AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by University of Wollongong Library

Design, Synthesis, Crystal Structure, and Antimicrobial Evaluation of 6-Fluoroquinazolinylpiperidinyl-Containing 1,2,4-Triazole Mannich Base Derivatives against Phytopathogenic Bacteria and Fungi

Jun Shi, Muhan Ding, Na Luo, Suran Wan, Peijia Li, Junhong Li, and Xiaoping Bao J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.0c01365 • Publication Date (Web): 11 Aug 2020 Downloaded from pubs.acs.org on August 12, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Structure, and Antimicrobial Design, Synthesis, Crystal 1 6-Fluoroquinazolinylpiperidinyl-Containing **Evaluation** of 2 Derivatives 1,2,4-Triazole Mannich Base against 3 Phytopathogenic Bacteria and Fungi 4 Jun Shi, Muhan Ding, Na Luo, Suran Wan, Peijia Li, Junhong Li, and Xiaoping Bao* 5 State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key 6 Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for 7 Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China 8 *Corresponding author: Tel.: +86(0851)-88292090; Fax: +86(0851)-83622211; E-mail: 9 baoxp 1980@aliyun.com 10

Abstract: A total of twenty 1,2,4-triazole Mannich base derivatives bearing the 12 6-fluoroquinazolinylpiperidinyl moiety were designed, synthesized, and evaluated as 13 antimicrobial agents against phytopathogenic bacteria and fungi, according to 14 molecular hybridization strategy. Of note, the structure of target compound **4h** was 15 clearly confirmed through single crystal X-ray diffraction analysis. The turbidimetric 16 assays indicated that some compounds exhibited excellent antibacterial efficacies in 17 vitro against Xanthomonas oryzae pv. oryzae (Xoo). For example, compounds 4c, 4f, 18 4j, and 7j had EC₅₀ values of 23.6, 18.8, 23.4, and 24.3 μ g/mL, respectively, far 19 20 superior to that of agrobactericide bismerthiazol (EC₅₀ = 92.4 μ g/mL). Particularly, compound 4f demonstrated a potent anti-Xoo activity, approximately 5-fold more 21 active than bismerthiazol. Moreover, in vivo assays showed excellent protective and 22 23 curative activities of compound 4f against rice bacterial blight, having the potential as an alternative bactericide for controlling Xoo. The structure-activity relationship 24 analysis showed a good pesticide-likeness concerning compound 4f, following Tice's 25 26 criteria. The anti-Xoo mechanism of compound 4f was preliminarily explored by SEM measurements in living bacteria. Finally, several compounds also exhibited good 27 antifungal activities in vitro against Gibberella zeae at 50 μ g/mL. In short, the 28 presented work showed the potential of 6-fluoroquinazolinylpiperidinyl-containing 29 1,2,4-triazole Mannich base derivatives as effective bactericides for controlling Xoo. 30 **Keywords:** 6-fluoroquinazoline, 1,2,4-triazole Mannich base, antimicrobial 31 32 evaluation, structure-activity relationship (SAR)

ACS Paragon Plus Environment

1. Introduction

Plant bacterial diseases lead to enormous yield and economic losses in agricultural 35 production every year.¹⁻³ For example, rice bacterial leaf blight caused by 36 Xanthomonas oryzae pv. oryzae (Xoo) is considered as one of the most destructive 37 bacterial diseases that can adversely affect rice plants during the whole growth stage. 38 The pathogen of *Xoo* infects rice leaves mainly through the hydathodes at the leaf tip, 39 leaf margins as well as the wounded leaves or roots, colonizes the intercellular spaces 40 and enters the xylem vessels.¹ It had been reported that rice bacterial blight reduced 41 the rice yield by \sim 50% in some Asian countries.⁴ Of note, the pathogen of *Xoo* ranked 42 4th on the list of top 10 plant pathogenic bacteria because of its particular significance 43 in agriculture.¹ Moreover, citrus canker caused by *Xanthomonas axonopodis* pv. *citri* 44 45 (Xac) is a devastating bacterial disease, which leads to lesions on the leaves, fruits & stems and thus gives rise to serious damage to the whole citrus industry.^{5,6} 46 Additionally, Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of 47 bacterial canker in kiwifruit and does huge damage to the international kiwifruit 48 production.^{7,8} On the other hand, it is well-known to us that fungal disease of the 49 crops is a major threat to global agricultural production all the time, from the 50 viewpoint of plant protection.⁹ For example, the fungus of *Gibberella zeae* is capable 51 of infecting a wide range of crop plants (including wheat and barley), and causing 52 head blight and rot diseases around the world.^{10,11} Although some agricultural 53 antimicrobial agents (like bismerthiazol, thiodiazole-copper, copper quinolate, zinc 54 thiazole, hymexazol, carbendazim, and thiophanate-methyl et al.) are now available 55

for fighting against the aforementioned pathogens, the ever-increasing resistances of them to currently-utilized antimicrobial agents^{12,13} and their adverse environmental impacts posed by the abuse of these agrochemicals make it very urgent for the development of new agricultural antimicrobial agents with novel structures and improved performances.

Heterocyclic compounds, as the essential fragment of numerous commercialized 61 drugs and pesticides, play a crucial role in the process of developing medical and 62 agricultural antibiotics. Among them, the 1,2,4-triazole derivatives exhibit unique 63 derivatization advantages since this backbone is capable of having the substituents not 64 only at the 3- and 5-position but also at the 4-position, over its 1,3,4-oxadiazole and 65 1,3,4-thiadiazole couterparts. The introduction of additional substituent to 4-position 66 67 of the 1,2,4-triazole ring can be utilized to optimize the physicochemical features and modulate the pharmacodynamics of target molecules.¹⁴ In particular, the 68 1,2,4-triazole-5(4H)-thione Mannich base derivatives were found to exhibit a wide 69 variety of bioactivities, including antibacterial,¹⁵ antifungal,^{16,17} anticancer,¹⁸ 70 antitubercular,¹⁹ anti-inflammatory,²⁰ and antiprotozoal²¹ effects (Figure 1). On the 71 other hand, 6-fluoroquinazoline derivatives are being attracting more and more 72 attention from medicinal and agrochemical chemists owing to their various biological 73 activities, such as antibacterial,²² antifungal,²³ anti-TMV (tobacco mosaic virus),²⁴ 74 anti-HBV (hepatitis B virus),²⁵ anticancer,²⁶ antiproliferative,²⁷ and anticonvulsant²⁸ 75 effects (Figure 1). Numerous studies had shown that the presence of piperidinyl 76 linkage within small molecules was essential for the observed bioactivity, which is 77

also witnessed by their high prevalence in both drug and pesticide molecules

79	(including dopamine antagonist Clebopride, narcotic analgesic Fentanyl, antiallergic
80	drug Astemizole, and agrofungicide Oxathiapiprolin). Very interestingly, a statistical
81	analysis conducted by Njardarson and co-workers showed that the piperidine
82	heterocycle was the most prevalent nitrogen ring system among 640 drugs bearing a
83	nitrogen heterocycle (approved by FDA before the year 2014), ²⁹ followed by pyridine
84	and piperazine rings, respectively.
85	Insert Figure 1
86	In our previous work, ³⁰ we synthesized a small group of 1,2,4-triazole-5-thione
87	Mannich base-quinazolinone hybrids (compound I, Figure 2) and evaluated their
88	antibacterial and antifungal activities in agriculture. Unfortunately, the most potent
89	compound in this series was found to possess only moderate bactericidal efficacy
90	(~50% inhibiton rate) against Xoo at 100 μ g/mL. After that, our group reported the
91	antimicrobial capabilities of quinazolinylpiperidinyl-containing 1,2,4-triazole
92	thioether acetamide derivatives (compound II). ¹² Delightedly, nearly all the target
93	compounds (except for two of them) exhibited comparable or even higher
94	antibacterial potencies against Xoo (the best compound inhibited Xoo with EC_{50} =
95	34.5 μ g/mL in vitro) after comparison with control agent bismerthiazol. Very recently,
96	we prepared a series of 6-fluoroquinazolinylpiperidinyl-bearing 1,3,4-oxadiazole
97	thioether derivatives (compound III) and tested their antibacterial & antifungal
98	activities in vitro. ²² Notably, four of them demonstrated significantly better
99	bactericidal activities against <i>Xoo</i> (the best compound suppressed <i>Xoo</i> with EC_{50} =

100	26.0 μ g/mL in vitro) than control bismerthiazol. However, the search of
101	easy-to-prepare, tunable molecular motifs that allow comprehensive structure-activity
102	relationship studies with the purpose of improving the bioactivity is crucial to develop
103	new agrochemicals in the future.
104	Insert Figure 2
105	Based on the above-mentioned considerations, herein we designed and synthesized
106	a series of 6-fluoroquinazolinylpiperidinyl-bearing 1,2,4-triazole-5-thione Mannich
107	base derivatives by the molecular hybridization approach (favorable for exerting
108	synergistic effects on the bioactivity, ^{31,32} Figure 3). All the target compounds were
109	assessed in detail for their in vitro antibacterial and antifungal efficacies, against three
110	types of phytopathogenic bacteria and six types of phytopathogenic fungi of great
111	agricultural significance. Moreover, in vivo anti-Xoo activity was further tested for
112	highly-active compound 4f, in order to evaluate its practical application for the
113	prevention and control of rice bacterial blight. Finally, anti-Xoo mechanism of this
114	compound was preliminary explored using scanning electron microscopy (SEM)
115	technique.
116	Insert Figure 3
117	
118	2. Materials and Methods
119	2.1. Instruments, Chemicals and Plant Pathogens
120	Melting points were determined on a XT-4 binocular microscope (Beijing Tech
121	Instrument Co., China) and uncorrected. ¹ H and ¹³ C NMR data were collected on a
122	Bruker Avance III 400 MHz NMR spectrometer at 298 K using DMSO- d_6 as a

solvent and TMS as an internal standard, and chemical shift (δ) was expressed in parts 123 per million (ppm). The following abbreviations were used in expressing the 124 multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad125 peak. High resolution mass spectra (HRMS-ESI) were recorded on a Thermo 126 Scientific Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. IR spectra 127 were recorded on a Thermo Scientific Nicolet iS50 FT-IR spectrometer. Elemental 128 analyses were determined by an Elementar Vario-III elemental analyzer. SEM images 129 were visualized and obtained using a Nova NanoSEM 450. The X-ray 130 crystallographic data were collected using a Bruker Smart Apex CCD area detector 131 diffractometer (Bruker, Germany) with Mo-K α radiation. All the chemicals were 132 purchased from commercial suppliers and directly used without further purification 133 (unless stated otherwise). 134

All the strains of bacteria and fungi tested were provided by the Laboratory of PlantDisease Control at Guizhou University.

137

138 **2.2. In Vitro Antibacterial Bioassay**

In vitro antibacterial activities of target compounds **4a–4j** and **7a–7j** were determined against three plant pathogenic bacteria (*Xoo, Xac,* and *Psa*), according to the classical turbidimetric method.^{12,33,34} The tested compounds were prepared at two concentrations of 100 and 50 μ g/mL. Pure DMSO in sterile distilled water was used as a blank control, and commercially available agrobactericides bismerthiazol (BMT) and thiodiazole-copper (TDC) were used as positive control agents (100 and 50

 μ g/mL). About 40 μ L of solvent NB (3.0 g of beef extract, 5.0 g of peptone, 1.0 g of 145 yeast powder, 10.0 g of glucose, 1000 mL of distilled water, pH = 7.0-7.2) containing 146 the bacterium Xoo, Xac or Psa was added to the mixed solvent system including 4 mL 147 of solvent NB and 1 mL of 0.1% Tween-20 containing tested compound or 148 BMT/TDC. The above test tube was incubated at 28 ± 1 °C and continuously shaken 149 at 180 rpm for one to three days. The bacterial growth was monitored by measuring 150 the optical density at 595 nm (OD₅₉₅), given by turbidity_{corrected values} = $OD_{bacterium}$ -151 $OD_{no bacterium}$, $I = (C_{tur} - T_{tur})/C_{tur} \times 100\%$. The C_{tur} represented the corrected turbidity 152 value of bacterial growth of untreated NB (blank control), and T_{tur} denoted the 153 corrected turbidity value of bacterial growth of tested compound-treated NB. The I 154 represented inhibition ratio of tested compound against the bacterium. 155

Subsequently, antibacterial potencies of target compounds 4a-4j and 7a-7j were further measured against *Xoo* under five different concentrations (namely 100, 50, 25, 12.5, and 6.25 μ g/mL) to obtain their EC₅₀ values, which were statistically determined by Probit analysis using the software package SPSS 17.0.

160

161 2.3. In vivo Bioassay against Rice Bacterial Leaf Blight

The curative and protection activities in potted plants of compound **4f** against rice bacterial blight were determined, based on the previously-reported methods with slight modifications.^{34,35} Bismerthiazol (20% wettable powder) and thiodiazole copper (20% suspending agent), commercialized agrobactericides for controlling rice bacterial leaf blight, were bought from the market and used as positive control agents.

The curative activity for weakening rice bacterial leaf blight was tested under the 167 controlled conditions in a vertical incubator. After sowing rice seeds of variety 168 "Fengyouxiangzhan" about 8~10 weeks, rice leaves were then inoculated with Xoo, 169 which was incubated at the logarithmic growth by use of sterilized scissors. One day 170 after the inoculation, the solution of compound 4f, BMT, and TDC at 200 μ g/mL 171 were uniformly sprayed into rice leaves, respectively. Meanwhile, distilled water was 172 also uniformly sprayed as the negative control. Subsequently, all the inoculated rice 173 plants were placed in a plant growth incubator (28 °C and 90% RH). At 14 days after 174 175 spraying, the disease index of the inoculated rice leaves was calculated. Likewise, the protective activity in potted plants for weakening rice bacterial leaf blight was also 176 determined under the controlled conditions. After sowing rice seeds of variety 177 178 "Fengyouxiangzhan" about 8~10 weeks, the solution of compound 4f, BMT and TDC at 200 μ g/mL were uniformly sprayed onto rice leaves until dripping down. 179 Meanwhile, distilled water was also uniformly sprayed into the negative control plants. 180 181 One day after the spraying, *Xoo*, which was incubated at the logarithmic growth, was inoculated on rice leaves through sterilized scissors. All the inoculated rice plants 182 were placed in a plant growth incubator (28 °C and 90% RH). At 14 days after the 183 inoculation, the disease index of inoculated rice leaves was measured. The control 184 efficiencies I(%) for the curative and protection activities were calculated using the 185 following equation. In this equation, C is the disease index of the negative control and 186 *T* is the disease index of the treatment group. 187

188
$$I(\%) = (C - T)/C \times 100\%$$

2.4. Scanning Electron Microscopy (SEM)³⁶

In this assay, 1.50 mL of Xoo cell suspension within the logarithmic growth phase 191 was centrifuged and washed with PBS buffer (pH = 7.2) three times, then 192 re-suspended them with 1.5 mL PBS buffer. Subsequently, these Xoo cells were 193 incubated with compound 4f at two different concentrations of 50.0 and 100.0 μ g/mL 194 for 8 h, respectively. Meanwhile, an equiamount of DMSO was also used as a blank 195 control. After that, these samples were washed three times with PBS buffer (pH = 7.2). 196 Next, these Xoo cells were immobilized using 2.5% glutaraldehyde solution for 8 h at 197 4 °C, followed by dehydration with graded ethanol solution and absolute *tert*-butanol, 198 respectively. Finally, the samples were freezing dried, coated with gold and visualized 199 200 using Nova NanoSEM 450.

201

202 **2.5. In vitro Antifungal Bioassay**

The mycelial growth rate method^{13,37} was employed to assess in vitro fungicidal 203 activities of target compounds against six phytopathogenic fungi, including 204 Gibberella zeae, Verticillium dahliae, Sclerotinia sclerotiorum, Gloeosporium 205 fructigenum, Cytospora mandshurica, and Colletotrichum gloeosporioides. A DMSO 206 solution of the tested compound was added into sterilized Petri dishes, which 207 contained about 10 mL molten potato dextrose agar (PDA). Next, a 4.0 mm-diameter 208 of mycelial plug was cut from the fungal colony and placed at the center of PDA plate 209 at 28 ± 1 °C for three to six days. Antifungal assays were performed in triplicate for 210

211	each compound. In addition, pure DMSO and commercialized agrofungicide
212	hymexazol were also tested as negative and positive controls, respectively.
213	The inhibition ratio (I) of the tested compound was calculated using the following
214	formula:
215	$I = (C-T)/(C-0.4) \times 100\%$
216	In the formula, the C represented the average mycelial diameter of negative
217	control, and T represented the average mycelial diameter of the tested
218	compound-treated PDA.
219	
220	2.6. Preparation of Intermediates 2, 3, 5, and 6
221	2.6.1. Synthesis of Intermediate 2
222	Acylhydrazine 1^{22} (500 mg, 1.73 mmol) and phenyl isothiocyanate (0.25 mL, 2.07
223	mmol) were added to EtOH (20 mL), and the above mixture was heated to reflux for 6
224	h. After cooling down to room temperature, the formed precipitate was filtered,
225	washed with ethanol three times and dried to give amidothiourea 2.
226	$\label{eq:2-(1-(6-fluoroquinazolin-4-yl)} piperidine-4-carbonyl)-N-phenylhydrazine carbothio ami$
227	de (2). Yield: 90%, m.p. 187–188 °C. ¹ H NMR (400 MHz, DMSO- d_6 , ppm) δ : 9.98
228	(br, 1H), 9.58 (br, 2H), 8.64 (s, 1H), 7.92–7.88 (m, 1H), 7.76 (t, <i>J</i> = 8.0 Hz, 1H), 7.69
229	(d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H), 7.17 (t, J = 8.0 Hz)
230	Hz, 1H), 4.28 (d, <i>J</i> = 16.0 Hz, 2H), 3.21 (t, <i>J</i> = 12.0 Hz, 2H), 2.64–2.59 (m, 1H), 1.98
231	(d, $J = 8.0$ Hz, 2H), 1.86–1.78 (m, 2H); ¹³ C NMR (100 MHz, DMSO- d_6 , ppm) δ :
232	180.8, 173.9, 163.8 (d, ${}^{4}J_{C-F} = 4.0 \text{ Hz}$), 158.5 (d, ${}^{1}J_{C-F} = 243.0 \text{ Hz}$), 153.3 (d, ${}^{4}J_{C-F} =$

233 2.0 Hz), 148.4, 139.2, 131.0 (d, ${}^{3}J_{C-F} = 9.0$ Hz), 130.0, 128.1, 126.0, 122.5 (d, ${}^{2}J_{C-F} =$ 234 25.0 Hz), 116.6 (d, ${}^{3}J_{C-F} = 8.0$ Hz), 109.4 (d, ${}^{2}J_{C-F} = 23.0$ Hz), 56.1, 48.8, 27.9. 235 ESI-HRMS *m*/*z*: [M + H]⁺ calcd for C₂₁H₂₂FN₆OS: 425.1554; found: 425.1538. 236

237 2.6.2. Synthesis of Intermediate 3

Amidothiourea 2 (500 mg, 1.18 mmol) was added to an aqueous solution of 5% potassium carbonate (15 mL), and the above mixture was heated to reflux for 6 h. After cooling down to room temperature, the reaction system was neutralized to pH =7.0 with a 10% HCl solution, and the resultant precipitate was filtered, washed with water and dried to give the key 1,2,4-triazole-5-thione **3**.

- 243 3-(1-(6-fluoroquinazolin-4-yl)piperidin-4-yl)-4-phenyl-1H-1,2,4-triazole-5(4H)-thione
- 244 (3). Yield: 94%, m.p. 162–164 °C. ¹H NMR (400 MHz, DMSO- d_6 , ppm) δ : 13.82 (br,
- 245 1H), 8.60 (s, 1H), 7.89–7.86 (m, 1H), 7.73 (t, J = 8.0 Hz, 1H), 7.64–7.57 (m, 4H),
- 246 7.51–7.49 (m, 2H), 4.17 (d, J = 12.0 Hz, 2H), 3.15–3.09 (m, 2H), 2.87–2.81 (m, 1H),
- 247 1.88–1.81 (m, 4H); ¹³C NMR (100 MHz, DMSO-*d*₆, ppm) δ: 167.9, 163.5 (d, ${}^{4}J_{C-F}$ =
- 248 5.0 Hz), 158.5 (d, ${}^{1}J_{C-F}$ = 243.0 Hz), 154.5, 153.2 (d, ${}^{4}J_{C-F}$ = 2.0 Hz), 148.4, 133.8,
- 249 131.0 (d, ${}^{3}J_{C-F} = 9.0$ Hz), 129.7, 129.6, 128.5, 122.4 (d, ${}^{2}J_{C-F} = 25.0$ Hz), 116.5 (d,
- 250 ${}^{3}J_{C-F} = 8.0 \text{ Hz}$), 109.3 (d, ${}^{2}J_{C-F} = 24.0 \text{ Hz}$), 48.4, 32.5, 28.8. ESI-HRMS m/z: [M + H]⁺
- 251 calcd for $C_{21}H_{20}FN_6S$: 407.1449; found: 407.1446.
- 252

253 **2.6.3. Synthesis of Intermediate 5**

Amidothiourea 5 was synthesized in a similar manner to amidothiourea 2, using

4-(trifluoromethyl)phenyl isothiocyanate in place of phenyl isothiocyanate.

- 256 2-(1-(6-fluoroquinazolin-4-yl)piperidine-4-carbonyl)-N-(4-(trifluoromethyl)phenyl)hy
- 257 drazinecarbothioamide (5). Yield: 93%, m.p. 163–164 °C. ¹H NMR (400 MHz,
 258 DMSO-d₆, ppm) δ: 10.05 (br, 1H), 9.87 (br, 2H), 8.65 (s, 1H), 7.92–7.89 (m, 1H),
- 259 7.79–7.74 (m, 3H), 7.72–7.68 (m, 3H), 4.29 (d, J = 12.0 Hz, 2H), 3.23 (t, J = 12.0 Hz,
- 260 2H), 2.72–2.58 (m, 1H), 1.99 (d, J = 8.0 Hz, 2H), 1.88–1.83 (m, 2H); ¹³C NMR (100
- 261 MHz, DMSO- d_6 , ppm) δ : 180.9, 174.0, 163.8 (d, ${}^4J_{C-F} = 5.0$ Hz), 158.5 (d, ${}^1J_{C-F} =$
- 262 244.0 Hz), 153.3 (d, ${}^{4}J_{C-F} = 2.0$ Hz), 148.4, 143.1, 131.0 (d, ${}^{3}J_{C-F} = 9.0$ Hz), 128.4,
- 263 125.7 (q, ${}^{2}J_{C-F} = 32.0 \text{ Hz}$), 125.2 (q, ${}^{3}J_{C-F} = 4.0 \text{ Hz}$), 123.3 (q, ${}^{1}J_{C-F} = 271.0 \text{ Hz}$), 122.5
- 264 (d, ${}^{2}J_{C-F} = 25.0$ Hz), 116.5 (d, ${}^{3}J_{C-F} = 8.0$ Hz) 109.4 (d, ${}^{2}J_{C-F} = 23.0$ Hz), 56.1, 48.8,
- 265 27.9. ESI-HRMS m/z: $[M + H]^+$ calcd for C₂₂H₂₁F₄N₆OS: 493.1428; found: 493.1408.

- 267 **2.6.4. Synthesis of Intermediate 6**
- Similar to the preparation of 1,2,4-triazole-5-thione **3**.
- 269 3-(1-(6-fluoroquinazolin-4-yl)piperidin-4-yl)-4-(4-(trifluoromethyl)phenyl)-1H-1,2,4-t
- 270 riazole-5(4H)-thione (6). Yield: 95%, m.p. 155–156 °C. ¹H NMR (400 MHz,
- 271 DMSO- d_6 , ppm) δ : 13.71 (br, 1H), 8.60 (s, 1H), 8.01 (d, J = 8.0 Hz, 2H), 7.89–7.86
- 272 (m, 1H), 7.80 (d, J = 4.0 Hz, 2H), 7.74 (t, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H),
- 273 4.17 (d, *J* = 12.0 Hz, 2H), 3.19–3.13 (m, 2H), 2.90–2.84 (m, 1H), 1.87–1.83 (m, 4H);
- ¹³C NMR (100 MHz, DMSO-*d*₆, ppm) δ : 167.8, 163.5 (d, ⁴*J*_{C-F} = 4.0 Hz), 158.5 (d,
- 275 ${}^{1}J_{C-F} = 244.0 \text{ Hz}$, 154.3, 153.2 (d, ${}^{4}J_{C-F} = 2.0 \text{ Hz}$), 148.4, 137.5, 131.0 (d, ${}^{3}J_{C-F} = 9.0 \text{ Hz}$)
- 276 Hz), 129.9 (q, ${}^{2}J_{C-F} = 32.0$ Hz), 129.8, 126.8 (q, ${}^{3}J_{C-F} = 4.0$ Hz), 123.9 (q, ${}^{1}J_{C-F} = 272.0$

Hz), 122.4 (d, ${}^{2}J_{C-F} = 24.0$ Hz), 116.5 (d, ${}^{3}J_{C-F} = 9.0$ Hz), 109.3 (d, ${}^{2}J_{C-F} = 23.0$ Hz), 48.3, 32.3, 28.8. ESI-HRMS *m*/*z*: [M + H]⁺ calcd for C₂₂H₁₉F₄N₆S: 475.1323; found:

475.1306.

280

281 2.7. General Procedures for the Synthesis of Target Compounds 4a–4j and 7a–7j

A mixture of 1,2,4-triazole-5-thiones **3** or **6** (1.0 mmol) and 37% formaldehyde solution (1.5 mmol) in ethanol (15 mL) were firstly stirred at room temperature for 0.5 h, and the appropriate secondary amine (1.2 mmol) was then added and continuously stirred for 6~12 h. After the filtration, the crude product was dried and recrystallized with dichloromethane/petroleum ether (1.0%, v/v) to afford target compounds **4a–4j** and **7a–7j**.

288

289 **2.8. Crystal Structure of Compound 4h**

Single crystals of compound 4h suitable for X-ray diffraction analysis were obtained 290 291 by slow evaporation of a mixed DMF/EtOH (5.0%, v/v) solution of 4h at room temperature. The crystal structure (Figure 4) revealed that compound **4h** formed a 1:1 292 complex with water molecule through a hydrogen bond, involving water O-H and 293 1-position nitrogen atom of the quinazoline backbone. Crystal data for complex 294 **4h**·H₂O (CCDC 1936090): Colorless crystal, $C_{28}H_{31}FN_8OS \cdot H_2O$, $M_r = 564.68$, 295 triclinic, space group P-1, a = 8.600(6) Å, b = 9.829(7) Å, c = 18.434(13) Å; a =296 75.578(19)°, $\beta = 87.105(18)°$, $\gamma = 64.757(16)°$; $V = 1362.1(17) \text{ Å}^3$, T = 296 K, Z = 2, 297 Dc = 1.377 g/cm³, F(000) = 596.0, reflections collected/independent reflections = 298

299 4789/2188, goodness-of-fit on
$$F^2 = 1.015$$
, $R = 0.0642$, $wR2 = 0.1447$.

Insert Figure 4

300

301 3. Results and Discussion

302 3.1. Synthesis

Target compounds 4a-4j were prepared in a consecutive seven-step reaction (as 303 depicted in Scheme 1), starting from 2-amino-5-fluorobenzoic acid. Briefly, 304 acylhydrazine 1 was firstly reacted with phenyl isothiocyanate in refluxing ethanol to 305 generate amidothiourea 2 in 90% yield, which then underwent a ring-closure reaction 306 307 under basic conditions and followed by the neturalization to give 1,2,4-triazole-5-thione 3 in 94% yield. Next, intermediate 3, formaldehyde solution 308 along with various secondary amines in ethanol solution were reacted at room 309 310 temperature to afford target compounds 4a-4j. Some previous studies have shown that the prescence of a trifluoromethyl group within bioactive compounds was capable 311 of improving the bioactivity.^{18,38} Thus, we also synthesized another class of target 312 compounds 7a-7i containing a 4-trifluoromethylphenyl group at the 4-position of the 313 1,2,4-triazole-5-thione ring for comparison. It should be noted that no time-consuming 314 and laborious column chromatographic separation was required throughout the entire 315 reaction process (only through simple filtration, washing or recrystallization steps) 316 and good to excellent yields for all the intermediates and target compounds were 317 obtained, which were particularly important for the preparation of agrochemicals. 318

319

Insert Scheme 1

321 **3.2. In Vitro Antibacterial Activity**

Antibacterial activities of target compounds 4a-4i and 7a-7i against three bacteria 322 Xoo, Xac, and Psa were evaluated in vitro by means of the classical turbidimetric 323 method, using commercialized agrobactericides bismerthiazol (BMT) and thiodiazole 324 copper (TDC) as positive control agents. As summarized in Table 1, all the target 325 compounds (except for compounds 4d and 7d) did exhibit a significantly higher 326 bactericidal potency against Xoo under two tested concentrations, as compared to 327 control BMT. In particular, compounds 4a, 4c, 4e, 4f, 4h, 4j, 7c, 7e, 7i, and 7j were 328 329 found to possess the inhibition rates 100%, 100%, 99.5%, 100%, 96.2%, 100%, 100%, 96.6%, 96.1%, and 100% towards this bacterium at 100 μ g/mL, respectively, which 330 were considerably superior to that of control BMT (56.3%). In sharp contrast to Xoo, 331 332 only compound 7f across the series displayed comparable inhibition efficacies against *Xac*, to those of control BMT. In addition, nine of them (including compounds **4b**, **4j**, 333 7b, 7c, 7d, 7f, 7g, 7i, and 7j) demonstrated similar bactericidal efficacies (>55%) 334 agasint the bacterium Psa at 100 μ g/mL, to those of control agents BMT (59.6%) and 335 TDC (52.6%). The above observations indicated that 1,2,4-triazole Mannich base 336 derivatives bearing a 6-fluoroquinazolinylpiperidinyl moiety had a good antibacterial 337 selectivity towards Xoo over Xac and Psa. 338

339

Insert Table 1

340

Inspired by the preliminary antibacterial results shown in Table 1, EC_{50} values (effective concentration for 50% inhibition activity) of these compounds against the

bacterium Xoo were further determined utilizing the serial dilution method. As shown

344	in Table 2, all the compounds were found to possess lower EC_{50} values than control
345	BMT. In particular, compounds 4a, 4b, 4c, 4e, 4f, 4j, 7c, 7e, 7i, and 7j had EC ₅₀
346	values of 28.6, 30.2, 23.6, 28.0, 18.8, 23.4, 27.1, 27.9, 28.5, and 24.3 μ g/mL,
347	respectively, over 3-fold more potent than BMT (EC ₅₀ = 92.4 μ g/mL). In other words,
348	half of this class of compounds demonstrated far better bactericidal capabilities than
349	commericialized bactericide BMT.
350	Insert Table 2
351	
352	3.3. Structure-Activity Relationship (SAR) Analysis for Target Compounds
353	against Xoo
354	Initially, we tested inhibition activities of compounds 4b, 4c, and 4d against Xoo,
355	having the pyrrolidine, piperidine and diethylamine moieties, respectively. Clearly,
356	compound 4d with a conformationally-flexible acyclic diethylamine group displayed
357	the weakest bactericidal activity among these three compounds, with EC_{50} values of
358	30.2, 23.6, and 72.0 μ g/mL for compounds 4b, 4c, and 4d, respectively. The same
359	finding also held true for compounds 7b, 7c, and 7d, which contained a 4-CF ₃ -phenyl
360	substituent on the 1,2,4-triazole-5-thione ring. Thus, the subsequent structural
361	optimizations for preparing the final Mannich base derivatives were mainly limited to
362	conformationally-rigid cyclic secondary amines, including morpholine, pyrrolidine,
363	piperidine, and various N-substituted piperazine derivatives. Overall, the presence of a
364	strong electron-withdrawing -CF3 group was detrimental or at least unhelpful to the

ACS Paragon Plus Environment

anti-Xoo activity for the final compounds, with the exception of compounds 4i and 7i 365 $(EC_{50} = 49.1 \text{ vs. } 28.5 \text{ }\mu\text{g/mL})$. As far as the heterocycles containing a single nitrogen 366 atom were concerned, Mannich bases with a piperidine ring were identified as the best 367 bactericides, followed by those having the morpholine and pyrrolidine rings (4c > 4a368 \approx 4b and 7c > 7a > 7b). As for piperazine-derived Mannich bases, the presence of 369 weak electron-donating groups (such as compounds 4e/-CH₃, 4f/-CH₂CH₃, and 4j/-Ph) 370 on the piperazine ring proved to be superior to those bearing the electron-withdrawing 371 groups (like compounds 4h/-COCH₃ and 4i/-Boc). However, the existence of 372 373 sterically-bulky and weakly electron-donating iso-propyl group did not contribute to the improvement of anti-Xoo activity, as exemplified by compounds 4g and 7g. 374 Among the whole series of compounds, Mannich base 4f with a N-ethyl piperazine 375 376 moiety demonstrated the highest anti-Xoo activity with an EC₅₀ value of 18.8 μ g/mL, nearly 5-fold more potent than control BMT. 377 Given the particular importance of physicochemical properties in the development 378 of new pesticides, 31, 34, 39, 40 five parameters (namely, molecular weight (MW), 379

of new pesticides,^{31,34,39,40} five parameters (namely, molecular weight (MW), octanol/water partition coefficient (cLog*P*), number of hydrogen bond acceptors (HBA), number of hydrogen bond donors (HBD), and number of rotatable bonds (ROTB)) for target compounds **4a–4j** and **7a–7j** were obtained from the softwares of ChemBioOffice 2010 and/or Molinspiration Cheminformatics (see Table 2). Generally speaking, a promising pesticide candidate should meet the following requirements (also known as Tice's criteria⁴¹): (a) a cLog*P* value between 0 and 5; (b) a MW magnitude ranging from 150 to 500; (c) a HBA number between 1 and 8; (d)

ACS Paragon Plus Environment

HBD number ≤ 2 ; (e) ROTB number <12. Obviously, the most potent compound **4f** (having a relatively hydrophilic nature of cLogP = 3.17 relative to other compounds) satisfied all the above listed requirements, except for molecular weight descriptor (MW = 532.3, slightly larger than upper limit of 500 required by Tice's criteria). On the basis of these physicochemical features, this compound thus possessed a good pesticide-likeness suitable for further studies.

393

394 **3.4. In Vivo Bioassay against Rice Bacterial Leaf Blight**

In order to examine the practical potential of highly-active compound 4f, in vivo 395 bioassays against rice bacterial leaf blight were also carried out. As displayed in Table 396 3 and Figure 5, the obtained results revealed that compound **4f** possessed an excellent 397 protection activity against Xoo at 200 μ g/mL (with a control efficiency of 56.23%), 398 better than those of BMT (43.45%) and TDC (45.34%). Furthermore, compound 4f 399 was also found to have an outstanding curative activity against Xoo at 200 µg/mL 400 (with a control effect of 52.30%), higher than those of BMT (46.80%) and TDC 401 (42.43%). These findings implied that compound **4f** had a good application 402 perspective as an alternative bactercide for the prevention and control of Xoo. 403

404

Insert Table 3

Insert Figure 5

405

406

407 **3.5. SEM Studies on Cell Morphology**

408 In order to explore the possible antibacterial mechanism, the morphological

modifications of the bacterium Xoo in the presence of highly-active compound 4f 409 were monitored through the SEM technique. As seen in Figure 6a, the untreated 410 bacteria showed the form of elongated cells, having a firm surface and a well-shaped 411 appearance. After treatment with 50 μ g/mL of compound **4f** for 8 h, the appearance 412 was altered significantly. The size of Xoo was considerably reduced, and surface 413 collapses (accompanied by lots of pore-like structures) on the cell membranes were 414 clearly observed (Figure 6b). As the concentration rose to 100 μ g/mL, more 415 accentuated morphological changes and few intact cells were simultaneously observed 416 (Figure 6c). These observations implied that compound **4f** changed the permeability 417 of cell membranes, possibly leading to the leakage of the bacterial contents to the 418 extracellular environment. 419 420 Insert Figure 6 421 **3.6. In Vitro Antifungal Activity** 422 Antifungal activities of target compounds 4a-4j and 7a-7j were also assessed in vitro 423

Antituligat activities of target compounds **4a 4** and **7a 7** were also assessed in vito against six types of fungal strains, according to the mycelial growth rate method. As summarized in Table 4, most of the target compounds failed to exhibit notable fungicidal activities at 50 μ g/mL. However, four compounds (**7d**, **7e**, **7g**, and **7i**) revealed comparable antifungal efficiencies agaist *G. zeae* to control hymexazol (55.0%), having the inhibition rates of 46.2%, 45.6%, 45.0%, and 45.6%, respectively. In addition, compound **7i** effectively suppressed the growth of *V. dahlia* at 50 μ g/mL, with the inhibition rate of 51.3%.

ACS Paragon Plus Environment

Δ	3	1
-	-	-

Insert Table 4

In summary, series of easy-to-make and structurally tunable 432 а 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole Mannich base derivatives 433 were synthesized and assessed as antimicrobial agents in agriculture. Among them, 434 the structure of compound **4h** was unambiguously confirmed by single crystal X-ray 435 diffraction analysis. The bioassays indicated that nearly all the target compounds 436 exhibited better inhibition activites against Xoo in vitro, relative to control 437 bismerthiazol. In particular, compounds 4c, 4f, 4j, and 7j possessed EC₅₀ values 438 ranging from 18.8 to 24.3 μ g/mL, considerably superior to that of commercialized 439 bactericide bismerthiazol (92.4 μ g/mL). Moreover, the best compound 4f 440 demonstrated excellent protective and curative activities in vivo against rice bacterial 441 442 leaf blight caused by Xoo. The SEM measurements revealed that compound 4f significantly changed bacterial cellular morphologies after interaction with Xoo. 443 together, Taken the present work showed the potential of 444 445 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole Mannich base derivatives as a promising molecular platform for developing effective bactericides to control Xoo. 446

447

Acknowledgements

This work was financially supported by Science and Technology Program of Guizhou Province (No. [2020]1Z025), Guizhou Provincial High-Level Overseas Talents Innovation and Enterpreneurship Program (No. 201809), and Young Top-Notch Talent Support Program of Guizhou Provincial Education Department (No. 2018038).

448 Supporting Information

449	Characterization data and original spectral files for intermediates 2, 3, 5 & 6 as well as
450	target compounds 4a-4j & 7a-7j (including ¹ H & ¹³ C NMR) are available free of
451	charge on the ACS Publications website.
452	
453	Conflict of interest
454	The authors declare no competing financial interest.
455	References
456	(1) Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.;
457	Dow, M.; Verdier, V.; Beer, S. V.; Machado, M. A.; Toth, I.; Salmond, G.; Foster,
458	G. D. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant
459	Pathol. 2012, 13, 614–629.
460	(2) Xu, S.; Luo, J. Y.; Pan, X. Y.; Liang, X. Y.; Wu, J.; Zheng, W. J.; Chen, C. J.;
461	Hou, Y. P.; Ma, H. Y.; Zhou, M. G. Proteome analysis of the plant-pathogenic
462	bacterium Xanthomonas oryzae pv. oryzae. Biochim. Biophys. Acta, Proteins
463	Proteomics 2013, 1834, 1660–1670.
464	(3) Shuai, J.; Guan, F.; He, B.; Hu, J.; Li, Y.; He, D.; Hu, J. Self-assembled
465	nanoparticles of symmetrical cationic peptide against citrus pathogenic bacteria. J.
466	Agric. Food Chem. 2019, 67, 5720–5727.
467	(4) Huang, N.; Angeles, E. R.; Domingo, J.; Magpantay, G.; Singh, S.; Zhang, G.;
468	Kumaravadivel, N.; Bennett, J.; Khush, G. S. Pyramiding of bacterial blight

469	resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor.
470	Appl. Genet. 1997, 95, 313–320.
471	(5) Maxwell, T. J.; Rajasekaran, P.; Das, S.; Campos, M. G. N.; Young, M.; Mendis,
472	H. C.; Ozcan, A.; Gerberich, K. M.; Myers, M. E.; Graham, J. H.; Johnson, E. G.;
473	Santra, S. Control of citrus canker in greenhouse and field with a zinc, urea, and
474	peroxide ternary solution. J. Agric. Food Chem. 2019, 67, 12393-12401.
475	(6) Gottwald, T. R.; Hughes, G.; Graham, J. H.; Sun X. A.; Riley, T. The citrus canker
476	epidemic in Florida: The scientific basis of regulatory eradication policy for an
477	invasive species. <i>Phytopathology</i> 2001 , <i>91</i> , 30–34.
478	(7) Monchiero, M.; Gullino, M. L.; Pugliese, M.; Spadaro, D.; Garibaldi, A. Efficacy
479	of different chemical and biological products in the control of Pseudomonas
480	syringae pv. actinidiae on kiwifruit. Australas. Plant Pathol. 2014, 44, 13–23.
481	(8) Balestra, G.M.; Renzi, M.; Mazzaglia, A. First report of Pseudomonas syringae pv
482	actinidiae on kiwifruit plants in Spain. New Dis. Rep. 2011, 24, 10.
483	(9) Wang, L. L.; Li, C.; Zhang, Y. Y.; Qiao, C. H.; Ye, Y. H. Synthesis and biological
484	evaluation of benzofuroxan derivatives as fungicides against phytopathogenic
485	fungi. J. Agric. Food Chem. 2013, 61, 8632-8640.
486	(10) Burlakoti, R. R.; Ali, S.; Secor, G. A.; Neate, S. M.; McMullen, M. P.; Adhikari,
487	T. B. Comparative mycotoxin profiles of Gibberella zeae populations from barley,
488	wheat, potatoes, and sugar beets. Appl. Environ. Microbiol. 2008, 74, 6513-6520.
489	(11) Chen, H. Z.; Wu, Q. Y.; Zhang, G.; Wu, J. W.; Zhu, F.; Yang, H. F.; Zhuang, Y.
490	Q. Carbendazim-resistance of Gibberella zeae associated with fusarium head

491 blight and its management in Jiangsu Province, China. Crop Prot. 2019, 124,
492 104866.

- (12) Yang, L.; Bao, X. P. Synthesis of novel 1,2,4-triazole derivatives containing the
 quinazolinylpiperidinyl moiety and *N*-(substituted phenyl)acetamide group as
 efficient bactericides against the phytopathogenic bacterium *Xanthomonas oryzae*pv. *oryzae*. *RSC Adv.* 2017, *7*, 34005–34011.
- 497 (13) Zhang, M.; Dai, Z. C.; Qian, S. S.; Liu, J. Y.; Xiao, Y.; Lu, A. M.; Zhu, H. L.;

498 Wang, J. X.; Ye, Y. H. Design, synthesis, antifungal, and antioxidant activities of

- 499 (*E*)-6-((2-phenylhydrazono)methyl)quinoxaline derivatives. *J. Agric. Food Chem.* 500 2014, 62, 9637–9643.
- 501 (14) Karabanovich, G.; Dušek, J.; Savková, K.; Pavliš, O.; Pávková, I.; Korábečný, J.;
- 502 Kučera, T.; Vlčková, H. K.; Huszár, S.; Konyariková, Z.; Konečná, K.; Jand'ourek, O.; Stolaĭíková, J.; Korduláková, J.; Vávrová, K.; Pávek, P.; 503 Klimešová, V.; Hrabálek, A.; Mikušová, K.; Roh, J. Development of 504 3,5-dinitrophenyl-containing 1,2,4-triazoles and their trifluoromethyl analogues 505 highly efficient antitubercular agents inhibiting 506 as decaprenylphosphoryl-β-D-ribofuranose 2'-oxidase. J. Med. Chem. 2019, 62, 507 8115-8139. 508
- (15) Bayrak, H.; Demirbas, A.; Karaoglu, S. A.; Demirbas, N. Synthesis of some new
 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their
 antimicrobial activities. *Eur. J. Med. Chem.* 2009, 44, 1057–1066.
- 512 (16) Wang, B. L.; Shi, Y. X.; Ma, Y.; Liu, X. H.; Li, Y. H.; Song, H. B.; Li, B. J.; Li,

513	Z. M. Synthesis and biological activity of some novel trifluoromethyl-substituted
514	1,2,4-triazole and bis(1,2,4-triazole) Mannich bases containing piperazine rings.
515	J. Agric. Food Chem. 2010, 58, 5515–5522.
516	(17) Wang, B. L.; Liu, X. H.; Zhang, X. L.; Zhang, J. F.; Song, H. B.; Li, Z. M.
517	Synthesis, structure and biological activity of novel 1,2,4-triazole Mannich bases
518	containing a substituted benzylpiperazine moiety. Chem. Biol. Drug Des. 2011,
519	78, 42–49.
520	(18) Hu, G. Q; Wang, G. Q; Duan, N. N.; Wen, X. Y.; Cao, T. Y.; Xie, S. Q.; Huang,
521	W. L. Design, synthesis and antitumor activities of fluoroquinolone C-3
522	heterocycles (IV): s-triazole Schiff-Mannich bases derived from ofloxacin. Acta
523	Pharm. Sin. B 2012, 2, 312–317.
524	(19) Mohan Krishna, K.; Inturi, B.; Pujar, G. V.; Purohit, M. N.; Vijaykumar, G. S.
525	Design, synthesis and 3D-QSAR studies of new diphenylamine containing
526	1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem. 2014, 84,
527	516–529.
528	(20) Sujith, K. V.; Rao, J. N.; Shetty, P.; Kalluraya, B. Regioselective reaction:
529	Synthesis and pharmacological study of Mannich bases containing ibuprofen
530	moiety. Eur. J. Med. Chem. 2009, 44, 3697-3702.
531	(21) Patel, V. M.; Patel, N. B.; Chan-Bacab, M. J.; Rivera, G. Synthesis, biological
532	evaluation and molecular dynamics studies of 1,2,4-triazole clubbed Mannich
533	bases. Comput. Biol. Chem. 2018, 76, 264–274.
534	(22) Shi, J.; Luo, N.; Ding, M. N.; Bao, X. P. Synthesis, in vitro antibacterial and
535	antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing

536	the 6-fluoroquinazolinylpiperidinyl moiety. Chin. Chem. Lett. 2020, 31,
537	434–438.
538	(23) Xu, G. F.; Song, B. A.; Bhadury, P. S.; Yang, S.; Zhang, P. Q.; Jin, L. H.; Xue,
539	W.; Hu, D. Y.; Lu, P. Synthesis and antifungal activity of novel s-substituted
540	6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg. Med. Chem. 2007, 15,
541	3768–3774.
542	(24) Luo, H.; Hu, D. Y.; Wu, J.; He, M.; Jin, L. H.; Yang, S.; Song, B. A. Rapid
543	synthesis and antiviral activity of (quinazolin-4-ylamino)methyl-phosphonates
544	through microwave irradiation. Int. J. Mol. Sci. 2012, 13, 6730-6746.
545	(25) Embrechts, W.; Herschke, F.; Pauwels, F.; Stoops, B.; Last, S.; Pieters, S.; Pande
546	V.; Pille, G.; Amssoms, K.; Smyej, I.; Dhuyvetter, D.; Scholliers, A.; Mostmans,
547	W.; Van Dijck, K.; Van Schoubroeck, B.; Thone, T.; Pooter, D. D.; Fanning, G.;
548	Jonckers, T. H. M.; Horton, H.; Raboisson, P.; McGowan, D.
549	2,4-Diaminoquinazolines as dual toll-like receptor (TLR) 7/8 modulators for the
550	treatment of hepatitis B virus. J. Med. Chem. 2018, 61, 6236-6246.
551	(26) Thorat, D. A.; Doddareddy, M. R.; Seo, S. H.; Hong, T. J.; Cho, Y. S.; Hahn, J.
552	S.; Pae, A. N. Synthesis and biological evaluation of 2,4-diaminoquinazoline
553	derivatives as novel heat shock protein 90 inhibitors. Bioorg. Med. Chem. Lett.
554	2011 , <i>21</i> , 1593–1597.
555	(27) Zhang, Q. W.; Li, Y.; Zhang, B. Y.; Lu, B. L.; Li, J. Q. Design, synthesis and
556	biological evaluation of novel histone deacetylase inhibitors incorporating
557	4-aminoquinazolinyl systems as capping groups. Bioorg. Med. Chem. Lett. 2017,

ACS Paragon Plus Environment

558	27, 4885–4888.
559	(28) Zayed, M. F.; Ihmaid, S. K.; Ahmed, H. E. A.; El-Adl, K.; Asiri, A. M.; Omar, A.
560	M. Synthesis, modelling, and anticonvulsant studies of new quinazolines
561	showing three highly active compounds with low toxicity and high affinity to the
562	GABA-A receptor. <i>Molecules</i> 2017, 22, 188.
563	(29) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the structural diversity,
564	substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA
565	approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274.
566	(30) Yan, B. R.; Lv, X. Y.; Du, H.; Bao, X. P. Design, synthesis and biological
567	activities of novel quinazolinone derivatives bearing 4-phenyl-5-thioxo-1,2,4-
568	triazole Mannich bases. Chin. J. Org. Chem. 2016, 36, 207-212.
569	(31) Rosado-Solano, D. N.; Barón-Rodríguez, M. A.; Florez, P. L. S.; Luna-Parada, L.
570	K.; Puerto-Galvis, C. E.; Zorro-González, A. F.; Kouznetsov, V. V.;
571	Vargas-Méndez, L. Y. Synthesis, biological evaluation and in silico
572	computational studies of 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives:
573	Search for new controlling agents against Spodoptera frugiperda (lepidoptera:
574	noctuidae) larvae. J. Agric. Food Chem. 2019, 67, 9210-9219.
575	(32) Chen, J. X.; Chen, Y. Z.; Gan, X. H.; Song, B. J.; Hu, D. Y.; Song, B. A.
576	Synthesis, nematicidal evaluation, and 3D-QSAR analysis of novel
577	1,3,4-oxadiazole-cinnamic acid hybrids. J. Agric. Food Chem. 2018, 66,
578	9616–9623.

579 (33) Xu, W. M.; Han, F. F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. A.

580	Inhibition of tobacco bacterial wilt with sulfone derivatives containing an
581	1,3,4-oxadiazole moiety. J. Agric. Food Chem. 2012, 60, 1036–1041.
582	(34) Fan, Z. J.; Shi, J.; Luo, N.; Ding, M. H.; Bao. X. P. Synthesis, crystal structure,
583	and agricultural antimicrobial evaluation of novel quinazoline thioether
584	derivatives incorporating the 1,2,4-triazolo[4,3-a]pyridine moiety. J. Agric. Food
585	<i>Chem.</i> 2019 , <i>67</i> , 11598–11606.
586	(35) Schaad, N. W.; Wang, Z. K.; Di, M.; McBeath, J.; Peterson, G. L.; Bonde, M. R.
587	An improved infiltration technique to test the pathogenicity of Xanthomonas
588	oryzae pv. oryzae in rice seedlings. Seed Sci. Technol. 1996, 24, 449-456.
589	(36) Tao, Q. Q.; Liu, L. W.; Wang, P. Y. Long, Q. S.; Zhao, Y. L.; Jin, L. H.; Xu, W.
590	M.; Chen, Y.; Li, Z.; Yang, S. Synthesis and in vitro and in vivo biological
591	activity evaluation and quantitative proteome profiling of oxadiazoles bearing
592	flexible heterocyclic patterns. J. Agric. Food Chem. 2019, 67, 7626–7639.
593	(37) Ye, Y. H.; Ma, L.; Dai, Z. C.; Xiao, Y.; Zhang, Y. Y.; Li, D. D.; Wang, J. X.;
594	Zhu, H. L. Synthesis and antifungal activity of nicotinamide derivatives as
595	succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2014, 62,
596	4063-4071.
597	(38) Feng, M. L.; Li, Y. F.; Zhu, H. J.; Zha, L. A.; Xi, B. B.; Ni, J. P. Synthesis,
598	insecticidal activity, and structure-activity relationship
599	of trifluoromethyl-containing phthalic acid diamide structures. J. Agric. Food
600	<i>Chem.</i> 2010 , <i>58</i> , 10999–11006.
601	(39) Zhang, S. S.; Li, D. D.; Song, Z. H.; Zang, C. L.; Zhang, L; Song, X. S.; Li, S. K.

602	"Carbon assimilation" inspired design and divergent synthesis of drimane
603	meroterpenoid mimics as novel fungicidal leads. J. Agric. Food Chem. 2017, 65,
604	9013-9021.
605	(40) Wang, G. T.; Cui, P. C.; Bai, H. J.; Wei, S. Y.; Li, S. K. Late-stage C-H
606	functionalization of nicotinamides for the expedient discovery of novel
607	antifungal leads. J. Agric. Food Chem. 2019, 67, 11901-11910.
608	(41) Tice, C. M. Selecting the right compounds for screening: does Lipinski's Rule of
609	5 for pharmaceuticals apply to agrochemicals? Pest Manage. Sci. 2001, 57,
610	3–16.
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	

624									
625									
626									
627									
628				Figure (Captions				
629	Figure	1.	Several	representative	bioactive	molecules	containing	a	
630		1,2,4	-triazole-5-	thione Mannich	base or a 6-	fluoroquinazo	oline moiety of	r a	
631		piper	idinyl linka	age.					
632	Figure 2	. Prev	iously-repo	orted three classes	s of antibacte	rial compound	ls by our group).	
633	Figure 3	. Desi	gn strategy	of target compou	unds in this w	vork.			
634	Figure 4	X-ra	y crystal st	ructure of 4h ·H ₂ C) complex.				
635	Figure 5. Curative and protection activities of compound 4f against rice bacterial leaf								
636	blight under greenhouse conditions at 200 μ g/mL, with BMT and TDC as								
637	the positive control agents.								
638	Figure 6	. SEM	I images fo	or Xoo after being	g incubated w	with different	concentrations	of	
639		comp	oound 4f : (a	a) 0 μ g/mL; (b) 50	0.0 µg/mL; (c) 100.0 μg/m	L.		
640									
641									
642									
643									
645									
646									
647									
648									
649									
650									

- 651
- 652

- 654
- 655

656 Tables

657

658 659

660 Table 1. Antibacterial Activities of Target Compounds 4a-4j and 7a-7j against Phytopathogenic
661 Bacteria Xoo, Xac, and Psa in Vitro.

	Inhibition rate ^{<i>a</i>} (%)						
Compd.	Хоо		X	ac	Psa		
	100 µg/mL	50 µg/mL	100 µg/mL	50 µg/mL	100 µg/mL	$50 \mu { m g/mL}$	
4a	100.0 ± 0.0	63.7 ± 0.7	40.4 ± 3.3	29.4 ± 4.1	46.3 ± 3.1	32.2 ± 4.7	
4b	93.6 ± 1.2	60.3 ± 2.6	44.6 ± 3.1	20.0 ± 3.4	55.9 ± 2.1	36.2 ± 0.6	
4c	100.0 ± 0.0	68.1 ± 1.2	33.6 ± 3.3	14.0 ± 2.7	41.5 ± 1.6	26.9 ± 1.8	
4d	58.1 ± 3.2	39.6 ± 2.9	38.5 ± 4.0	24.0 ± 5.2	32.3 ± 2.0	16.6 ± 3.1	
4e	99.5 ± 0.3	69.3 ± 3.7	18.0 ± 2.2	7.5 ± 0.9	41.7 ± 3.2	31.7 ± 2.6	
4f	100.0 ± 0.0	90.3 ± 2.6	36.9 ± 1.0	26.4 ± 3.9	44.0 ± 4.4	30.4 ± 0.7	
4g	91.2 ± 1.2	55.2 ± 2.7	24.6 ± 2.6	12.9 ± 3.6	46.6 ± 2.4	34.0 ± 2.9	
4h	96.2 ± 2.7	57.2 ± 1.9	44.0 ± 3.9	15.5 ± 5.0	45.7 ± 2.2	33.7 ± 1.7	
4i	74.5 ± 0.9	46.5 ± 1.4	16.5 ± 3.8	15.8 ± 2.9	39.8 ± 2.0	23.2 ± 5.4	
4j	100.0 ± 0.0	74.0 ± 2.6	49.6 ± 3.3	23.7 ± 3.2	62.7 ± 1.2	43.4 ± 1.7	
7a	84.4 ± 2.1	51.0 ± 1.2	44.9 ± 1.6	23.5 ± 2.6	46.6 ± 0.6	26.8 ± 1.5	
7b	69.4 ± 2.4	45.7 ± 2.1	53.8 ± 3.5	33.8 ± 4.9	56.3 ± 3.5	45.4 ± 2.0	
7c	100.0 ± 0.0	70.8 ± 1.5	48.2 ± 2.1	29.7 ± 1.2	62.6 ± 0.5	36.6 ± 3.1	
7d	69.7 ± 3.2	39.4 ± 2.0	50.0 ± 2.4	31.3 ± 3.3	55.0 ± 0.6	27.4 ± 1.3	
7e	96.6 ± 2.3	61.8 ± 1.9	25.7 ± 4.6	16.1 ± 3.8	46.0 ± 1.9	36.4 ± 4.5	
7f	92.4 ± 2.5	55.4 ± 1.0	64.5 ± 1.6	39.0 ± 0.9	57.3 ± 0.8	41.5 ± 2.0	
7g	80.4 ± 0.5	48.9 ± 2.3	43.4 ± 0.3	33.2 ± 1.8	60.4 ± 2.2	46.1 ± 3.5	
7h	79.6 ± 1.4	56.3 ± 2.2	50.3 ± 0.9	39.4 ± 3.7	50.8 ± 1.4	36.8 ± 1.8	
7i	96.1 ± 1.2	60.6 ± 2.2	28.9 ± 1.8	18.6 ± 3.6	67.1 ± 3.6	46.3 ± 4.2	
7j	100.0 ± 0.0	68.0 ± 3.7	48.7 ± 2.2	24.8 ± 3.8	63.0 ± 3.2	41.0 ± 3.9	
\mathbf{BMT}^b	56.3 ± 3.1	35.8 ± 2.9	61.4 ± 3.0	33.9 ± 1.5	59.6 ± 2.9	37.5 ± 4.0	
\mathbf{TDC}^{b}	NT ^c	NT^{c}	NT ^c	NT ^c	52.6 ± 1.0	38.2 ± 2.3	

^{*a*} The average of three trials. ^{*b*} Commercial bactericides bismerthiazol (BMT) and thiodiazole-copper (TDC) were

663 used as positive control agents. c NT = not tested.

Table 2. EC₅₀ Values of Target Compounds 4a-4j and 7a-7j against Xoo and Their Physicochemical Properties.

compd.	toxic regression equation	r	EC ₅₀ (μg/mL)	MW ^a	cLogP ^b	HBA ^c	HBD ^d	ROTB ^e
4 a	y = 2.8108x + 0.9078	0.9437	28.6 ± 1.3	505.2	3.52	8	0	5
4b	y = 2.3105x + 1.5819	0.9489	30.2 ± 2.9	489.2	4.17	7	0	5
4c	y = 2.6523x + 1.3572	0.9371	23.6 ± 0.9	503.2	4.73	7	0	5
4d	y = 1.7156x + 1.8132	0.9990	72.0 ± 5.3	491.2	4.48	7	0	7
4e	y = 2.7736x + 0.9859	0.9733	28.0 ± 0.3	518.2	2.64	8	0	5
4f	y = 3.0787x + 1.0768	0.9947	18.8 ± 0.8	532.3	3.17	8	0	6
4g	y = 2.1654x + 1.7149	0.9649	32.9 ± 1.0	546.3	3.48	8	0	6
4h	y = 2.4242x + 1.2733	0.9614	34.5 ± 1.7	546.2	3.03	9	0	5
4 i	y = 2.0924x + 1.4625	0.9969	49.1 ± 1.1	604.3	5.43	10	0	7
4j	y = 2.8715x + 1.0671	0.9672	23.4 ± 1.0	580.3	5.51	8	0	6
7a	y = 2.0361x + 1.7603	0.9770	39.0 ± 1.0	573.2	4.60	8	0	6
7b	y = 1.7106x + 2.0700	0.9979	51.6 ± 3.6	557.2	5.26	7	0	6
7c	y = 2.5111x + 1.4028	0.9823	27.1 ± 1.2	571.2	5.82	7	0	6
7d	y = 1.9767x + 1.4055	0.9835	65.8 ± 4.1	559.2	5.56	7	0	8
7e	y = 2.4965x + 1.3899	0.9512	27.9 ± 0.6	586.2	3.73	8	0	6
7f	y = 2.3127x + 1.5349	0.9629	31.5 ± 1.3	600.2	4.26	8	0	7
7g	y = 2.0060x + 1.7071	0.9809	43.8 ± 1.8	614.3	4.56	8	0	7
7h	y = 2.0392x + 1.6692	0.9993	43.0 ± 1.4	614.2	4.12	9	0	6
7i	y = 2.5510x + 1.2876	0.9433	28.5 ± 1.0	672.3	6.51	10	0	8
7j	y = 2.6608x + 1.3110	0.9502	24.3 ± 0.7	648.2	6.59	8	0	7
BMT ^f	y = 1.4580x + 2.1340	0.9862	92.4 ± 3.1	278.0	-1.46	6	4	4

^aMolecular Weight. ^bLogarithm of the partition coefficient between *n*-octanol and water (calculated using the ChemBioOffice 2010). "Number of hydrogen-bond acceptors. "Number of hydrogen-bond donors. "Number of rotatable bonds (determined using the Molinspiration Cheminformatics software). ^fCommercialized agrobactericide bismerthiazol.

681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	Table 3. Protection and Curative Activities of Compound 4f against

Rice Bacterial Leaf Blight under Greenhouse Conditions at 200 μ g/mL in Vivo.

	Protection a	ctivity (14 day	vs after spraying)	Curative activity (14 days after spraying)			
two atoms and		disease control			disease	control	
treatment		index	efficiency		index	efficiency	
	(%)	(%)	(%) ^b	(%)	(%)	(%) ^b	
4f	100	33.33	56.23	100	36.11	52.30	
BMT	100	43.06	43.45	100	40.28	46.80	
TDC	100	41.62	45.34	100	43.59	42.43	
CK ^a	100	76.15	/	100	75.71	/	

^a Negative control. ^b Statistical analysis was conducted by ANOVA method under the condition of equal variances assumed (P > 0.05) and equal variances not assumed (P < 0.05). Different uppercase letters indicate the values of

protection activity with significant difference among different treatment groups at P < 0.05.

Table 4. Antifungal Activities of Target Compounds 4a-4j and 7a-7j at 50 μ g/mL in Vitro.

aamnd	Inhibition rate ^{<i>a</i>} (%)								
compa.	GZ ^c	VD^d	SS^e	GF ^f	$\mathrm{C}\mathrm{M}^{g}$	CG^h			
4 a	20.5 ± 1.1	35.4 ± 2.6	13.6 ± 2.5	11.3 ± 1.0	7.8 ± 0.1	0			
4b	19.9 ± 1.7	28.8 ± 2.4	15.6 ± 3.6	9.3 ± 2.1	16.2 ± 1.2	15.1 ± 2.9			
4c	15.8 ± 3.3	26.1 ± 1.0	12.6 ± 2.2	15.3 ± 0.9	0	0			
4d	21.6 ± 1.7	35.0 ± 3.2	18.7 ± 4.2	8.6 ± 2.4	11.0 ± 1.1	13.8 ± 1.5			
4e	20.5 ± 1.1	31.8 ± 4.4	15.7 ± 1.1	9.9 ± 3.8	9.1 ± 2.1	11.8 ± 3.3			
4f	37.4 ± 2.3	35.4 ± 2.6	14.1 ± 2.2	18.7 ± 1.2	0	5.9 ± 0.1			
4g	19.3 ± 1.4	34.1 ± 2.4	10.1 ± 3.7	6.0 ± 3.4	7.1 ± 3.0	0			
4h	12.3 ± 2.9	27.0 ± 3.7	11.1 ± 3.1	11.3 ± 3.0	7.8 ± 3.8	6.6 ± 3.0			
4i	8.8 ± 1.6	18.1 ± 0.9	9.1 ± 0.1	18.7 ± 1.5	5.2 ± 4.0	0			
4j	11.7 ± 1.0	20.8 ± 3.1	8.1 ± 0.8	17.3 ± 2.7	6.5 ± 2.9	0			
7a	25.7 ± 0.7	31.4 ± 1.6	15.1 ± 2.4	14.7 ± 1.2	8.4 ± 2.2	9.9 ± 0.1			
7b	34.5 ± 2.5	36.7 ± 2.4	20.7 ± 3.3	19.3 ± 2.0	17.5 ± 1.8	14.5 ± 2.1			
7c	29.8 ± 2.6	31.0 ± 2.3	16.2 ± 0.9	11.3 ± 4.5	13.0 ± 1.4	7.9 ± 2.0			
7d	46.2 ± 1.8	39.8 ± 1.7	18.2 ± 3.8	14.7 ± 0.9	15.6 ± 0.2	11.8 ± 1.3			
7e	45.6 ± 2.4	38.9 ± 2.0	20.2 ± 3.0	20.6 ± 2.6	11.0 ± 1.1	13.8 ± 1.8			
7f	29.2 ± 0.6	32.8 ± 2.4	14.1 ± 2.1	17.3 ± 2.7	15.6 ± 3.2	9.9 ± 1.9			
7g	45.0 ± 3.6	39.9 ± 4.5	21.7 ± 0.9	20.7 ± 1.2	12.3 ± 1.4	15.8 ± 2.0			
7h	20.5 ± 0.7	31.0 ± 1.7	16.1 ± 4.4	19.3 ± 4.3	7.2 ± 2.3	0			
7i	45.6 ± 2.7	51.3 ± 2.3	22.2 ± 2.1	28.0 ± 1.4	19.5 ± 1.8	19.1 ± 2.8			
7j	24.5 ± 2.6	22.5 ± 2.0	18.1 ± 4.3	23.3 ± 3.7	16.9 ± 1.0	9.2 ± 2.5			
Hymexazol ^b	55.0 ± 2.9	80.1 ± 2.5	72.2 ± 2.0	50.6 ± 3.1	64.9 ± 2.3	72.4 ± 1.2			

*a*The average of three trials. *b*Commercialized agrofungicide Hymexazol. $^{c}GZ = Gibberella zeae; ^{d}VD =$ 717 *Verticillium dahlae; e*SS = Sclerotinia sclerotiorum; ^fGF = Gloeosporium fructigenum; ^gCM = Cytospora

⁷¹⁸ mandshurica; ${}^{h}CG = Colletotrichum gloeosporioides.$

Figure 1. Several representative bioactive molecules containing a 1,2,4-triazole-5-thione Mannich
base or a 6-fluoroquinazoline moiety or a piperidinyl linkage.

825

Figure 5. Curative and protection activities of compound 4f against rice bacterial leaf blight under 826 greenhouse conditions at 200 μ g/mL, with **BMT** and **TDC** as the positive control agents. 827

Scheme 1. The synthesis of target compounds 4a-4j and 7a-7j.

232x146mm (600 x 600 DPI)