*₃); 1.71–1.98 (m, 4H, *H6*, *H7*); 2.50–2.62 (m, 2H, -*CH*₂-COOR); 2.86–3.46 (m, 3H, *H5*, *H8*); 4.16 (q, ³*J* = 7.2 Hz, 2H, -*CH*₂ CGH₃); 7.03 (dd, ³*J* = 7.2 Hz, ³*J* = 4.8 Hz, 1H, *H3*); 7.45 (dd, ³*J* = 7.2 Hz, ⁴*J* = 1.6 Hz, 1H, *H4*); 8.36 (dd, ³*J* = 4.8 Hz, ⁴*J* = 1.6 Hz, 1H, *H2*).

Ethyl (4,5,6,7-Tetrahydrobenzo[*b*]**furan-4-yl)acetate, 10.** Prepared from **5**, purified by flash chromatography with CH_2Cl_2 /methanol 50:1, yield 50% as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 1.23 (t, ³*J* = 7.1 Hz, 3H, *-CH*₃); 1.38–1.45 (m, 1H, *H5*); 1.74–1.80 (m, 1H, *H5*); 1.91–1.95 (m, 2H, *H6*); 2.35 (dd, ³*J* = 8.4 Hz, ²*J* = 15.0 Hz, 1H, *-CH*₂-COOR); 2.55–2.60 (m, 2H, *H7*; 1H, *-CH*₂-COOR); 3.10 (m, 1H, *H4*); 4.17 (q, ³*J* = 7.1 Hz, 2H, *-CH*₂-CH₃); 6.20 (d, ³*J* = 1.8 Hz, 1H, *H3*); 7.22 (d, ³*J* = 1.8 Hz, 1H, *H2*); IR (film) (cm⁻¹) 2980, 2940, 2870, 1735, 1450, 1375, 1285, 1250, 1175, 1040, 900, 730.

Ethyl (4,5,6,7-Tetrahydrobenzo[b]thiophen-4-yl)acetate, 11.²⁴ Prepared from **6** in THF with 2.5-fold excess of Pd/ C, purified by flash chromatography with hexane/ethyl acetate 20:1, yield 66% as a colorless liquid: ¹H NMR (400 MHz, CDCl₃) δ 1.27 (t, ³*J* = 7.1 Hz, 3H, -*CH*₃); 1.52–1.60 (m, 1H, *H*5); 1.74–1.83 (m, 1H, *H5*); 1.87–2.00 (m, 2H, *H6*); 2.40 (dd, ³*J* = 9.1 Hz, ²*J* = 15.0 Hz, 1H, -*CH*₂-COOR); 2.70 (dd, ³*J* = 5.3 Hz, ²*J* = 15.0 Hz, 1H, -*CH*₂-COOR); 2.76 (t, ³*J* = 6.2 Hz, 2H, *H7*); 3.22–3.28 (m, 1H, *H4*); 4.17 (q, ³*J* = 7.1 Hz, 2H, -*CH*₂-CH₃); 6.81 (d, ³*J* = 5.3 Hz, 1H, *H3*); 7.04 (d, ³*J* = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 2980, 2930, 2860, 1738, 1495, 1370, 1280, 1175, 1150, 1032, 875, 732.

Ethyl (1,2,3,4-Tetrahydronaphthalen-1-yl)acetate, 12. Prepared from **8**, purified by distillation, yield 90% as a yellow oil: $bp_{0.01}$ 95–100 °C (oil bath); ¹H NMR (400 MHz, CDCl₃) δ 1.25 (t, ³*J* = 7.2 Hz, 3H, -*CH*₃); 1.69–1.88 (m, 4H, *H2*, *H3*); 2.49–2.84 (m, 4H, *H4*, -*CH*₂-COOR); 3.25–3.43 (m, 1H, *H1*); 4.17 (q, ³*J* = 7.2 Hz, 2H, -*CH*₂-CH₃); 7.03–7.15 (m, 4H, *Ar-H*).

5-[3-(Imidazol-1-yl)propyl]-5,6,7,8-tetrahydroquinoline, 51. Prepared from **50**, purified by bulb distillation, yield 59% as a yellow oil: bp_{0.01}190 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.61–1.93 (m, 8H, *H6*, *H7*, -*CH*₂-*CH*₂-CH₂-Im); 2.79–2.96 (m, 3H, *H5*, *H8*); 3.97 (t, ³J = 7.0 Hz, 2H, -*CH*₂-Im); 6.91 (s, 1H, *H4*); 7.05 (dd, ³J = 7.8 Hz, ³J = 4.8 Hz, 1H, *H3*); 7.08 (s, 1H, *H5*); 7.34 (dd, ³J = 7.8 Hz, ⁴J = 1.5 Hz, 1H, *H4*); 7.48 (s, 1H, *H2*); 8.36 (dd, ³J = 4.8 Hz, ⁴J = 1.5 Hz, 1H, *H2*); IR (KBr) (cm⁻¹) 3100, 2930, 1570, 1510, 1445, 1230, 1080, 805, 750; GCMS (70–250 °C, 15 °C/min) >99% pure, $t_{\rm R} = 17.34$ min, (*m/z*) 241.15 (M⁺).

Method D. Synthesis of 5-(2-Chloroethyl)-5,6,7,8-tetrahydroquinoline Hydrochloride, 26. Freshly distilled SOCl₂ (0.43 g, 3.6 mmol) was added dropwise to a solution of 21 (0.35 g, 2.0 mmol) in dry CHCl₃ (6 mL) at -8 to 0 °C under a nitrogen atmosphere. The mixture was slowly warmed and then refluxed for 2 h. After cooling to room temperature, solvent and excess thionyl chloride were removed under reduced pressure to yield 26 (95%) as a beige solid. The crude product was submitted to the next step without further purification: ¹H NMR (80 MHz, CDCl₃) δ 1.80–2.21 (m, 6H, *H6*, *H7*, *-CH*₂-CH₂Cl); 3.27–3.55 (m, 3H, *H5*, *H8*); 3.65 (t, ³J) = 6.4 Hz, 2H, *-CH*₂Cl); 7.67 (dd, ³J = 8.0 Hz, ³J = 5.6 Hz, 1H, *H3*); 8.19 (d, ³J = 8.0 Hz, 1H, *H4*); 8.53 (d, ³J = 5.6 Hz, 1H, *H2*).

5-(2-Chloroethyl)-7,8-dihydroquinoline Hydrochloride, 22. Prepared from **17**, yield 84% as a beige solid, pure compound, checked by TLC: ¹H NMR (80 MHz, CDCl₃) δ 2.45–2.70 (m, 2H, *H7*); 2.93 (t, ³*J* \approx 6.8 Hz, 2H, -*CH*₂-CH₂Cl); 3.45–3.77 (m, 4H, *H8*, -*CH*₂Cl); 6.31 (t, ³*J* = 4.8 Hz, 1H, *H6*); 7.71 (dd, ³*J* = 7.2 Hz, ³*J* = 5.6 Hz, 1H, *H3*); 8.07 (d, ³*J* = 7.2 Hz, 1H, *H4*); 8.44 (d, ³*J* = 5.6 Hz, 1H, *H2*).

1-(2-Chloroethyl)-1,2,3,4-tetrahydronaphthalene, **25.** Prepared from **20**, yield quantitative as a yellow oil, pure compound, checked by TLC: ¹H NMR (80 MHz, CDCl₃) δ 1.66–2.22 (m, 6H, *H2*, *H3*, -*CH*₂-CH₂Cl); 2.69–3.08 (m, 3H, *H1*, *H4*); 4.46–4.71 (m, 2H, -*CH*₂Cl); 7.05–7.16 (m, 4H, *Ar-H*).

5-Chloro-5,6,7,8-tetrahydroquinoline Hydrochloride, 38. Prepared from **36**, yield quantitative as a beige solid, pure compound, checked by TLC: ¹H NMR (80 MHz, DMSO- d_6) δ 1.90–2.33 (m, 4H, *H6*, *H7*); 3.08–3.30 (m, 2H, *H8*); 5.71 (t, ³J = 4.0 Hz, 1H, *H5*); 7.86 (dd, ³J = 8.0 Hz, ³J = 4.8 Hz, 1H, *H3*); 8.50 (dd, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 1H, *H4*); 8.74 (dd, ³J = 8.0 Hz, ⁴J = 1.6 Hz, 1H, *H2*).

5-(3-Chloropropyl)-7,8-dihydroquinoline Hydrochloride, **49.** Prepared from **48**, yield quantitative as a beige solid, pure compound, checked by TLC: ¹H NMR (400 MHz, CDCl₃) δ 1.97–2.69 (m, 6H, *H7*, -*CH*₂-*CH*₂-CH₂Cl); 3.52–3.71 (m, 4H, *H8*, -*CH*₂*Cl*); 6.25 (t, ³*J* = 4.5 Hz, 1H, *H6*); 7.64–7.70 (m, 1H, *H3*); 8.07 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.2 Hz, 1H, *H4*); 8.40 (dd, ³*J* = 5.9 Hz, ⁴*J* = 1.2 Hz, 1H, *H2*).

Method E. Synthesis of 4-(2-Bromoethyl)-4,5,6,7-tetrahydrobenzo[*b*]furan, 23. CBr₄ (11.7 g, 35.4 mmol) and triphenylphosphine (9.3 g, 35.4 mmol) were added to a solution of **18** (4.9 g, 29.5 mmol) in dry THF (120 mL) at 0 °C. The mixture was stirred for 2 h at 0 °C, warmed to room temperature and stirred overnight. The suspension was filtered, the filtrate evaporated, and the residue purified by flash chromatography with petroleum ether (40–80 °C) to yield **23** (78%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 1.35–1.44 (m, 1H, *H5*); 1.72–1.82 (m, 1H, *H5*); 1.86–1.97 (m, 2H, *H6*, 1H, -*CH*₂-CH₂Br); 2.14–2,23 (m, 1H, -*CH*₂-CH₂Br); 2.57 (t, ³*J* = 6.2 Hz, 2H, *H7*); 2.77–2.84 (m, 1H, *H4*); 3.47–3.54 (m, 2H, -*CH*₂Br); 6.26 (d, ³*J* = 2.2 Hz, 1H, *H3*); 7.24 (d, ³*J* = 2.2 Hz, 1H, *H2*); IR (film) (cm⁻¹) 2940, 2860, 1505, 1445, 1260, 1225, 1040, 895, 735.

4-(2-Bromoethyl)-4,5,6,7-tetrahydrobenzo[b]thiophene, 24. Prepared from **19**, purified by flash chromatography with petroleum ether (40–80 °C), yield 87% as a beige oil: ¹H NMR (400 MHz, CDCl₃) δ 1.48–1.55 (m, 1H, *H5*); 1.74–1.84 (m, 1H, *H5*); 1.88–2.04 (m, 2H, *H6*, 1H, *-CH*₂-CH₂Br); 2.26–2.34 (m, 1H, *-CH*₂-CH₂Br); 2.76 (t, ³J = 6.2 Hz, 2H, *H7*); 2.94–2.99 (m, 1H, *H4*); 3.45–3.52 (m, 2H, *-CH*₂Br); 6.86 (d, ³J = 5.3 Hz, 1H, *H3*); 7.06 (d, ³J = 5.3 Hz, 1H, *H2*); IR (film) (cm⁻¹) 2940, 2860, 1450, 1435, 1260, 1255, 880, 730, 710, 660.

Method F. Synthesis of 5-[2-(Imidazol-1-yl)ethyl]-5,6,7,8-tetrahydroquinoline, 30. A mixture of 21 (1.3 g, 5.6 mmol), dry NaI (0.84 g, 5.6 mmol), imidazole (1.9 g, 27,9 mmol) and Na₂CO₃ (3.0 g, 27.9 mmol) in dry acetone (10 mL) was refluxed for 72 h. The solvent was evaporated and the residue dissolved in CHCl₃ (30 mL) and filtered. The filtrate was extracted with water and dried over Na₂SO₄ and the solvent was removed under reduced pressure. Purification by flash chromatography with CHCl₃/methanol 9:1 followed by crystallization from ether at 4 °C yielded **30** (71%) as colorless crystals: mp 40–41 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.72– 2.17 (m, 6H, H6, H7, -CH2-CH2-Im); 2.78-2.97 (m, 3H, H5, H8); 4.01-4.06 (m, 2H, -CH2-Im); 6.96 (s, 1H, H4); 7.07 (dd, ³J = 7.7 Hz, ³J = 4.7 Hz, 1H, H3); 7.10 (s, 1H, H5); 7.34 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H4; 7.52 (s, 1H, H2); 8.38 (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.4$ Hz, 1H, H2); IR (KBr) (cm⁻¹) 2930, 1570, 1505, 1440, 1230, 1075, 905, 810; GCMS (70-250 °C, 15 °C/ min) >99% pure, $t_{\rm R} = 16.33$ min, (m/z) 227.20 (M⁺).

1-[2-(Imidazol-1-yl)ethyl]-1,2,3,4-tetrahydronaphthalene, **29.** Prepared from **25**, the residue was dissolved in CHCl₃ and extracted with HCl (5%). The aqueous phases were made alkaline with Na₂CO₃ and extracted with CHCl₃. The organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was distilled to yield **29** (30%) as a colorless oil: bp_{0.01} 140–150 °C (oil bath); ¹H NMR (400 MHz, CDCl₃) δ 1.67–2.21 (m, 6H, *H2*, *H3*, *-CH*₂-CH₂-Im); 2.75–2.82 (m, 3H, *H1*, *H4*); 4.01–4.05 (m, 2H, *-CH*₂-Im); 6.95 (s, 1H, *H'4*); 7.04–7.15 (m, 5H, *Ar-H*, *H 5*); 7.50 (s, 1H, *H'2*); IR (KBr) (cm⁻¹) 2930, 1510, 1450, 1230, 1110, 1075, 905, 760, 740, 660; GCMS (70–250 °C, 15 °C/min) >99% pure, $t_{\rm R}$ = 15.77 min, (*m/z*) 226.20 (M⁺).

5-[2-(Imidazol-1-yl)ethyl]-7,8-dihydroquinoline, 31. Prepared from **22**, purified by flash chromatography with CHCl₃/ methanol 9:1, yield 64% as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 2.34–2.39 (m, 2H, *H7*); 2.85–2.96 (m, 4H, -*CH*₂-CH₂-Im, *H8*); 4.10 (t, ³*J* = 7.1 Hz, 2H, -CH₂-*CH*₂-Im); 5.80 (t, ³*J* = 4.8 Hz, 1H, *H6*); 6.86 (s, 1H, *H*'4); 6.95 (s, 1H, *H*'5); 7.15 (dd, ³*J* = 7.5 Hz, ³*J* = 4.9 Hz, 1H, *H3*); 7.39 (m, 2H, *H4*, *H*'2); 8.36 (dd, ³*J* = 4.9 Hz, ⁴*J* = 1.3 Hz, 1H, *H2*); IR (KBr) (cm⁻¹) 2945, 1685, 1585, 1440, 1290, 1180, 1120, 895; GCMS (70–250 °C, 15 °C/min) >95% pure, $t_{\rm R} = 16.23$ min, (*m/z*) 225.20 (M⁺).

5-[3-(Imidazol-1-yl)propyl]-7,8-dihydroquinoline, 50. Prepared from **49**, purified by flash chromatography with CHCl₃/methanol 9:1, yield 70% as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 1.97–2.04 (m, 2H, -CH₂-*CH*₂-CH₂-Im); 2.39–2.44 (m, 4H, *H7*, -*CH*₂-CH₂-CH₂-Im); 2.96 (t, ³*J* = 8.1 Hz, 2H, *H*8); 4.00 (t, ³*J* = 6.9 Hz, 2H, -CH₂-CH₂-*CH*₂-Im); 5.90 (t, ³*J* = 4.0 Hz, 1H, *H*6); 6.92 (s, 1H, *H*4); 7.09–7.12 (m, 2H, *H*4*B*, *H*5); 7.32 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.4 Hz, 1H, *H*4); 7.49 (s, 1H, *H*2); 8.32 (dd, ³*J* = 4.9 Hz, ⁴*J* = 1.4 Hz, 1H, *H*2); IR (KBr) (cm⁻¹) 3100, 2940, 1565, 1510, 1440, 1230, 1075, 905, 815, 750; GCMS (70–250 °C, 15 °C/min) >99% pure, $t_{\rm R} = 17.48$ min, (*m*/*z*) 239.15 (M⁺).

Method G. Synthesis of 1-[2-(4,5,6,7-Tetrahydrobenzo-[b]furan-4-yl)ethyl]-1H-imidazole, 27. Imidazole sodium salt (1.81 g,18.1 mmol) was added to a solution of 23 (3.0 g, 13.9 mmol) in dry DMF (70 mL) and the resulting mixture was stirred for 2 h at room temperature. The mixture was poured into water (300 mL) and extracted with ethyl acetate, and the organic phases were washed with a saturated solution of NaCl and dried over MgSO4. The solvent was removed under reduced pressure and the residue was purified by flash chromatography with CH₂Cl₂/methanol 20:1 to yield 27 (89%) as a beige oil: ¹H NMR (400 MHz, CDCl₃) δ 1.36–1.45 (m, 1H, H5); 1.68-1.79 (m, 1H, H5); 1.82-2.00 (m, 2H, H6, 1H, -CH2-CH2-Im); 2.10-2.19 (m, 1H, -CH2-CH2-Im); 2.58 (t, ³J = 5.7 Hz, 2H, H7); 2.59–2.66 (m, 1H, H4); 4.03 (t, ${}^{3}J$ = 7.7 Hz, 2H, $-CH_2$ -Im); 6.20 (d, $^{3}J = 1.8$ Hz, 1H, H3); 6.94 (br s, 1H, *H*'5); 7.07 (br s, 1H, *H*'4); 7.26 (d, ${}^{3}J = 1.8$ Hz, 1H, *H*2); 7.52 (br s, 1H, H²); ¹³C NMR (120 MHz, CDCl₃) δ 21.10, 22.94, 28.73, 30.48, 36.76, 44.89, 108.85, 118.62, 119.34, 129.42, 136.89, 140.56, 150.83; IR (film) (cm⁻¹) 3380, 3100, 2940, 2870, 1630, 1508, 1445, 1230, 1110, 1080, 908, 735, 665; GCMS (100-300 °C, 15 °C/min) > 99% pure, $t_{\rm R} = 9.98$ min, (m/z)216.10 (M⁺).

1-[2-(4,5,6,7-Tetrahydrobenzo[*b***]thiophen-4-yl)ethyl]-1***H***-imidazole, 28. Prepared from 24, purified by flash chromatography with CHCl₂/methanol 18:1, yield 87% as a yellow oil: ¹H NMR (400 MHz, CDCl₃) \delta 1.50–1.57 (m, 1H,** *H5***); 1.73– 1.82 (m, 1H,** *H5***); 1.91–2.03 (m, 2H,** *H6***, 1H, -***CH***₂-CH₂-Im); 2.21–2.23 (m, 1H, -***CH***₂-CH₂-Im); 2.76–2.79 (m, 2H,** *H7***, 1H,** *H4***); 4.03 (t, ³***J* **= 7.7 Hz, 2H, -***CH***₂-Im); 6.78 (d, ³***J* **= 4.9 Hz, 1H,** *H3***); 6.94 (br s, 1H,** *H'5***); 7.08 (d, ³***J* **= 4.9 Hz, 1H,** *H2***); 7.09 (br s, 1H,** *H'4***); 7.66 (br s, 1H,** *H'2***); ¹³C NMR (100 MHz, CDCl₃) \delta 21.53, 24.94, 27.97, 33.11, 36.91, 44.99, 118.68, 122.15, 125.93, 128.56, 136.47, 136.73, 137.22; IR (film) (cm⁻¹) 3120, 2940, 2500, 1950, 1715, 1675, 1515, 1440, 1390, 1365, 1260, 1110, 1080, 880, 735, 665; GCMS (100–300 °C, 15 °C/ min) >96% pure,** *t***_R = 9.13 min, (***m/z***) 232.15 (M⁺).**

Method H. Synthesis of 1-[2-(4,5,6,7-Tetrahydrobenzo-[*b*]furan-4-ylidene)ethyl]-1*H*-imidazole, 34. 1,1'-Carbonyldiimidazole (0.99 g, 6.1 mmol) and 14 (1.0 g, 6.1 mmol) were reacted at room temperature for 12 h under a nitrogen atmosphere. The reaction mixture was diluted with water (25 mL), acidified with 0.5 M HCl and extracted with CH₂Cl₂. The aqueous phase was alkalized with 2 M NaOH and extracted with CH₂Cl₂. The combined organic phases were washed with brine and dried over MgSO₄, and the solvent was removed under reduced pressure. The mixture of isomers was separated by flash chromatography with CH₂Cl₂/dry ethanol 25:1 to yield **34***E* (39%) and **34***Z* (11%) as yellow oils. **34***E*: ¹H NMR (400 MHz, CDCl₃) δ 1.59-1.70 (m, 1H, H6); 1.87-1.96 (m, 1H, H6); 2.05-2.12 (m, 1H, H7); 2.25-2.31 (m, 1H, H7); 2.59-2.74 (m, 2H, H5); 5.03 (d, ${}^{3}J = 17.7$ Hz, 1H, $-CH_{Z}$ Im); 5.31 (d, ${}^{3}J =$ 10.4 Hz, 1H, $-CH_2$ -Im); 6.12 (dd, ${}^{3}J = 10.4$ Hz, ${}^{3}J = 17.7$ Hz, 1H, -*CH*-CH₂-Im); 6.27 (d, ${}^{3}J$ = 1.8 Hz, 1H, *H3*); 6.91 (s, 1H, *H'5*); 7.07 (s, 1H, *H'4*); 7.35 (d, ${}^{3}J = 1.8$ Hz, 1H, *H2*); 7.44 (s, 1H, H2; IR (film) (cm⁻¹) 3400, 3100, 2940, 2860, 1640, 1625, 1510, 1495, 1415, 1225, 1070, 900, 740, 665; GCMS (m/z) 214.05 (M⁺); HPLC (216 nm) >99% pure, $t_{\rm R} = 7.53$ min.

34*Z*: ¹H NMR (400 MHz, CDCl₃) δ 1.93–1.99 (m, 2H, *H* δ); 2.38–2.42 (m, 1.4H, *H7*); 2.48–2.51 (m, 0.6H, *H7*); 2.71–2.77 (m, 2H, *H5*); 4.70 (d, ³*J* = 7.4 Hz, 0.6H, *-CH*₂-Im); 4.82 (d, ³*J* = 7.1 Hz, 1.4H, *-CH*₂-Im); 5.33 (t, ³*J* = 7.1 Hz, 0.7H, *-CH*-CH₂-Im); 5.64 (t, ³*J* = 7.4 Hz, 0.3H, *-CH*-CH₂-Im); 6.42–6.43 (m, 1H, *H3*); 6.94 (s, 0.3H, *H'*5); 6.97 (s, 0.7H, *H*5); 7.09 (s, 1H, *H4*); 7.26 (d, ³*J* = 1.8 Hz, 0.3H, *H2*); 7.33 (d, ³*J* = 2.2 Hz, 0.7H, *H2*); 7.57 (s, 0.3H, *H2*); 7.58 (s, 0.7H, *H2*); IR (film) (cm⁻¹) 3380, 3110, 2940, 2860, 1660, 1510, 1440, 1230, 1110, 1070, 740, 660; GCMS (*m*/*z*) 214.05 (M⁺); HPLC (244 nm) >96% pure, *t*_R = 8.83 min (20%), *t*_R = 9.73 min (76%).

1-[2-(4,5,6,7-Tetrahydrobenzo[*b***]thiopen-4-ylidene)ethyl]-1***H***-imidazole, 35.** Prepared from **15**, yield **35***E* (36%) and **35***Z* (24%) as yellow oils. **35***E*: ¹H NMR (400 MHz, CDCl₃) δ 1.59–1.69 (m, 1H, *H* δ); 1.88–1.97 (m, 1H, *H* δ); 2.12–2.19 (m, 1H, *H*7); 2.29–2.35 (m, 1H, *H*7); 2.79–2.94 (m, 2H, *H*5); 5.00 (d, ³*J* = 17.1 Hz, 1H, -*CH*₂-Im); 5.36 (d, ³*J* = 10.4 Hz, 1H, -*CH*₂-Im); 6.19 (dd, ³*J* = 10.4 Hz, ³*J* = 17.1 Hz, 1H, -*CH*-(H₂-Im); 6.19 (d, ³*J* = 4.9 Hz, 1H, *H*3); 6.85 (s, 1H, *H*5); 7.06 (s, 1H, *H*4); 7.14 (d, ³*J* = 4.9 Hz, 1H, *H*2); 7.33 (s, 1H, *H*2); IR (KBr) (cm⁻¹) 3440, 3095, 2940, 2920, 2840, 1645, 1505, 1440, 1280, 1235, 1070, 910, 850, 740, 670; GCMS (*m*/*z*) 230.15 (M⁺); HPLC (256 nm) >99% pure, *t*_R = 13.26 min.

35*Z*: ¹H NMR (400 MHz, CDCl₃) δ 1.95–2.01 (m, 2H, *H*6); 2.55 (t, ³*J* = 5.8 Hz, 2H, *H7*); 2.88 (t, ³*J* = 6.1 Hz, 2H, *H5*); 4.73 (d, ³*J* = 7.2 Hz, 2H, -*CH*₂-Im); 5.90 (t, ³*J* = 7.2 Hz, 1H, -*CH*-CH₂-Im); 6.95 (s, 1H, *H*^{*}5); 7.06 (d, ³*J* = 5.1 Hz, 1H, *H3*); 7.09 (s, 1H, *H*^{*}4); 7.12 (d, ³*J* = 5.1 Hz, 1H, *H2*); 7.58 (s, 1H, *H2*); IR (film) (cm⁻¹) 3400, 3100, 2940, 2860, 1640, 1480, 1450, 1225, 1110, 1080, 1070, 905, 880, 730, 665; GCMS (*m*/*z*) 230.15 (M⁺); HPLC (236 nm) >99% pure, *t*_R = 10.80 min.

Method I. Synthesis of 5-(Imidazol-1-yl)-5,6,7,8-tetrahydroquinoline, 40. Compound 38 (0.4 g, 2.0 mmol), imidazole (0.4 g, 6.0 mmol) and triturated K₂CO₃ (0.5 g) were suspended in DMF (4 mL) and then stirred for 14 h at room temperature and for an additional 8 h at 50 °C. After cooling to room temperature, ether (50 mL) was added and the resulting mixture was stored at $-18\ ^\circ C$ overnight. The precipitate was filtered off, the solvents were removed under reduced pressure, and the residue was purified by flash chromatography with CHCl₃/methanol 9:1 and crystallized from hexane/ethyl acetate to yield 40 (50%) as colorless crystals: mp 87-89 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.97-2.34 (m, 4H, H6, H7); 3.01–3.11 (m, 2H, H8); 5.37 (dd, ${}^{3}J =$ 8.4 Hz, ${}^{3}J = 5.4$ Hz, 1H, H5); 6.82 (s, 1H, H⁴); 7.08-7.16 (m, 3H, H3, H4, H'5); 7.52 (s, 1H, H'2); 8.50 (dd, ${}^{3}J = 4.6$ Hz, ${}^{4}J$ = 1.5 Hz, 1H, H2); IR (KBr) (cm⁻¹) 3090, 2945, 1570, 1490, 1445, 1250, 1225, 1085, 905, 810, 760, 660. Anal. (C12H13N3) C. H. N.

8-(Imidazol-1-yl)-5,6,7,8-tetrahydroquinoline, 41. Prepared from **39**, crystallized from hexane/ethyl acetate, yield 19% as colorless crystals: mp 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.86–1.91 (m, 2H, *H6*); 2.25–2.32 (m, 2H, *H7*); 2.85–2.94 (m, 2H, *H5*); 5.41 (t, ³*J* = 7.8 Hz, 1H, *H8*); 6.80 (s, 1H, *H'4*); 7.04 (s, 1H, *H'5*); 7.19 (dd, ³*J* = 7.8 Hz, ³*J* = 4.8 Hz, 1H, *H3*); 7.38 (s, 1H, *H'2*); 7.51 (dd, ³*J* = 7.8 Hz, ⁴*J* = 0.7 Hz, 1H,

H4); 8.46 (dd, ${}^{3}J$ = 4.8 Hz, ${}^{4}J$ = 0.7 Hz, 1H, *H2*); IR (KBr) (cm⁻¹) 3080, 2940, 1725, 1305, 1200, 780. Anal. (C₁₂H₁₃N₃) C, H, N.

Synthesis of 1-[2-(Benzo[b]thiophen-4-yl)ethyl]-1Himidazole, 32. CBr4 (4.55 g, 13.7 mmol) was added to a solution of 16 (1.65 g, 9.2 mmol) in dry CH₂Cl₂. A solution of triphenylphosphine (2.64 g, 10.1 mmol) in dry CH₂Cl₂ was added dropwise under cooling keeping the temperature of the reaction mixture below 30 °C. The solution was stirred for 3 h at room temperature. The solvent was removed under reduced pressure and the precipitate was extracted with petroleum ether (40-80 °C). The solvent was removed and the crude product submitted to method F and purified by flash chromatography with CH₂Cl₂/methanol 30:1 to yield 32 (30%) as a beige oil: ¹H NMR (400 MHz, CDCl₃) δ 3.39 (t, ³J = 7.1 Hz, 2H, $-CH_2$ -CH₂-Im); 4.82 (t, ${}^{3}J$ = 7.1 Hz, 2H, $-CH_2$ -CH₂-Im); 6.81 (br s, 1H, H^{5}); 6.99 (dd, ${}^{3}J = 7.1$ Hz, ${}^{5}J = 0.9$ Hz, 1H, H5); 7.02 (br s, 1H, H'4); 7.25 (dd, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 8.0$ Hz, 1H, *H6*); 7.30 (dd, ${}^{3}J = 5.3$ Hz, ${}^{5}J = 0.9$ Hz, 1H, *H3*); 7.36 (br s, 1H, H'_{2} ; 7.40 (d, ${}^{3}J = 5.3$ Hz, 1H, H_{2}); 7.79 (d, ${}^{3}J = 8.0$ Hz, 1H, H7); ¹³C NMR (125 MHz, CDCl₃) & 35.95, 47.61, 118.74, 120.76, 121.45, 124,49, 126.89, 129.31, 132.12, 136.92, 138.35, 140.29; IR (film) (cm⁻¹) 3330, 3110, 2936, 2870, 1660, 1590, 1510, 1450, 1410, 1230, 1110, 1080, 765, 745, 665; GCMS (100-300 °C, 15 °C/min) > 97% pure, $t_{\rm R} = 9.27$ min, (m/z)228.05 (M⁺).

Synthesis of 5-[2-(Imidazol-1-yl)ethyl]quinoline, 33. 10% Pd/C (0.1 g) was added to a solution of **31** in mesitylene (80 mL) and refluxed for 18 h. The mixture was allowed to cool to room temperature and extracted with 5% HCl. The acidic phase was washed with CHCl₃, alkalized (pH 9-10) with solid Na₂CO₃ and extracted with CHCl₃. The organic phase was dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography with CHCl₃/methanol 17:1 and crystallized from hexane/ethyl acetate 5:1 to yield 33 (34%) as yellow crystals: mp 92–94 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.52 (t, ${}^{3}J = 7.1$ Hz, 2H, $-CH_{2}$ -CH₂-Im); 4.31 (t, ${}^{3}J = 7.1$ Hz, 2H, -CH₂-CH₂-Im); 6.79 (s, 1H, H'4); 7.03 (s, 1H, H'5); 7.24 (d, ³J = 7.1 Hz, 1H, H6), 7.36 (s, 1H, H²); 7.45 (dd, ${}^{3}J$ = 8.7 Hz, ${}^{3}J$ = 4.2 Hz, 1H, H3); 7.62 (dd, ${}^{3}J$ = 8.4 Hz, ${}^{3}J$ = 7.1 Hz, 1H, *H7*); 8.05 (d, ${}^{3}J = 8.5$ Hz, 1H, *H8*); 8.21 (d, ${}^{3}J = 8.7$ Hz, 1H, *H4*); 8.96 (dd, ${}^{3}J = 4.2$ Hz, ${}^{4}J = 1.6$ Hz, 1H, *H2*); IR (KBr) (cm⁻¹) 3090, 1630, 1600, 1570, 1510, 1500, 1450, 1435, 1290, 1280, 1235, 1080, 1070, 910, 840, 795, 665, 630; GCMS (m/z) 223.30 (M⁺); HPLC (230 nm) >99% pure, $t_{\rm R} = 13.23$ min.

Synthesis of 5,6,7,8-Tetrahydroquinoline 1-Oxide, 37. H_2O_2 (25 mL, 30% solution) was added to a solution of 5,6,7,8-tetrahydroquinoline (30.0 g, 225.2 mmol) in acetic acid (200 mL) and stirred for 1 h at 70–80 °C. This procedure was repeated three times. The reaction mixture was heated at 80 °C overnight and evaporated under reduced pressure. The residue was dried over P_4O_{10} to yield **37** (quantitative) as a light yellow oil. The crude product was submitted to the next step without further purification: ¹H NMR (80 MHz, CDCl₃) δ 1.63–2.02 (m, 4H, *H6*, *H7*); 2.69–3.00 (m, 4H, *H5*, *H8*); 7.01–7.05 (m, 2H, *H3*, *H4*); 8.12–8.21 (m, 1H, *H2*).

Synthesis of 8-Chloro-5,6,7,8-tetrahydroquinoline, 39. A solution of POCl₃ (4.4 g, 27.6 mmol) in CH_2Cl_2 (15 mL) was added dropwise to a solution of 37 (1.2 g, 8.1 mmol) in CH₂Cl₂ (5 mL) under a nitrogen atmosphere. Äfter 1 mL was added, the simultaneous addition of a solution of N(C₂H₅)₃ (2.8 g, 26.6 mmol) in CH₂Cl₂ (15 mL) was started with equal dropping velocity to keep the solvent slightly boiling. After the addition was completed, the mixture was stirred for a further 15 min and poured onto ice (40 g). The organic phase was separated and extracted with 5% HCl. The aqueous phases were combined, washed with CH_2Cl_2 , alkalized with solid Na_2CO_3 and extracted with ethyl acetate. The organic phase was washed with water and dried over Na₂SO₄ and the solvent was removed under reduced pressure to yield 39 (66%) as beige oil. The crude product was submitted to the next step without further purification: ¹H NMR (80 MHz, CDCl₃) δ 1.75–2.47 (m, 4H, H6, H7); 2.71-2.91 (m, 2H, H5); 5.23-5.33 (m, 1H, *H8*); 7.11 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 4.8 Hz, 1H, *H3*); 7.42 (d, ${}^{3}J$ = 8.0 Hz, 1H, *H4*); 8.46 (d, ${}^{3}J$ = 4.8 Hz, 1H, *H2*).

Synthesis of Spiro-5,6,7,8-tetrahydroquinoline-5,2'-oxirane, 42. 60% NaH (0.54 g, 22.5 mmol) was washed with dry ether under a nitrogen atmosphere to remove the mineral oil and dried in a nitrogen stream. After suspension in dry DMSO (25 mL), the mixture was heated to 60 °C till the formation of H_2 was finished (≈ 2 h). The solution was diluted with THF (25 mL) and cooled to -3 °C. A solution of (CH₃)₃SI (4.6 g, 22.5 mmol) in DMF (10 mL) was quickly added dropwise and the resulting mixture was stirred for a few minutes at 0 °C. 4 (3.0 g, 20.4 mmol) was added dropwise and the reaction mixture was stirred at 0 °C for 1 h and for a further 14 h at room temperature. The solution was poured into ice-cold brine (100 mL) and extracted with ether. The organic phase was washed with brine and dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was distilled to yield 42 (67%) as a colorless oil: bp_{0.01} 80-85 °C; ¹H NMR (80 MHz, CDCl₃) δ 1.71-2.23 (m, 4H, H6, H7); 2.88-3.10 (m, 4H, *H8*, *H*'3); 7.06 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 4.8 Hz, 1H, *H3*); 7.35 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 1H, H4); 8.41 (dd, ${}^{3}J = 4.8$, J⁴ = 1.6; 1H, H2); IR (film) (cm⁻¹) 3040, 2940, 1590, 1570, 1440, 1420, 1340, 1035, 920, 800.

Synthesis of 5-[(Imidazol-1-yl)methyl]-5,6,7,8-tetrahydroquinolin-5-ol Dihydrochloride, 43. 60% NaH (0.46 g. 19.1 mmol) was added in portions to a solution of imidazole (1.3 g, 19.1 mmol) in dry DMSO (20 mL). After the formation of H₂ had stopped, 42 (2.5 g, 15.5 mmol) was added dropwise within 1 min, and the reaction mixture was stirred for 17 h at room temperature. The solution was poured into ice-cold brine (60 mL) and extracted with CHCl₃. The organic phase was dried over Na₂SO₄, and the solvent was removed under reduced pressure to give the free base as a yellow oil. The residue was dissolved in acetone (10 mL) and precipitated with concentrated HCl. The solvent was removed under reduced pressure, and the residue was crystallized from water/ methanol 1:1 by addition of acetone. The mixture was stored overnight at 4 °C and filtered with suction to yield 43 (67%) as colorless crystals: mp 130 °C dec; ¹H NMR (400 MHz, DMSO-d₆) δ 1.77-2.09 (m, 4H, H6, H7); 3.10-3.27 (m, 2H, *H8*); 4.52 (d, ${}^{2}J = 14.0$ Hz, 1H, $-CH_{2}$ Im); 4.65 (d, ${}^{2}J = 14$ Hz, 1H, -CH2-Im); 6.68 (br, s, 1H, -OH); 7.70-7.71 (m, 2H, H'4, *H*'5); 7.80 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 4.8$ Hz, 1H, *H*3); 8.21 (d, ${}^{3}J =$ 7.8 Hz, 1H, H4); 8.72-8.74 (m, 1H, H2); 9.16 (s, 1H, H2); 13.72 (br s, 2H, H1, H'3).

Synthesis of 5-[(Imidazol-1-yl)methyl]-7,8-dihydroquinoline, 44. Compound 43 (1.5 g, 4.96 mmol) was heated in a mixture of acetic acid (12.5 mL) and concentrated H₂SO₄ (1.75 mL) for 10 h at 120 °C. After cooling to room temperature the reaction mixture was poured into ice-cold water (50 mL), alkalized with Na₂CO₃, and extracted with CHCl₃. The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was recrystallized two times from *n*-hexane/ethyl acetate to yield 44 (32%) as colorless needles: mp 99-101 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.48-2.53 (m, 2H, H7); 3.02 (t, ${}^{3}J = 8.3$ Hz, 2H, H8); 4.91 (s, 2H, $-CH_2$ -Im); 5.96 (t, ${}^{3}J = 4.5$ Hz, 1H, H6); 6.94 (s, 1H, H4); 7.05-7.09 (m, 2H, H3, H'5); 7.27 (dd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 0.8$ Hz, 1H, *H4*); 7.55 (s, 1H, *H*²); 8.34 (dd, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 0.8$ Hz, 1H, H2); IR (KBr) (cm⁻¹) 3110, 2950, 1435, 1290, 1230, 1070, 905, 830, 745, 660. Anal. ($C_{13}H_{13}N_3$) C, H, N.

Synthesis of 5-[(Imidazol-1-yl)methyl]-5,6,7,8-tetrahydroquinoline, 45. Compound 43 (1.5 g, 4.96 mmol) was heated in a mixture of acetic acid (12.5 mL) and concentrated H_2SO_4 (1.75 mL) for 10 h at 120 °C. After cooling to room temperature, 10% Pd/C (0.1 g) was added. The mixture was evacuated three times and hydrogenated (9 bar) for 24 h at 30 °C. The catalyst was filtered off. The filtrate was poured into ice-cold water and alkalized with Na₂CO₃. The mixture was extracted with CHCl₃. The organic phase was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was recrystallized two times from *n*-hexane/ethyl acetate to yield 45 (29%) as colorless needles: mp 59–61 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.67–1.93 (m, 4H, *H6*, *H7*); 2.87– 3.25 (m, 3H, *H5*, *H8*); 4.05–4.16 (m, 2H, $-CH_{Z}$ -Im); 6.89 (s, 1H, *H4*); 7.04 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{3}J$ = 4.6 Hz, 1H, *H3*); 7.08–7.10 (m, 2H, *H4*, *H5*); 7.38 (s, 1H, *H2*); 8.43 (dd, ${}^{3}J$ = 4.6 Hz, ${}^{4}J$ = 1.6 Hz, 1H, *H2*); IR (KBr) (cm⁻¹) 3110, 2940, 1580, 1450, 1230, 1080, 920, 860, 810, 750. Anal. (C₁₃H₁₅N₃·0.27H₂O) C, H, N.

Synthesis of 3-(7,8-Dihydroquinolin-5-yl)propionitrile, 46. Powdered **22** (4.3 g, 18.8 mmol) was added to a solution of NaCN (2.3 g, 46.7 mmol) in dry DMSO (20 mL) at 90 °C. The mixture was stirred for 30 min at 100 °C, cooled, poured into ice-cold brine (150 mL), and extracted with ether. The combined organic phases were washed with brine and dried over Na₂SO₄, and the solvent was removed under reduced pressure to yield **46** (89%) as a yellow oil. The crude product was submitted to the next step without further purification: ¹H NMR (400 MHz, CDCl₃) δ 2.42–2.49 (m, 2H, *H7*); 2.57 (t, ³*J* = 7.3 Hz, 2H, -*CH*₂-CN); 2.79 (t, ³*J* = 7.3 Hz, 2H, -*CH*₂-*CH*₂-CN); 2.95–3.01 (m, 2H, *H8*); 6.05 (t, ³*J* = 4.4 Hz, 1H, *H6*); 7.15 (dd, ³*J* = 7.8 Hz, ³*J* = 5.0 Hz, 1H, *H3*); 7.38 (d, ³*J* = 7.8 Hz, 1H, *H4*); 8.35 (d, ³*J* = 5.0 Hz, 1H, *H2*); IR (film) (cm⁻¹) 3050, 2940, 2245, 1640, 1565.

Synthesis of 3-(7,8-Dihydroquinolin-5-yl)propionic Acid, 47. Compound 46 (3.0 g, 16.3 mmol) was hydrolyzed in a mixture of concentrated H₂SO₄ (10 mL) and water (10 mL) for 3 h at 110 °C. After cooling the solution was poured into ice-cold water (60 mL), alkalized with NaOH (pH 11), washed with ethyl acetate, and acidified with 5 M HCl (pH 4). The solution was stored for 17 h at 4 °C, and the precipitate was filtered off and dried at 60 °C to yield 47 (60%) as a colorless powder: mp 270–271 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 2.31–2.83 (m, 8H, *H7*, *H8*, -*CH*₂-*CH*₂-COOH); 5.93 (t, ³*J* = 4.4 Hz, 1H, *H6*); 7.22 (dd, ³*J* = 7.8 Hz, ³*J* = 5.0 Hz, 1H, *H3*); 7.59 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.1 Hz, 1H, *H4*); 8.27 (dd, ³*J* = 5.0 Hz, ⁴*J* = 1.1 Hz, 1H, *H2*); 12.14 (br s, 1H, -*COOH*).

Synthesis of 3-(7,8-Dihydroquinolin-5-yl)propan-1-ol, 48. LiAlH₄ (0.8 g, 21.0 mmol) was suspended in dry ether (30 mL) under a nitrogen atmosphere. With vigorous stirring **47** (1.9 g, 9.3 mmol) was added in portions and the mixture was stirred for 1 h at room temperature. Further treatment according to method B yielded **48** (51%) as a colorless solid: mp 82–85 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (s, 1H, -*OH*); 1.75–2.53 (m, 6H, *H7*, -*CH*₂-*CH*₂-CH₂OH); 2.96 (t, ³*J* = 8.1 Hz, 2H, *H8*); 3.72 (t, ³*J* = 5.9 Hz, 2H, -*CH*₂OH); 5.94 (t, ³*J* = 4.4 Hz, 1H, *H6*); 7.12 (dd, ³*J* = 7.7 Hz, ³*J* = 4.9 Hz, 4*J* = 1.5 Hz, 1H, *H2*); IR (film) (cm⁻¹) 2920, 2860, 2830, 1640, 1580, 1440, 1360, 1340, 1060, 1015, 920, 830, 815, 755.

Synthesis of 6-Chloroisoquinoline, 53. A vigorously stirred solution of 52 (5.0 g, 33.2 mmol) in methanol/CH₂Cl₂ 5:2 (100 mL) was fumigated with ozone at -78 °C. To determine the end of the reaction, the exhausting gas was passed through a 10% aqueous solution of KI (2-3 h). Unreacted ozone was removed by flushing the reaction vessel with nitrogen. NaHCO₃ (3.5 g, 42.0 mmol) and dimethyl sulfide (6.6 mL) were added, the cooling bath was removed, and the mixture was stirred for 6 h. Subsequently 25% aqueous ammonia (40 mL) was added and the mixture stirred for further 15 h. The reaction mixture was extracted with CH2-Cl₂ and the combined organic phases were extracted with 5% HCl. The aqueous phase was washed with CH₂Cl₂ and alkalized with Na₂CO₃ (pH 10). The precipitate was filtered with suction and dried to yield 53 (64%) as beige needles: mp 39-40 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.57 (m, 2H, H4, *H7*); 7.81 (s, 1H, *H5*); 7.91 (d, ${}^{3}J = 8.7$ Hz, 1H, *H8*); 8.55 (d, ${}^{3}J$ = 5.6 Hz, 1H, H3); 9.23 (s, 1H, H1).

Synthesis of 6-(Imidazol-1-yl)isoquinoline, 54. 60% NaH (0.62 g, 25.8 mmol) was washed with dry ether to remove the mineral, dried in a nitrogen stream, and suspended in dry DMF (3 mL). Imidazole (1.75 g, 25.8 mmol) was added in portions under cooling. After the formation of H_2 was finished, 53 (1.4 g, 8.6 mmol) and copper powder (60 mg) were added and the mixture was heated at 150 °C for 3 h. The solution was cooled to room temperature, diluted with water (10 mL) and extracted with CHCl₃. The organic phase was dried over

MgSO₄ and the solvent was removed under reduced pressure. The residue was purified by flash chromatography with CHCl₃/ methanol 9:1 to yield 54 (5%) as yellow crystals: mp 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H, H⁴); 7.45 (s, 1H, H'5); 7.67–7.71 (m, 2H, H4, H7); 7.81 (d, ${}^{4}J = 1.8$ Hz, 1H, H5); 8.04 (s, 1H, H2); 8.13 (d, ${}^{3}J = 8.7$ Hz, 1H, H8); 8.62 (d, ${}^{3}J = 5.8$ Hz, 1H, H3); 9.31 (s, 1H, H1); IR (KBr) (cm⁻¹) 3100, 1630, 1500, 1305, 1110, 940, 875, 770, 650. Anal. (C12H9N3) C, H, N.

Synthesis of 7-[(Imidazol-1-yl)methyl]isoquinoline, 56. N-Chlorosuccinimide (1.5 g, 11.2 mmol) was added to a solution of 55 (1.5 g, 10.5 mmol) in dry CHCl₃ (200 mL) under nitrogen. The mixture was exposed to UV light and refluxed for 3 h. The reaction mixture was cooled to 10 °C and filtered, and the solvent was removed under reduced pressure. The crude intermediate was submitted to method F and purified by flash chromatography with CHCl₃/methanol 9:1 followed by bulb distillation to yield **56** (23%) as light yellow crystals: $bp_{0.01}$ -170 °C; mp 73–75 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.01 (br s, 0.26H, crystal water); 5.33 (s, 2H, -CH2-Im); 6.96 (s, 1H, H'4); 7.15 (s, 1H, H'5); 7.48 (dd, ${}^{3}J = 8.5$ Hz, ${}^{4}J = 1.7$ Hz, 1H, H6); 7.64–7.66 (m, 2H, H4, H8); 7.72 (s, 1H, H²); 7.84 (d, ${}^{3}J = 8.5$ Hz, 1H, H5); 8.57 (d, ${}^{3}J = 5.7$ Hz, 1H, H3); 9.23 (s, 1H, H1); IR (KBr) (cm⁻¹) 3100, 1670, 1630, 1590, 1500, 1360, 1285, 1275, 1225, 1080, 1030, 855, 740, 720, 670, 470. Anal. (C₁₃H₁₁N₃·0.13H₂O) C, H, N.

Biological Methods. 1. Enzyme Preparation. The enzymes were prepared according to the literature: P450 arom,³¹ P450 17,33 and P450 scc.31

2. Enzyme Assays. The enzyme assays were performed as described: P450 1733 and P450 scc.31

3. Inhibition of P450 TxA₂. The assay was performed according to our described procedure.³⁰ Citrated human whole blood (0.5 mL) was preincubated with a solution of inhibitor in ethanol/K-Na-phosphate buffer, pH 7.4 (10 µL) (0.01 M KH₂-PO₄, 0.05 M Na₂HPO₄ (1:1/v:v); control: vehicle; blank: dazoxiben HCl, 100 μ M) for 10 min at 37 °C. Collagen suspension (50 μ L; final collagen concentration: 53.6 μ g/mL) was added and incubation was continued for another 10 min at 37 °C. The reaction was terminated by the addition of 0.4 mL of trichloroacetic acid (20% in 0.6 M HCl). The mixture was subjected to centrifugation at 4400g (10 min) and the supernatant (0.5 mL) pipetted into a solution of thiobarbituric acid (TBA) (0.53% TBA in the phosphate buffer described above) (0.5 mL). After heating for 30 min at 70 °C and cooling for another 30 min at room temperature, the samples were measured spectrofluorimetrically (λ excitation: 533 nm; λ emission: 550 nm).

4. Inhibition of P450 Arom. This assay was performed according to described methods^{31,35,36} monitoring enzyme activity by measuring the ${}^{3}\text{H}_{2}\text{O}$ formed from $[1\beta, 2\beta, {}^{3}\text{H}]$ testosterone during aromatization. Each incubation tube contained 0.225 μ Ci of $[1\beta, 2\beta^{-3}H]$ testosterone, 5 μ M unlabeled testosterone, 2 mM NADPH, 20 mM glucose-6-phosphate, 1 EU glucose-6phosphate dehydrogenase, and inhibitor (0–250 μ M) in phosphate buffer (0.05 M, pH 7.4). The test compounds had been dissolved in EtOH and diluted with buffer. The final EtOH concentration of control and inhibitor incubation was 2%. Each tube was preincubated for 5 min at 30 °C in a shaking water bath. Microsomal protein (0.5 mg) was added to start the reaction. The total volume of each incubation was 0.5 mL. The reaction was terminated by withdrawing 100-µL aliquots at 0, 7, 14, and 21 min and pipetting them into 200 μ L of a cold 1 mM HgCl₂ solution. After addition of 200 μ L of an aqueous dextran-coated charcoal (DCC) suspension (2%), the vials were shaken for 20 min and centrifuged at 1500g for 5 min to separate the charcoal-adsorbed steroids. Aliquots of the supernatant were assayed for ³H₂O by counting in a scintillation mixture in a Beckman liquid scintillation spectrometer (LS 8000).

5. Selective Inhibition of P450 TxA2. Inhibition toward cyclooxygenase and lipoxygenase was examined by determination of the PGE₂, 12-HHT, and 12-HETE concentrations according to described procedures.³⁴

6. In Vivo Test: Effect on TxB₂ Plasma Concentration. The test was performed similar to a described procedure.³² Male Sprague-Dawley rats (about 250 g) were classified in groups of 6-8 animals and starved for 16 h. The test compounds were administered by gavage (vehicle: 0.01 M HCl, 1.5 mL/300 g body weight). Control rats were given the vehicle. Two, 3, 5, and 8 h after administration, blood (1.5 mL) was withdrawn from the heart under ether anesthesia and immediately cooled on ice. The blood was allowed to clot for exactly 60 min at 37 °C in an agitated water bath. The serum was separated by centrifugation at 2500g (15 min, 4 °C) and stored at -26 °C until tested. Serum TxB₂ levels were determined by radioimmunoassay using the protocol described in the kit (DRG Instruments, Marburg, FRG). The serum samples were diluted (1:100) using the buffer of the kit. Apart from the incubation, all steps were performed at 4 °C.

Acknowledgment. Thanks are due to Dr. D. Ledergerber for performing the in vivo tests, to Mrs. Anja Palusczak and Martina Palzer for performing the in vitro enzyme assays, to Dr. J. Zapp for measuring the NMR spectra on the Bruker Avance PRX 500, to A. Alt for performing the GCMS analyses, and to the Verband der Chemischen Industrie, Fond der Chemischen Industrie for financial support.

References

- (1) For a review, see: Brodie, A. M. H.; Njar, V. C. O. Aromatase Inhibitors in Advanced Breast Cancer: Mechanism of Action and Clinical Implications. J. Steroid Biochem. Mol. Biol. 1998, 66, -10
- (2) Lamb, H. M.; Adkins, J. D. Letrozole. A Review of Its Use in Postmenopausal Women with Advanced Breast Cancer. Drugs **1998**, 56, 1125-1140.
- Costa, L. A.; Kopreski, M. S.; Demers, L. M.; Chinchilli, V. M.; (3)Santen, R. J.; Harvey, H. A.; Lipton, A. Effect of the Potent Aromatase Inhibitor Fadrozole Hydrochloride (CGS 16949A) in Postmenopausal Women with Breast Carcinoma. Cancer 1999, 85, 100-103.
- (4) Coster, R.; Bruynseels, J. Phase II Study of Vorozole (R83842), a New Aromatase Inhibitor, in Postmenopausal Women with Advanced Breast Cancer in Progression on Tamoxifen. Clin. Cancer Res. 1995, 1, 287-294.
- Wiseman, L. R.; Adkins, J. D. Anastrozole. A Review of Its Use in the Management of Postmenopausal Women with Advanced
- Breast Cancer. *Drugs Aging* **1998**, *13*, 321–332. Ullrich, V.; Nusing, R. Thromboxane Synthase. From Isolation to Function. *Stroke* **1990**, *21*, 134–138. (6)
- Jacobs, C.; Hartmann, R. W. Unpublished results.
- (7) Jacobs, C., Hartmann, R. W. Onpublished results.
 (8) Aitokallio-Tallberg, A.; Viinikka, L. U.; Ylikorkala, R. O. Increased Synthesis of Prostacyclin and Thromboxane in Human Ovarian Malignancy. *Cancer Res.* **1988**, *48*, 2396–2398.
 (9) Honn, K. V.; Meyer, J. Thromboxanes and Prostacyclin: Positive and Negative Modulators of Tumor Growth. *Biochem. Biophys.* **D** Content of the provided and the provided
- Res. Commun. 1981, 102, 1122–1129.
 (10) Nigam, S.; Zakrzewicz, A. Tumor Cell Proliferation by Throm-
- boxane A_2 : A Receptor-Mediated Event. Adv. Prostaglandin, Thromboxane, Leukotriene Res. **1990**, 21, 925–928.
- Schneider, M. R.; Tang, D. G.; Schirner, M.; Honn, K. V. Prostacyclin and Its Analogues: Antimetastatic Effects and Mechanisms of Action. *Cancer Metastasis Rev.* **1994**, *13*, 349– (11)364
- Yokoyama, I.; Hayashi, S.; Kobayshi, T.; Negita, M.; Yasutom, (12)M.; Uchida, K.; Takagi, H. Prevention of Experimental Hepatic Metastasis with Thromboxane Synthase Inhibitor. Res. Exp. Med. 1995, 195, 209–215.
- (13) Ulrich, V.; Brugger, R. Prostacyclin- und Thromboxan-Synthase, neue Aspekte der Katalyse durch Hämthiolat-Enzyme. Angew. *Chem.* **1994**, *106*, 1987–1996. (14) Akhtar, M.; Njar, V. C.; Wright, J. N. Mechanistic Studies on
- Aromatase and Related C-C Bond Cleaving P-450 Enzymes. J. Steroid Biochem. Mol. Biol. **1993**, 44, 375–387.
- (15) Haurand, M.; Ullrich, V. Isolation and Characterization of Thromboxane Synthase from Human Platelets as a Cytochrome P-450 Enzyme. J. Biol. Chem. **1985**, 260, 15059–15067. Furet, P.; Batzl, C.; Bhatnagar, A.; Francotte, E.; Rihs, G.; Lang,
- (16) M. Aromatase Inhibitors: Synthesis, Biological Activity, and Binding Mode of Azole-type Compounds. J. Med. Chem. 1993, 36, 1393–1400. Laughton, C. A.; Zwelebil, M. J. J. M.; Neidle,

S. A Detailed Molecular Model for Human Aromatase. J. Steroid Biochem. Mol. Biol. 1993, 44, 399–407. Ahmed, S.; Davis, P. J.; Owen, C. P. Molecular Modelling Study of the Binding of Inhibitors of Aromatase to the Cytochrome P-450 Heme. Drug Des. Discovery 1996, 14, 91-102.

- (17) Bayer, H.: Hartmann, R. W. Pyridyl-substituierte Tetralonderivate. Eine neue Klasse nichtsteroidaler Aromatase-Inhibitoren. Arch. Pharm. (Weinheim, Ger.) **1991**, 324, 815–820. Mitrenga, M.; Hartmann, R. W. N-Oxide Formation Causes Loss of Aromatase Inhibitory Activity of Pyridyl Substituted Tetrahy-dronaphthalenes. *Eur. J. Med. Chem.* **1995**, *30*, 241–244.
- Bayer, H.; Batzl, C.; Hartmann, R. W.; Mannschreck, A. New Aromatase Inhibitors. Synthesis and Biological Activity of (18) Pyridyl-Substituted Tetralone Derivatives. J. Med. Chem. 1991, 34, 2685-2691. Hartmann, R. W.; Bayer, H.; Grün, G. Aromatase Inhibitors. Synthesis and Structure-Activity Studies of Novel Pyridyl-Substituted Indanones, Indanes and Tetralins. J. Med. Chem. 1994, 37, 1275-1281. Hartmann, R. W.; Bayer, H.; Grün, G.; Sergejew, T.; Bartz, U.; Mitrenga, M. Pyridyl-Substituted Tetrahydrocyclopropa[a]naphthalenes: Highly Ac-tive and Selective Inhibitors of P450 arom. *J. Med. Chem.* **1995**, *38*, 2103–2111. Wächter, G. A.; Hartmann, R. W.; Sergejew, T.; Grün, G. L.; Ledergerber, D. Tetrahydronaphthalenes: Influence of Heterocyclic Substituents on Inhibition of Steroidogenic Enzymes P450 arom and P450 17. *J. Med. Chem.* **1996**, *39*, 834– 841. Hartmann, R. W.; Frotscher, M.; Ledergerber, D.; Wächter, G. A.; Grün, G. L.; Sergejew, T. F. Synthesis and Evaluation of Azole-Substituted Tetrahydronaphthalenes as Inhibitors of P450 arom, P450 17 and P450 TxA2. Arch. Pharm. Pharm. Med. Chem. 1996, 329, 251-261.
- (19) Ledergerber, D.; Frotscher, M.; Hartmann, R. W. Novel Highly Active Thromboxane A2 Synthase Inhibitors Devoid of Carboxylic Groups. Arch. Pharm. Pharm. Med. Chem. **1997**, 330, 3–5.
- (20) Hartmann, R. W.; Frotscher, M. 1-Imidazolylcarbonyloxy substituted Tetrahydroquinolines and Pyridines: Synthesis and Evaluation of P450 TxA₂ Inhibition. Arch. Pharm. Pharm. Med. Chem. 1999, 332, 353-357.
- (21) Matsumoto, M.; Watanabe, N. A Facile Synthesis of 4-Oxo-4,5,6,7-tetrahydroindoles. Heterocycles 1984, 22, 2313–2316.
- (22) Nishimura, S.; Nakamura, M.; Suzuki, M.; Imoto, E. Some Reactions of 6,7-Dihydrobenzo[b]thiophen-4-one. J. Chem. Soc. Jpn. 1962, 83, 343–347.
- (23) Zymalkowski, F.; Rimek, H. Eine neue Synthese des Bz-Tetrahydrochinolins. Arch. Pharm. (Weinheim, Ger.) 1961, 294, 217-2Ž3.

- (24) Clark, P. D.; Irvine, N. M.; Sarkar, P. The Synthesis of 3Hnaphthol[1,8-bc]thiophene Derivatives. Can. J. Chem. 1991, 69, 1011 - 1016.
- Trehan, I. R.; Kad, G. L.; Sangita, R.; Renu, B. A New Synthesis (25)of 13-Aza-18-nor-17-oxo-A-nor-3-thiaestra-1,5(10),9(11)-triene.
- of 13-AZA-18-nor-17-0x0-A-nor-3-unaesu a-1,0(19),0(11) there. Indian J. Chem. Sect. B 1985, 24, 659-661. Vierhapper, F. W.; Eliel, E. L. Selective Hydrogenation of Quinoline and Its Homologues, Isoquinoline and Phenyl-(26)substituted Pyridines in the Benzene Ring. J. Org. Chem. 1975, 40. 2729-2734
- Corey, E. J.; Chaykovsky, M. Dimethyloxosulfonium Methylide (27)((CH₃)₂SOCH₂) and Dimethylsulfonium Methylide ((CH₃)₂SCH₂). Formation and Application to Organic Synthesis. J. Am. Chem. Soc. 1965, 87, 1353–1364.
- Olivier, M.; Marechal, E. Halogenated Monomers and Their (28)Cationic Polymerization. II. Synthesis of Various Chloroindenes. Bull. Soc. Chim. Fr. 1973, 3096-3099.
- Miller, R. B.; Frincke, J. M. Synthesis of Isoquinolines from Indenes. *J. Org. Chem.* **1980**, *45*, 5312–5315. Ledergerber, D.; Hartmann, R. W. Development of a Screening (29)
- (30)Assay for the in vitro Evaluation of Thromboxane A₂ Synthase Inhibitors. J. Enzyme Inhib. 1995, 9, 253-261.
- Hartmann, R. W.; Batzl, C. Aromatase Inhibitors. Synthesis and (31)Evaluation of Mammary Tumor Inhibiting Activity of 3-Alkylated 3-(4-Aminophenyl)-piperidine-2,6-diones. J. Med. Chem. **1986**, *29*, 1363–1369.
- (32) Cozzi, P.; Branzoli, U.; Cargancio, G.; Ferti, C.; Pillan, A.; Severino, D.; Tonani, R. N-Imidazolyl Derivatives of the Naphthalene and Chroman Rings as Thromboxane A2 Synthase Inhibitors. Eur. J. Med. Chem. 1991, 26, 423-433.
- Sergejew, T.; Hartmann, R. W. Pyridyl substituted Benzocycloalkenes: New Inhibitors of $17\alpha\text{-Hydroxylase}/17,20\text{-lyase}$ (33) (P450_{c17}). J. Enzyme Inhib. **1994**, 8, 113–122
- (34) Dannhardt, G.; Lehr, M. In Vitro Evaluation of 5-Lipoxygenase and Cyclooxygenase Inhibitors Using Bovine Neutrophils and Platelets and HPLC. J. Pharm. Pharmacol. 1992, 44, 419-424.
- Graves, P. E.; Salhanick, H. A. Stereoselective Inhibition of Aromatase by Enantiomers of Aminoglutethimide. *Endocrinol*-(35)ogy 1979, 105, 52-57.
- Foster, A. B.; Jarman, M.; Leung, C. S.; Rowlands, M. G.; Taylor, (36)G. N.; Analogues of Aminoglutethimide: Selective Inhibition of Cholesterol Side-Chain Cleavage. J. Med. Chem. 1985, 28, 50 - 54.

JM991180U