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A rapid, economic, and high yielding methodology has been developed for hydroacylation/reduction of
activated ketones by using 1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride as a catalyst in combina-
tion with triethylamine. The reaction proceeded at an ambient temperature via generating N-heterocyclic
carbene in situ that interacted with the (hetero)aryl aldehyde employed. While the reduction of ketones
takes place in MeOH, the hydroacylation process was found to be effective in THF for both electron rich
and deficient aldehydes.

� 2010 Elsevier Ltd. All rights reserved.
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The intramolecular hydroacylations of alkene in the presence of
transition metal catalysts especially the rhodium(I)-salts have be-
come a powerful strategy to prepare various carbocyclic struc-
tures.1 The methodology essentially involves the use of an
aldehyde as a source of hydroacylating agent and proceeds via
selective oxidation of aldehydic C–H. While a number of reports
are available on hydroacylations (Scheme 1) of alkene (Z = C), an
analogous process involving aldehydes and carbonyl group
(Z = O), however, was not explored until recently. For example,
the hydroacylation of a-keto esters (2) with aldehydes (1) cata-
lyzed by N-heterocyclic carbenes (Scheme 1) was reported only
in 2006.2 In this process, the carbene generated from a triazolium
salt and DBU facilitated selective catalytic oxidation of a C–H bond
with concomitant reduction of a ketone. Very recently, intramolec-
ular hydroacylation of ketone in the presence of an Rh catalyst
leading to lactone has been reported.3 Nevertheless, the N-hetero-
cyclic carbene (NHC) mediated hydroacylation can be carried out
in an aprotic or protic solvent such as CH2Cl2 or MeOH (or EtOH)
affording a hydroacylation product 3 or the carbonyl reduction
product 4 depending on the nature of solvent used (Scheme 1).
The reaction was carried out using 10–15 mol % of triazolium salt
for 9–24 h and yields of products generally varied from 0% to
ll rights reserved.
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83% in the case of 3 and 71% to 96% in the case of 4. In our effort
to develop a rapid and more economic process for the reduction/
hydroacylation of a-keto esters (2) with aldehydes (1) we now re-
port our preliminary results on the use of 1,3-bis(2,4,6-trimethyl-
phenyl)imidazolium chloride (IMes�HCl) in combination with
triethylamine as an alternative source of N-heterocyclic carbene
(NHC).

Based on earlier reports on the interaction of NHC with alde-
hydes,4 1,4-dimethyl-1H-1,2,4-triazol-4-ium iodide was used to
generate the active carbene species for hydroacylation reactions.
We hypothesized that N-heterocyclic salts based on similar five-
membered ring containing two hetero atoms (e.g. A–D, Figure 1)
might be equally effective for the generation of NHC. Indeed,
N 3 4

Scheme 1. Hydroacylation of alkene and carbonyl compound.
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Table 2
NHC(A)-mediated reduction of a-keto ester 2a
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Figure 1. Salts as potential source of NHC.
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imidazolylidene carbenes have been investigated as ligands in
coordination chemistry, as powerful steering/controlling elements
in transition-metal catalysis,5 as well as in metal-free catalysts for
organic reactions.4b,c,6,7 Thus, we assessed the reaction of benzal-
dehyde (1a) with methyl 2-(2-chlorophenyl)-2-oxoacetate (2a) in
the presence of salts A–D using various bases in methanol. As ex-
pected, the carbonyl reduction product 4a was isolated in these
cases and results are summarized in Table 1.

Among all the salts screened, the use of sterically encumbered
1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (A) was found
to be the most effective in terms of product yield (Table 1, entries
2–4). The maximum yield was achieved by using 5 mol % of A and
Et3N as a base (Table 1, entry 4) and the reaction was completed
within 5 h. The use of other inorganic/organic bases such as NaOH
and DBU was examined (Table 1, entries 1 and 2) and was found to
be less effective. Among the other salts examined, 1,3-dimethyl-
1H-imidazol-3-ium iodide (B) afforded 4a in moderate yields
(Table 1, entries 5 and 6) whereas thiazolium salts C and D pro-
vided 4a in low yields even after 20 h (Table 1, entries 7 and 8).
The effectiveness of A perhaps can be accounted by the steric
and electronic properties that tuned its desired reactivity toward
aldehydes after the generation of NHC.8,9

Having established the optimum reaction conditions10 for the
present NHC-mediated process, we then examined the further
application of salt A in this reduction process. Thus a range of
substituted aromatic a-keto esters 2 were employed which pro-
vided the desired alcohols (4) in good to excellent yields (Table
2). As evident from Table 2, various esters, such as methyl, ethyl,
i-propyl, or i-butyl were employed and the presence of substitu-
ents, such as fluoro, chloro, bromo, or methoxy at the phenyl ring
was well tolerated. Notably, the presence of a phenolic group did
Table 1
The NHC-mediated reaction of 1a with 2a in a protic solventa
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1 A (10) NaOH 5 40
2 A (10) DBU 10 80
3 A (10) Et3N 5 90
4 A (5.0) Et3Nb 5 95
5 B (10) DBU 10 50
6 B (10) Et3N 7 70
7 C (10) Et3N 20 40
8 D (10) Et3N 20 35

a The reaction was carried out using 1a (2.83 mmol), 2a (4.24 mmol), NHC ligand
(A–D) and a base (0.42 mmol) in MeOH at 25 �C under nitrogen.

b 0.21 mmol of Et3N was used.
not affect the reduction process and the corresponding alcohol
was isolated in good yield. All the alcohols isolated were well char-
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a The reaction was carried out using 1a (2.83 mmol), 2 (4.24 mmol), NHC ligand A
(0.14 mmol) and Et3N (0.21 mmol) in MeOH (9.0 mL) at 25 �C for 5 h under
nitrogen.

b Isolated yield.



Table 4
Scope of NHC(A)-mediated hydroacylation processa
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1 Ph o-ClC6H4
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Table 3
The reaction of 1b with 2a in the presence of A and Et3N in aprotic solventsa
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Entry Solvent Time (h) Yield (%)

1 CH2Cl2 12 75
2 ClCH2CH2Cl 12 60
3 THF 6 85
4 Acetone 20 10
5 CH3CN 24 20
6 EtOAc 24 10
7 DMF 24 No product

a The reaction was carried out using 1b (2.83 mmol), 2a (4.24 mmol), NHC ligand
A (0.14 mmol) and Et3N (0.21 mmol) in a solvent at 25 �C under nitrogen.

M. Sreenivasulu et al. / Tetrahedron Letters 52 (2011) 727–732 729
acterized by spectral data and each of them was found to be a race-
mic mixture (1:1) of two antipodes as indicated by HPLC study.

Since the use of aprotic solvent such as CH2Cl2 is known to af-
ford hydroacylated product 3, we examined the reaction of 2a with
thiophene-2-carbaldehyde (1b) in the presence of A (5 mol %) and
Et3N in various aprotic solvents including CH2Cl2 (Table 3). Among
all the solvents tested THF was found to be the most effective in
terms of product yield and the reaction was completed within
6 h (entry 3, Table 1). While the use of CH2Cl2 provided satisfactory
yield of the product, the duration of the reaction was 12 h (entry 1,
Table 3). To evaluate the scope of this hydroacylation reaction11

carried out in a non-chlorinated solvent we employed a range of
aldehydes and the corresponding hydroacylated products were ob-
tained in good yields (Table 4). Aldehydes containing either elec-
tron donating or withdrawing groups were found to be equally
effective. Notably, previously reported hydroacylation reaction
mediated by triazolium salt was found to afford lower yields of
products when electron deficient aldehydes were employed.2
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Table 4 (continued)

Entry R1 R2 = R3 = Ester (3) Yieldb (%)
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a The reaction was carried out using 1 (2.83 mmol), 2 (4.24 mmol), NHC ligand A (0.14 mmol) and Et3N (0.21 mmol) in THF (9.0 mL) at 25 �C for 6 h under nitrogen.
b Isolated yield.
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We were able to carry out the present hydroacylation/reduction
process within a shorter period of time, e.g. 5–6 h (vs 9–24 h by
triazolium salt-DBU method)2 without increasing the reaction
temperature. While many organic reactions are performed by pro-
viding an external energy, usually heating, a synthetic process that
does not require external heating is expected to be more practical
and economic. Moreover, such a process is particularly handy for
substrates that are sensitive to heat or occasions where prolonged
heating of the reaction mixture needs to be avoided. A comparison
between the present hydroacylation process and that reported in
the literature (see Supplementary data) revealed that the present
process involves the use of a cheaper and lower quantity of cata-
lyst, a commonly used base and non-chlorinated solvent. The use
of chlorinated solvent is associated with the health hazard and
environmental problem especially when used in large volume in
scale-up synthesis.
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Scheme 2. Keto-reduction and hydroacylation of benzil (5).
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In order to explore the potential of NHC ligand A further we
examined the effect of ligands A–D in the reactions with enolizable
aldehydes or other activated ketones. Thus both the keto-reduction
and hydroacylation processes were examined using benzil and sev-
eral aldehydes such as thiophene-2-carbaldehyde (Scheme 2), 3-
phenylpropanal and propionaldehyde (see Supplementary data).
While the keto-reduction of benzil (5) proceeded well using thio-
phene-2-carbaldehyde (1b) in the presence of all the ligands
(Scheme 2), the reaction provided a mixture of unidentified prod-
ucts when enolizable aldehydes were used. A similar observation
was also noted during the hydroacylation process indicating that
the present method is not effective for enolizable aldehydes. Nev-
ertheless, once again A was found to be the best among the four
NHC ligands tested in terms of product yield.

Mechanistically, the hydroacylation/reduction process proceeds
via a generation of a tetrahedral intermediate X due to the interac-
tion of NHC with an aldehyde 1 (Scheme 3). The presence of bulky
and electron rich 2,4,6-trimethylphenyl moiety facilitated the gen-
eration of NHC in the presence of a milder base such as Et3N. A hy-
dride transfer from X to the a-keto ester 2 (Cannizzaro-type
reaction) provides an acyl heteroazolium species Y and the alcohol
4 via regioselective reduction of the keto group of 2. The alcohol 4
is then O-acylated by Y possessing an acyl iminium moiety respon-
sible for the transfer of acyl group to the hydroxyl moiety. As a re-
sult the NHC is regenerated to complete the catalytic cycle yielding
the hydroacylation product 3. While the formation of alcohol 4 in-
stead of 3 in a protic solvent is not clearly understood at this stage
the transfer of acyl group from Y to the solvent molecules (e.g.
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Scheme 3. Proposed mechanism of NHC-mediated reduction/hydroacylation.2
MeOH that are present in excess) rather than alcohol 4 is more
likely in this case. The reason for THF to serve as a better solvent
than CH2Cl2 is perhaps due to its ability to facilitate the acyl group
transfer from Y to alcohol 4 via transient formation of a THF–acy-
lium complex (the oxygen of THF is very exposed and thus the lone
pairs can easily coordinate to the electron deficient centers).

In conclusion, we have demonstrated that the combination of
1,3-bis(2,4,6-trimethylphenyl)imidazolium chloride (A) and trieth-
ylamine facilitates hydroacylation/reduction of activated ketones
at ambient temperature via generating N-heterocyclic carbene in
situ. The advantages of the present process include the use of (i)
readily available, cheaper and lower quantity of catalyst/base and
(ii) shorter reaction time. Moreover, the hydroacylation reaction
can be carried out efficiently in a non-chlorinated solvent and
was found to be effective for both electron rich and deficient alde-
hydes. The methodology, therefore, has potential to become a prac-
tical alternative to the previously reported method and would find
wide applications.
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