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Copper Catalyzed sp3 C-H Amidation: Sterically Driven Primary 
and Secondary C-H Site-Selectivity  
Abolghasem (Gus) Bakhoda,[a] Quan Jian,[b] Yosra M. Badiei,[a] Jeffery A. Bertke,[a] Thomas R. 
Cundari,[b]* and Timothy H. Warren[a]* 
Abstract: Undirected sp3 C−H functionalization reactions often 
follow site-selectivity patterns that mirror the corresponding C−H 
bond dissociation energies (BDEs). This often results in the 
functionalization of weaker 3° C−H bonds in the presence of 
stronger 2° and 1° bonds. An important, contemporary challenge is 
the development of catalyst systems capable of selectively 
functionalizing stronger 1° and 2° C−H bonds over 3° and benzylic 
C−H sites. Herein, we report a Cu catalyst that exhibits a high 
degree of 1° and 2° over 3° C-H bond selectivity in the amidation of 
linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. 
Mechanistic and DFT studies indicate that C−H amidation involves 
H−atom abstraction from R−H substrates by nitrene intermediates 
[Cu](κ2−N,O−NC(O)Ar) to provide carbon−based radicals R• and 
copper(II)−amide intermediates [CuII]−NHC(O)Ar that subsequently 
capture radicals R• to form products R−NHC(O)Ar. These studies 
reveal important catalyst features required to achieve 1° and 2° C-H 
amidation selectivity in the absence of directing groups. 

Catalyst-controlled site-selectivity that overcomes a 
substrate’s innate preferences based on steric and electronic 
properties of individual C-H bonds in the absence of directing 
groups is a crucial challenge in the development of C-H 
functionalization.[1,2] In sp3 C-H functionalization, selectivities 
often follow C-H bond strengths since a common mechanism 
involves H-atom abstraction (HAA) from the C-H bond.[1c] Thus, 
these reactions typically occur at weaker benzylic and allylic as 
well as more electron−rich 3° C−H bonds over stronger 1° and 
2° C−H bonds.[1] The electrophilic nature of many HAA agents 
can further amplify selectivity towards electron-rich C-H 
bonds.[1,2b,2g-i] Recognizing that 3° C-H bonds are sterically 
somewhat hindered, however, suggests a strategy to achieve 
selective functionalization of more exposed 1° and 2° C-H bonds 
through catalyst-centered steric control.[1a-c,2g-j] Thus, the 
challenge becomes the design of a catalyst system potent 
enough to react with very strong 1° and 2° C-H bonds, yet with 
the capability to sterically differentiate among the wide range of 
C-H bonds typically found within substrate molecules.  

Early, seminal work by Callot et al. demonstrated that 1° 
C-H bond selectivity for carbene insertion reactions of n-alkanes 
with ethyl diazoacetate catalyzed by [Rh(por)I] (where por = 
meso-tetraarylporphyrinato) increases with the increase of the 
sterics of the ortho groups of the meso-aryl rings.[3] In 2008, Che 

and co-workers showed that a sterically encumbered Rh–
porphyrin catalyst demonstrates high 1° selectivity in carbenoid 
transfer reactions (Figure 1a).[4] Most recently, Davies group 
reported a new dirhodium catalyst that is highly effective for the 
functionalization of 1° C–H bonds with high levels of site- and 
enantioselectivity via [Rh]=CR2 intermediates.[5a] By altering the 
sterics of the carboxylate ligands, site-selectivity can be tuned to 
prefer either 3°, 2° or 1° C–H bonds.[5]  

Catalyst centered steric control may also override innate 
selectivity in C-H hydroxylations.[2g-i] White group reported that 
steric enhancement of a Fe(PDP) catalyst switches the 
selectivity from 3° to 2° C-H bonds due to decreased 
accessibility to the putative [Fe]=O intermediate (Figure 1b).[2g] 
Structurally related chiral Fe and Mn catalysts also become both 
more enantioselective through addition of steric bulk.[2d-e] 

Despite these advances in redirecting C-H 
functionalization away from weaker C-H bonds in metal-carbene 
and -oxo based methods, progress with metal-nitrene based 
protocols has been much slower. In 2006 Peréz and coworkers 
reported that very bulky substituents in TpCu (Tp = 
tris(pyrazolyl)borate) catalysts could greatly favor C-H amination 
of cumene with PhI=NTs at the unactivated 1° site over the 
electronically favored 3° C-H bond.[6] Unfortunately, overall 
amination yields were low, despite using a large excess of the 
C-H substrate. Based on our development of discrete b-
diketiminato copper nitrene complexes [Cu]2(µ-NR’) and 
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a      Site selective C-C formation via [Rh]=CR2

b      Site selective C-O formation via [Fe]=O
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Figure 1. State of the art in site selective C-H functionalization  
controlled by catalyst structure. 
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[Cu]=NR’ for stoichiometric and catalytic C-H amination with 
alkyl and aryl azides N3R’,[7] we felt that steric modification of the 
b-diketiminate ligand could result in the selective amination of 
stronger 1° C-H bonds provided that copper nitrenes with 
heightened reactivity could be generated.  

To enhance the reactivity of our copper nitrene 
intermediates [Cu]=NR’, we employed aroyl azides ArC(O)N3 as 
potentially more electrophilic nitrene sources than alkyl or aryl 
azides.[8] Demonstrating the exceptional reactivity of a putative 
copper benzoylnitrene intermediate, addition of 1 equiv. 
PhC(O)N3 (BzN3, 2) to 1 equiv. catalyst [Cl2NN]Cu (1) in neat 
ethylbenzene at -35 °C gives the 2° C-H amination  product in 
70% yield (Figure 2b). Unfortunately, very low C-H amidation 
yields under catalytic conditions (see Supporting Information, 
Section 4) suggest that highly reactive [Cu](NC(O)Ph) 
intermediates undergo decomposition pathways that preclude 
catalysis. For instance, a 1:1 mixture of BzN3 and [Cl2NN]Cu in 
benzene gave the diazene BzN=NBz in 46% isolated yield. 
Coupled with C-H amination behavior in the presence of 
ethylbenzene, the formation of this diazene in the absence of a 
sp3 R-H substrate suggests the generation of a [Cu](NC(O)Ph) 
intermediate that can dimerize or undergo an attack by excess 
BzN3 with loss of N2 to form BzN=NBz (3) (Figure 2b). 

To discourage bimolecular interactions between transient 
acylnitrene intermediates [Cu](NC(O)Ph) that could lead to N-N 
coupling, we synthesized a novel copper(I) b-diketiminate 
complex [IPr*NN]Cu(h2-benzene) (4) that features extremely 
sterically demanding o-CHPh2 and p-tBu substituents on the b-
diketiminato N-aryl groups. Deprotonation of the free b-
diketimine [IPr*2NN]H (5) with n-BuLi to give [IPr*2NN]Li followed 
reaction of CuCl in benzene provided 4 in 72% yield. A space-
filling model of the X-ray structure of 4 makes apparent the 
considerable steric influence of the four o-CHPh2 substituents 
(Figure 2c). 

 Preliminary screening experiments that employed 
ethylbenzene and benzoyl azide (BzN3) in a 1 : 1 ratio in 
fluorobenzene (PhF) catalyzed by 10 mol% 4 at RT showed 
complete conversion of the azide, but produced the desired 
amide PhCH(NHC(O)Ph)Me in only 29% yield with a significant 
amount of benzamide PhC(O)NH2 (57%). Slow addition of 

PhC(O)N3, however, led to a significant increase in the C-H 
amidation yield to 57% with a concomitant decrease in the 
undesired parent benzamide PhC(O)NH2 (14%). Slow addition 
techniques have been used in other C-H functionalization 
protocols where the reactive intermediates are susceptible to 
dimerization or degradation or to simulate high catalyst 
loadings.[9] The use of the highly electrophilic aroyl azide 
PhC(O)N3 enables C-H amidation at RT; in contrast, scouting 
experiments  with the aryl azide PhN3 under similar conditions 
reveal only PhN=NPh formation. 

 Both benzylic as well as unactivated 2° C-H bonds 
undergo amidation upon slow addition of BzN3 catalyzed by 10 
mol% 4 as presented in Table 1. Notably, good yields are 
obtained with using the R-H substrates as the limiting reagent 
(1.0 equiv.) at room temperature. Benzylic C-H bonds undergo 
smooth C-H amidation (entries 6a-6e). This catalytic system 
functionalizes the unactivated 2° C-H bonds of cyclohexane 
(BDE = 99.5 kcal/mol)[10] (entry 6f) in 71% yield. Likewise, 
amidation of norbornane at 2° C-H bonds (entry 6g) gives the 
exo regioisomer (dr = 13:1; crude 1H NMR), which may be 
isolated in 63% yield. On the other hand, adamantane and 1,3-
dimethyladamantane underwent selective amidation at the 3° C-
H sites to provide the benzamide products 6h and 6i. The latter 
furnished the N-benzoyl derivative of the Alzheimer’s disease 
medication memantine in 55% yield.   

We note that 4 catalyzes C-H amidation with many aroyl 
azides ArC(O)N3 under analogous conditions (Table S1), though 
sterically hindered azides such as anthracene 9-carbonyl azide 
give lower yields. A curious finding is that 2-picolinoyl azide 
leads to only a trace amount of the C-H amidation product (entry 
7o). We hypothesize that pyridyl group coordination inhibits 
azide activation. Consistent with this observation, we find that 
addition of 2-picoline to 4 gives [IPr2*NN]Cu(2-picoline) (8) 
(Figure S30) that is inactive in the C-H amidation of 
ethylbenzene with BzN3, even at elevated temperatures (60 °C).   

 To probe the pathway for catalytic C-H amidation, we 
employed (2-methylcyclopropyl)benzene as R-H substrate with 
BzN3 that provided the ring-opened product 9 in 23% yield along 
with  PhC(O)NH2 and some unreacted starting material (Scheme 
1). The absence of any amidation product with the cyclopropane 
ring intact suggests a HAA pathway to generate the 1° 
cyclopropylmethyl radical that rapidly ring opens (k = 4 × 1011 s-

1)[11] followed by capture by a copper(II) benzamide intermediate 
[CuII]-NHC(O)Ph. We identified a kinetic isotope effect (KIE) of 
3.4 ± 0.3 for cyclohexane, and 5.5 ± 0.3 for tert-butylbenzene 
(See Supporting Information section 7). These KIE values are 

Table 1. Benzylic, 2° and 3° C-H amidation by 4. 

N
R Bz

10% [IPr*2NN]Cu
PhF, RT

- N2

+

2

PhC(O)N3

H1.0 equiv.

HR

6

6a. 53%       6b. 52%          6c. 78%         6d. 68%        6e. 61%

NHBz NHBz NHBz NHBz

O

NHBz

S

NHBz

NHBz
NHBz

NHBz

  6f. 71%        6g. 63%             6h. 49%      6i. 55%        6j. 53%

NHBz

Conditions: RT, slow addition of BzN3 solution (4.1 M in PhF, 
0.01 mL/min). Isolated yields.  
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Figure 2. Development of hindered b-diketiminato copper 
catalyst 4 for sp3 C-H amidation with BzN3.  
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Scheme 1. Radical clock: C-H amidation occurs solely with ring 
opening. 
 

 
Figure 3. DFT calculated structure of [Cu](κ2-NC(O)Ph) (10). 

 

Table 2. Catalyst-dictated site selectivities in C–H amidation of 
diverse straight-chain hydrocarbon substrates. 

Ph
Ph

Ph

Ph

 11a. 67%       11b. 71%        11c. 62%               11d. 69%

11e. 48%                    11f. 53%                          11g. 49%

BzHN BzHN NHBz

NHBz

NHBz

NHBz

NHBz
NHBz

1°/3° = 7.8

1°/3° = 8.8 1°/2° = 12.3
no 1°tBu product

1°/2° = 3.6
no 3° product

1

2

3

NHBz

1

2

3

1°/1° = 4.3
no 2° or 3° product

11h. 48%                     11i. 53%                          11j. 49%
1°/2° = 5.9

no 3° product
1°/3° = 7.3

no 2° product

11k. 66%                           11l. 75%
2°/1° = 3.2                         2°/1° = 3.4

NHBz NHBz

NHBz

1°/benz. = 12.5 1°/benz. = 10

Conditions: RT, slow addition of BzN3 solution (4.1 M in PhF,
0.01 mL/min). Isolated yields.

N
R Bz

10% [IPr*2NN]Cu
PhF, RT

- N2

+

2

PhC(O)N3

H1.0 equiv.

HR

11

 

similar to that identified for C-H amination of ethylbenzene, 
adamantane and cumene via N-adamantyl (5.3), N-tosyl (4.9 
and 4.1) and N-nosyl (3.1 and 3.2) copper nitrene intermediates, 
respectively,[7b,12] a bit lower than observed in the C-H amination 
of cyclohexane via b-diketiminato copper N-adamantyl nitrene 
intermediates (6.6).[7c] 

Employing theory at the uBP86/mixed basis set level of 
theory (see Section 10 of Supporting Information for 
details),[7b,13] κ1-N, κ1-O, and κ2-N,O binding modes of the highly 
reactive intermediates were evaluated for copper nitrenes 
[IPr*2NN]Cu(NC(O)Ph) (Figure 3) and [Cl2NN]Cu(NC(O)Ph) 
(Supporting Information Figure S35). Geometry optimizations 
indicate the κ1-N and κ1-O isomers were higher in energy (>13 
kcal/mol) than the κ2-N,O isomer and are not considered further. 
The ground state computed for nitrene [IPr*2NN]Cu(κ2-N,O-
NC(O)Ph) (10) is a singlet that is 21.1 kcal/mol lower than the 
triplet. Moreover, MCSCF (multi-configuration self-consistent-
field) calculations at the DFT-optimized geometries also predict 
the ground state is a singlet, but this structure has significant 
multi-configuration character as evidenced by deviation of 
natural orbital occupation numbers (NOONs) from single-
determinant values (1.6 and 0.4 e- in Supporting Information 
Figure S37). Therefore, like reported Cu-alkynitrenes, copper 
acylnitrenes have significant multi-reference (singlet biradical) 
character.[7a,7c,13]    

This catalytic system can efficiently functionalize 1° C-H 
bonds as illustrated in the reaction of BzN3 with tert-
butylbenzene (BDE ~ 99 kcal/mol)[10] to furnish the 1° C-H 
amidation product in 67% isolated yield (Table 2, entry 11a). 
Remarkably, amidation of the 1° sp3 C-H bond of cumene (BDE 
~ 101 kcal/mol)[10] occurs with synthetically useful selectivity over 
the more hindered, yet weaker 3° benzylic C-H bond (BDE ~ 85 
kcal/mol)[10] to give a 71% yield (Table 2, entry 11b).  A small 
amount of 3° amidation product is observed to give a (regiomeric 
ratio (r.r.) of 7.8:1. Indeed, synthetically useful 1° selectivity also 
occurs in the presence of benzylic and  methine C-H bonds in 
isobutylbenzene and neopentylbenzene (entries 11c and 11d) to 
give 1° amidation products in 62% and 69% isolated yields, 
respectively, with r.r. ≥10:1 in each case.  

This catalyst system also differentiates between the 1°, 2°, 
and 3° C-H bonds present in branched hydrocarbons (Table 2, 
entries 11e – 11j) to deliver the 1° functionalized benzamide as 
the major product. Amidation of 2,3-dimethylbutane and 2,2-
dimethylbutane (entries 11e and 11f) occur in 48% and 53% 
yield with 1°/3° and 1°/2° selectivities of 8.8 and 12.3, 
respectively. 2,4-dimethylpentane (entry 11h) led to amidation 
principally at the 1° C−H bonds with small amount of the 3° 
product (r.r. = 7.3), reversing the site-selectivity reported for 
other related C-H functionalization reactions.[4-5,14-16] 

Surprisingly, 4 is capable of differentiating more hindered 
methyl C-H bonds from less hindered ones. For instance, 
amidation of isooctane proceeds with exclusive 1° selectivity that 
targets the slightly less hindered Me C-H bonds in the i-Pr vs. 
the t-Bu ends of the molecule (r.r = 4.3; entry 11j). While 1° over 
2° C-H amidation occurs when 2° sites are hindered (entries 11c, 
d, f-j), straight chain alkanes lead to a preference for CH2 sites 
(entries 11k, l). The C−H amidation of n-pentane and n-hexane 
principally furnished C2-products with overall k2°/k1° = 6.3 and 
k2°/k1° = 9.4 in combined yields of 66% and 75%, respectively. 

This system shows a high degree of methylene selectivity 
in methylated cycloalkanes. Amidation of cis-1,3-
dimethylcyclohexane principally targets the two methylene sites 
C4 and C5 with k2°/k1° = 8.3 (Table 3, entry 12a) while cis-1,4-
dimethylcyclohexane gives a 2:1 ratio of 2° products with k2°/k1° 
= 10 (entry 12b). In contrast, trans-1,4-dimethylcyclohexane 
furnishes a single 2° product in 55% yield with k2°/k1° = 10 (entry 
12c). Heavily methylated cis-1,3,5-trimethylcyclohexane 
produces a single 2° isomer along with the 1° product (k2°/k1° = 
2.5; entry 12d).  

We were profoundly interested in establishing the potential 
for site-selective amidation of more complex molecules. The 
amidation of trans-pinane occurred at a single methylene site 
(C-3) in 49% yield (Table 3, entry 12e). Exclusive methylene 
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Table 3. Methylene selectivity in the C–H amidation of cyclic 
substrates.  

Me

Me

NHBz

2 31

NHBz2
3

1

H

H

H H
BzHN

A

Me

BzHN

NHBz

12a. 51%     12b. 62%    12c. 55%       12d. 49%         12e. 49%

12f. 62% (comb.)  12g. 66% (comb.)
12h. 31%

2°/1° = 8.3    2°/1° = 9.0   2°/1° = 5.0     2°/1° = 1.3

2°/3° > 99% 2°/3° > 99% b:a = 3.88

3

R

X-ray

X-ray

X-ray of 12h

NHBz

NHBz NHBz

single 
regioisomer

X-ray

Conditions: RT, slow addition of BzN3 solution (4.1 M in PhF,
0.01 mL/min). Isolated yields.

R =

N
R Bz

10% [IPr*2NN]Cu
PhF, RT

- N2

+

2

PhC(O)N3

H1.0 equiv.

HR

12

 
functionalization occurs with cis-and trans-decalin with C3/C2 
selectivities of 2.1 and 1.3, respectively (Table 3, entries 12f,g). 
Selective C-H amidation of 5α-cholestane (entry 12h, 48 sp3 C-H 
bonds; 7 3° C−H bonds and 13 unique 2° sites) takes place at 
the steroidal A-ring at the sterically most accessible, most 
electron-rich methylene site (C3) to give the b-C-3 benzamide 
product 12h in 31% yield, along with 8% of the a-C-3 product 
(b/a = 3.88) with no evidence of functionalization at other sites. 
Previous C-H chlorination of this substrate with a N-chloroamide 
reagent or under Mn catalysis showed significantly lower 
selectivities (kC3/kC2 = 2[17a] and 1.5,[17b]  respectively). These 
examples further outline the unique capabilities of this catalyst 
system to differentiate among closely related C−H bonds within 
substrates. 
 In summary, the high reactivity of the Cu-nitrene 
intermediate [Cu](NC(O)Ph) along with the tremendous steric 
influence of the supporting b-diketiminate ligand leads to site-
selectivities that favor stronger, yet more exposed 1° C-H bonds 
over weaker, more hindered 3° C-H bonds. Rigid cyclic 
substrates demonstrate a preference for amidation of 2° C-H 
bonds over 1° and 3° sites, allowing for selective 
functionalization of cycloalkanes. As such, this Cu-acylnitrene 
system provides a credible starting point for the further 
development of catalyst-controlled site-selectivity to introduce N-
based functionalities into 1° and 2° sites in more complex 
molecules for applications in late-stage C-H functionalization 
and diversification. 
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