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Abstract 

A convenient, one-pot three-component synthesis of new photochromic azo-imidazoles (1a-

1h) from the corresponding azo dyes (2a-2h), benzil and ammonium acetate under 

microwave irradiation were described and their photochromic properties were investigated. 

The structures of the new azo-imidazoles were confirmed by UV-Vis, FT-IR and NMR 

spectroscopies and elemental analysis. The properties and photochromic structural behavior 

relationship (PSBR) of these compounds have been analyzed. All the compounds exhibit 

good photochromic behavior upon irradiation with alternative UV and visible light.  

Keywords: Azo-imidazole, Azo dyes, Imidazole, Microwave, Photochromism. 

 

1. Introduction 

Photochromic compounds have attracted considerable attention due to their extensive 

application in display and anti-counterfeiting systems, optical storage and memory devices, 

and optical molecular switches [1–9]. Hence, in the past decade, a large number of 

photochromic compounds with different photoresponsive units have been synthesized and 

their properties have been investigated [10–13]. Azo dyes are an important and large class of 

synthetic organic colorants used in many practical applications [14,15]. The photochromism 

and thermochromism of aromatic azo dyes make them suitable as optical sensors, nonlinear 

optical chromophores and molecular memory storage [16–20]. A representative family of 

azobenzenes photochromic molecules, induced by alternating irradiation with ultraviolet and 
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blue lights, conducting E to Z and vice versa photoisomerization via azo π–π* and azo n–π* 

excitations, respectively [21]. Regarding synthesis of heterocyclic azo dyes with thiophene, 

pyrrole and azoles, several reports recently have been published. These azo dyes were used as 

optical switching, second harmonic generation, chemo-sensing, organic sensitized solar cells 

and memories [22–24]. 

The imidazole unit is a key building block that has been widely used in medicine, ionic 

liquids, anion sensors, as well as electronic and optical materials [25–29]. Hence, it convinces 

us to incorporate an imidazole unit into an azo dye, it is anticipated that the azo-imidazoles 

with excellent photochromic properties will be obtained.  

Because of the advantages of short reaction time, high efficiency, improving reaction yields, 

and reducing thermal degradation byproducts, microwave-assisted synthesis has been 

successfully and routinely applied in organic and medicinal chemistry [30-33]. In 

continuation of our interest in the development of photochromic compounds [34–39] here, for 

the first time we report the coupling of the photoactive azo aldehydes (2a-2h), benzil and 

NH4OAc in convenient, one-pot three-component synthesis under microwave irradiation to 

azo-imidazoles (Scheme 1) and investigate their PSBR. The results indicate that upon 

irradiation of 1a-1h with UV/Vis light they can be easily isomerized to their corresponding 

photoisomers. 
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Scheme 1. General synthetic route for synthesis of azo-imidazoles 

 

2. Experimental 

2.1. Materials and apparatus  

All reagents were purchased from Fluka, Merck and Aldrich and used without further 

purification. Azo dyes precursors, 2a-2h, were prepared according to the well-known 

literature procedure [40]. Melting points were measured by electrothermal 9100s apparatus 

and were uncorrected. FT-IR spectra were recorded on a Bruker Vecter 22 in the region of 

400–4000 cm−1 in KBr pellets. The 1HNMR and 13C NMR spectra were obtained from 

solution DMSO-d6 and CDCl3 with TMS as an internal standard Bruker Avance III (400 

MHz) spectrometer. The absorption spectra of azo-imidazoles were measured by Shimadzu 

UV-2100 spectrophotometer in the range 200–800 nm (c = 2 × 10−4 M, cell path length 1 

cm). Spectral data were obtained using quartz cuvettes with 1 cm optical path length before 

and after UV irradiation for various times. A light at 254 nm from a low-pressure Hg lamp 

was used for the photoisomerization from the trans-enol photoisomer to the cis-keto 

photoisomer. The CHN analyses were performed on a Vario-ELIII elemental analyzer. High 
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resolution mass spectra (HRMS) were obtained on a Finnigan MAT 95, EI: 70 eV, R:10000. 

Microwave-assisted reactions were carried out on a commercially available monomode 

microwave unit (CEM Discover) in a 25-mL round-bottom flask. The machine consists of a 

continuous focused microwave power delivery system with operator selectable power output 

from 0 to 300 W. Reactions were performed in a 25-mL round-bottom flask. The temperature 

of the contents of the vessel was monitored using an IR sensor located underneath the 

reaction vessel. Primary microwave irradiation of 230 W was used, the temperature being 

ramped from rt to reflux. 

 

2.2 Synthesis 

2.2.1. General procedure for the synthesis of azo-imidazoles 1a-1h 

Azo day 2a-2h (1 mmol), benzil (0.210 g, 1 mmol) and NH4OAc (0.310 g, 4 mmol) in AcOH 

glacial (4 ml) were heated in a stirred microwave open-vessel (230 W) for appropriate time 

1.5-2.5 min see Table 2. The progress of the reaction was monitored by TLC (eluent: n-

hexane:EtOAc, 6:2). After completion of the reaction distilled H2O was added to the mixture 

and the precipitated solid was collected by filtration, and recrystallized from EtOH or 

EtOH/CHCl3 to give azo-imidazoles 1a-1h in high yields 82-96% see Table 2. 

 

2.3. Spectral data for the synthesis of azo-imidazoles 

2.3.1. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-4-(phenyldiazenyl)phenol (1a) 

Yield: 87%, mp 191-192 °C, orange crystal; FT-IR (KBr, υ/cm-1): 3059 (aromatic C–H 

stretch), 1603 (C=N stretch), 1496 (N=N stretch), 1439, 1383, 1269 (C–O stretch), 767, 693 

(aromatic out of plane bend). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.20 (d, J = 8.8 Hz, 1H), 

7.45 (br, 6H), 7.54-7.64 (m, 7H), 7.87-7.92 (m, 3H), 8.79 (d, J = 2.4 Hz, 1H), 13.46 (br, 1H), 13.79 

(br, 1H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 113.7, 118.4, 121.8, 122.6, 124.3, 126.9-129.7 
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(br, 3 arom C), 127.9, 129.2, 129.9, 131.3, 145.5, 145.6, 152.6 and 160.3. Anal. Calcd. For 

C27H20N4O: C, 77.87; H, 4.84; N, 13.45%. Found: C, 77.91; H, 4.92; N, 13.43%. HRMS: m/z 

for C27H20N4O; calculated 416.1574; found: 416.1576. 

2.3.2. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-4-(p-tolyldiazenyl)phenol (1b) 

Yield: 88%, mp 198-200 °C, orange powder; FT-IR (KBr, υ/cm-1): 3236 (N–H stretch), 3029 

(aromatic C–H stretch), 1598 (C=N stretch), 1491 (N=N stretch), 1440, 1383, 1278 (C–O 

stretch), 825, 764, 694 (aromatic out of plane bend). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

2.43 (s, 3H), 7.19 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 8.0 Hz, 4H), 7.43 (br, 5H), 7.58 (d, J = 7.2 Hz, 4H), 

7.80 (d, J = 8.4 Hz, 2H), 7.88 (dd, J = 8.8, 2.4 Hz, 1H), 8.76 (d, J = 2.4 Hz, 1H), 13.40 (br, 1H), 13.73 

(br, 1H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 21.5, 113.7, 118.3, 121.7, 122.7, 124.0, 127-

129.5 (br, 2 arom C), 127.5, 128.2, 129.1, 130.4, 141.4, 145.6, 145.7, 150.7 and 160.1. Anal. Calcd. 

For C28H22N4O: C, 78.12; H, 5.15; N, 13.01%. Found: C, 78.17; H, 5.21; N, 12.97%. HRMS: 

m/z for C28H22N4O; calculated 430.1781; found: 430.1786. 

2.3.3. 4-((4-Chlorophenyl) diazenyl)-2-(4, 5-diphenyl-1H-imidazol-2-yl)phenol (1c)  

Yield: 82%, mp 215-217 °C, dark orange crystal; FT-IR (KBr, υ/cm-1): 1605 (C=N stretch), 

1490 (N=N stretch), 1441, 1384, 1274 (C–O stretch), 832, 766, 694 (aromatic out of plane 

bend). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 7.20 (d, J = 8.8 Hz, 2H), 7.41-7.45 (br, 6H), 7.57 

(d, J = 7.2 Hz, 4H), 7.68 (d, J = 8.4 Hz, 2H), 7.88-7.91 (m, 3H), 8.78 (d, J = 2.4 Hz, 1H), 13.56 (br, 

2H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 113.8, 118.4, 121.7, 124.3, 124.5, 127.5-129 (br, 3 

arom C), 128.3, 129.2, 130.1, 135.6, 145.4, 145.5, 151.2 and 160.6. Anal. Calcd. For 

C27H19N4OCl: C, 71.92; H, 4.25; N, 12.43%. Found: C, 71.88; H, 4.21; N, 12.47%. HRMS: 

m/z for C27H19ClN4O; calculated 450.1209; found: 450.1214. 

2.3.4. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-6-methoxy-4-(phenyldiazenyl)phenol (1d) 

Yield: 88%, mp 232-234 °C, golden crystal; FT-IR (KBr, υ/cm-1): 3056 (aromatic C–H 

stretch), 1602 (C=N stretch), 1471 (N=N stretch), 1390, 1267 (C–O stretch), 762, 692 

(aromatic out of plane bend). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.96 (s, 3H), 7.41(br, 2H), 
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7.46 (t, J = 7.2 Hz, 4H), 7.54 (d, J = 2.0 Hz, 1H), 7.55-7.64 (m, 7H),7.90 (d, J = 7.2 Hz, 2H), 8.51 (d, 

J = 2.0 Hz, 1H), 13.55 (br, 2H). 13C NMR (100 MHz, CDCl3) δ (ppm): 56.3, 104.1, 112.2, 113.9, 

122.6, 127-129.3 (br, 4 arom C), 127.7, 128.8, 129.2, 130.6, 145.1, 149.8, 150.7 and 152.6. Anal. 

Calcd. For C28H22N4O2: C, 75.32; H, 4.97; N, 12.55%. Found: C, 75.38; H, 5.01; N, 12.51%. 

HRMS: m/z for C28H22N4O2; calculated 446.1692; found: 416.1695. 

2.3.5. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-6-methoxy-4-((3-nitrophenyl)diazenyl)phenol (1e) 

Yield: 96%, mp 248-250 °C, golden crystal; FT-IR (KBr, υ/cm-1): 1622 (C=N stretch), 1522 

(NO2 asymmetric stretch), 1463, 1386, 1345 (NO2 symmetric stretch), 1273 (C–O stretch), 1H 

NMR (400 MHz, DMSO-d6) δ (ppm): 3.97 (s, 3H), 7.40 (t, J = 7.4 Hz, 2H), 7.47 (t, J = 7.4 Hz, 4H), 

7.58-7.60 (m, 5H), 7.94 (t, J = 8.0 Hz, 1H), 8.39 (t, J = 7.8 Hz, 2H), 8.59 (d, J = 2.0 Hz, 1H), 8.63 (d, 

J = 1.6 Hz, 1H). Anal. Calcd. For C28H21N5O4: C, 68.42; H, 4.31; N, 14.25%. Found: C, 68.38; 

H, 4.29; N, 14.23%. HRMS: m/z for C28H21N5O4; calculated 491.1624; found: 491.1627. 

2.3.6. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-6-methoxy-4-(o-tolyldiazenyl)phenol (1f) 

Yield: 95%, mp 277-278 °C, orange-red crystal; FT-IR (KBr, υ/cm-1): 3286 (N–H stretch), 

3058 (aromatic C–H stretch), 1603 (C=N stretch), 1478 (N=N stretch), 1450, 1388, 1274 (C–

O stretch), 849, 759, 696 (aromatic out of plane bend). 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 2.73 (s, 3H), 3.95 (s, 3H), 7.33-7.46 (br m, 9H), 7.52 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 6.8 Hz, 

5H), 8.50 (d, J = 2.0 Hz, 1H), 13.48 (br, 2H). 13C NMR (100 MHz, DMSO-d6) δ (ppm): 17.7, 56.1, 

102.3, 113.0, 115.5, 117.9, 126.5-129.5 (br, 3 arom C), 127.1, 128.3, 129.1, 131.0, 131.9, 137.5, 

145.5, 145.8, 149.8, 150.5 and 150.8. Anal. Calcd. For C29H24N4O2: C, 75.63; H, 5.25; N, 

12.17%. Found: C, 75.68; H, 5.30; N, 12.14%. HRMS: m/z for C29H24N4O2; calculated 

460.1884; found: 460.1889. 

2.3.7. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-6-methoxy-4-((4-nitrophenyl)diazenyl)phenol (1g) 

Yield: 96%, mp 250-251 °C, dark red crystal; FT-IR (KBr, υ/cm-1): 1615 (C=N stretch), 1515 

(NO2 asymmetric stretch), 1384, 1336 (NO2 symmetric stretch), 1251 (C–O stretch), 852, 

764, 693 (aromatic out of plane bend). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.97 (s, 3H), 
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7.40 (t, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 4H), 7.57-7.59 (m, 5H), 8.07 (d, J = 8.8 Hz, 2H), 8.47 (d, 

J = 9.2 Hz, 2H), 8.61 (s, 1H), 13.84 (br, 2H). Anal. Calcd. For C28H21N5O4: C, 68.42; H, 4.31; N, 

14.25%. Found: C, 68.47; H, 4.42; N, 14.28%. HRMS: m/z for C28H21N5O4; calculated 

491.1624; found: 491.1626. 

2.3.8. 2-(4,5-Diphenyl-1H-imidazol-2-yl)-4-((4-fluorophenyl)diazenyl)-6-methoxyphenol (1h) 

Yield: 92%, mp 230-232 °C, golden crystal; FT-IR (KBr, υ/cm-1): 1599 (C=N stretch), 1465, 

1387, 1271 (C–O stretch), 842, 766, 695 (aromatic out of plane bend). 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.95 (s, 3H), 7.41 (br, 2H), 7.43-7.48 (m, 6H), 7.52 (d, J = 2.4 Hz, 1H), 7.58 (d, 

J = 7.2 Hz, 4H), 7.96 (dd, J = 9.0, 5.4 Hz, 2H), 8.49 (d, J = 2.0 Hz, 1H), 13.61 (br, 2H). 13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 56.3, 102.4, 102.8, 113.1, 116.8, 117.0, 117.4, 124.8, 124.9, 128.3, 

127.5-129.5 (br, 1 arom C), 129.2, 144.8, 145.8, 149.3, 149.9 and 162.6. Anal. Calcd. For 

C28H21N4O2F: C, 72.40; H, 4.56; N, 12.06%. Found: C, 72.47; H, 4.61; N, 12.05%. HRMS: 

m/z for C28H21FN4O2; calculated 464.1593; found: 464.1599. 

 

3. Results and discussion 

In continuation to our prior works [34–39], herein, o-vanillin or salicylaldehyde in the first 

step was coupled with the diazonium chloride obtained from aniline derivatives to give azo 

dyes 2a-2h. In the next efforts, the azo-imidazoles 1a-1h were synthesized via three-

component reactions between benzil, NH4OAc and azo dye precursor under microwave 

irradiation in the presence of AcOH glacial as solvent and organocatalyst in short reaction 

times, as shown in Scheme 1 and Table 2. The prepared azo-imidazoles 1a-1h exhibited 

photoisomerization conversion in the CHCl3 solution. 

To optimize reaction condition for the synthesis of azo-imidazoles, the one-pot three-

component reaction of azo dye 2a (1 mmol), benzil (1 mmol) and NH4OAc (4 mmol) was 

selected as the model reaction. Using different types of catalysts e.g. under reflux (entries 1-6 
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in Table 1) and microwave (entry 7 in Table 1) conditions the reaction proceeded slowly. 

When reaction performed in the presence of AcOH glacial as the solvent and catalyst under 

reflux condition afforded the azo-imidazole 1a in good yield (Entry 8). When the reaction 

was run in the presence of AcOH glacial under microwave irradiation the best result was 

obtained (entry 9). The goal of a reaction optimization is to select the best inputs to achieve, a 

shorter reaction time, high yield and simple workup procedure as shown in entry 9. 

Table 1. Optimization of the synthesis of 1a 

Yield% 
Time 
(min) Condition 

Catalyst 
(10 mol%) Solvent Entry 

15 720 Reflux ZnCl2 EtOH 1 

44 720 Reflux KSF EtOH 2 

30 720 Reflux KSF@Zn EtOH 3 

40 720 Reflux KSF@Zn CHCl3 4 

10 720 Reflux p-TSA EtOH 6 

10 30 MW (230W) NiCl2 EtOH 7 

82 360 Reflux - AcOH 8 

87 2 MW (230W) - AcOH 9 

 

In order to evaluate the generality of the process, different azo dyes 2a-2h were used in the 

synthesis of azo-imidazoles 1a-1h under optimized reaction condition (Table 2). As shown, 

in Table 2 the expected products were obtained in short reaction time (1.5–2.5 min) with high 

yields without formation of any byproducts. The structures of prepared compounds were 

confirmed by analyzing their spectral characteristics. 

The FT-IR spectra of 1a-1h indicate the absence of C=O stretching vibration of azo aldehyde 

precursors 2a-2h and benzil and appearance of a new C=N absorption band in the range of 

1598-1622 cm-1 confirm the formation of imidazole ring. 
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Table 2. Microwave-assisted synthetic of photochromic azo-imidazoles 1a-1h 

Yield% mp (°C)  Recrystallization Time (min) Color Product 

87 191-192 EtOH 2 orange 1a 

88 198-200 EtOH/CHCl3  2.5 orange 1b 

82 215-217 EtOH 2 dark orange 1c 

88 232-234 EtOH 2.5 golden 1d 

96 248-250 EtOH/CHCl3 1.5 golden 1e 

95 277-278 EtOH/CHCl3 2 orange red 1f 

96 250-251 EtOH 2 dark red 1g 

92 230-232 EtOH/CHCl3 1.5 golden 1h 

 

Primarily AcOH glacial activated the carbonyl groups of either benzil or aldehyde to 

facilitate a nucleophilic attack of the nitrogen of NH3 on the activated carbonyl group 2a to 

produce intermediate 5. Intermediate 5 in condensation with benzyl forms intermediate 6, 

which in turn rearrange to the azo-imidazole 1a via [1,5]-H shift (Scheme 2). 

....

... .

 

Scheme 2. Proposed mechanism for the synthesis of azo-imidazoles 1a-1h 
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Photoisomerization of the azo-imidazoles 1a-1h in CHCl3 upon irradiation with 254 nm UV 

light were studied. All the compounds exhibit good photochromic behavior upon irradiation 

with alternative UV and visible light (See supporting data). The UV-Vis spectra of 1a 

varying with the irradiation time and given in Fig. 1. Before UV irradiation the weak band at 

244 nm and the strong band at 324 nm were observed. After UV-light irradiation, the 

absorption intensity at 324 nm gradually was decreased and a new absorption band at 537 nm 

was appeared. Prior to UV irradiation, trans-enol-1a photoisomer dominates in the solution 

and strong absorption band centered at 324 nm was observed. Under UV irradiation, an 

intramolecular proton transfer is induced and convert a pale yellow trans-enol-1a 

photoisomer to purple cis-keto-1á  and/or quinone-hydrazone-1a˝ photoisomers via trans-

keto-1, cis-enol-1 or both photoisomers. Beyond any reasonable doubt, the obtained 

isosbestic point reveals the equilibrium establishment of 1a between trans-enol-1a and 

quinone-hydrazone-1a  ̋photoisomers (Scheme 3). 
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Scheme 3. Photochromic reaction 1a in CHCl3 solution  
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All compounds were shown very high thermal back relaxation and the purple or blue color of 

compounds by overnight staying in dark at room temperature returns back to initial color 

(cis→trans). Repeated irradiation showed little sign of degradation at least up to 20 cycles.  

The UV–Vis absorbance spectra of 1g with para nitro substitution in CHCl3, before light 

irradiation, the weak band at 244 nm and broad absorption bands at 302, 405 (due to NO2 

group) were observed. This photoisomer under UV irradiation, the absorption intensity at 302 

and 405 nm gradually decreased and a new absorption band at 537 nm was appeared, the 

color was changed from yellow to purple solution (Fig. 1, right).  
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Fig. 1 The UV-Vis spectra of 1a (left), 1g (right) before and after UV light irradiation for 

various times in CHCl3 (c = 2.0 × 10-4 M, 293 K). 

4. Conclusions 

Here, we incorporate an imidazole unit into an azo dye via three-component reaction between 

azo dye, benzil and NH4OAc under microwave irradiation to obtained azo-imidazoles 1a-1h. 

Short reaction time, simple workup procedure and use of inexpensive condition and solvent 

are advantages of the proposed procedure. All the azo-imidazoles exhibit excellent positive 

photochromic behavior upon irradiation under UV light irradiation.  
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