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SYNTHESIS OF PLANAR CHIRAL
[2.2]PARACYCLOPHANYL IMIDAZO[1,5-a]
PYRIDINIUM SALTS FOR THE RHODIUM-
CATALYZED ASYMMETRIC ARYLATION

Dengxia Wang, Yudao Ma, Fuyan He, Wenzeng Duan,
Lei Zhao, and Chun Song
Department of Chemistry, Shandong University, Jinan, Shandong, China

GRAPHICAL ABSTRACT

Abstract Several novel flexibility-restricted imidazo[1,5-a]pyridinium triflates (abbreviated

as imidazolium salts) were synthesized from (4Sp,13Rp)-(�)-4-amino-13-bromo[2.2]

paracyclophane and pyridylaldehyde. These imidazolium salts can be used as nitrogen-

containing heterocyclic carbene precursors in asymmetric catalysis and here they are applied

in the Rh-catalyzed asymmetric 1,2-addition of arylboronic acids to aldehydes. After opti-

mizing the catalytic situations and testing a series of substrates, moderate enantioselectivity

and good yield were obtained.

Keywords Aldehyde; asymmetric arylation; N-heterocyclic carbene; [2.2]paracyclo-

phane; planar chirality

INTRODUCTION

N-Heterocyclic carbenes (NHCs) have emerged during the past two decades as
a new type of stable compound,[1,2] and they have become indispensable ligands in
many kinds of transition-metal catalysis.[3–15] The stabilizing properties of NHCs,
expressed by the strong metal–carbene bond and slow dissociation rate, are the
key factors in most of the reactions using NHC complexes as catalysts.[16] The
structure of NHC is easily modified by changing the substitutuents on the carbene
precursor, allowing the design of new ligands with different geometries.[17–20] Much
work has been devoted to the design and development of carbene compounds
with new structures to tune their steric and electronic properties and also to their
application in organometallic catalysis and organocatalysis.[21–25]
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Chiral diarylmethanols are important intermediates for the synthesis of
biologically and pharmaceutically active compounds.[26–32] The Rh-catalyzed
addition of arylboronic acid derivatives to aldehydes for the synthesis of optically
active diarylmethanols deserves particular mention for its high efficiency and wide
tolerance toward polar substitutuents in the substrate.[4,33–37] However, examples
of using chiral N-heterocyclic carbenes in ligand-catalyzed asymmetric arylation of
aldehydes are rare.[38] Developing new chiral N-heterocyclic carbene ligands and
efficient catalytic systems for the asymmetric 1,2-addition of organoboronic acid
to aldehydes is an important synthetic goal.

The backbone structure of [2.2]paracyclophane and the directing effect of its
substitutuents make it possible to design chiral ligands of essentially different
patterns.[39] Previous [2.2]paracyclophanyl-based ligands included
diphosphanes,[40–43] oxazoline–phosphanes,[44–46] imidazoliniums,[38,47–49]

oxazoline–alcohols,[50–52] and imine ligands.[53–56] However, tailor-made imidazo-
lium salts bearing bulky [2.2]paracyclophane-substituted combinations have been
rarely reported[13,57] and their preparation is still a challenge. The construction of
benzannulated derivatives is a very simple strategy to modify Arduengo’s original
imidazolium (Scheme 1, structure A),[1] as was demonstrated in the bipyridine-
derived imidazolium (Scheme 1, structure B),[21,58] and the monopyridine-derived
imidazolium (Scheme 1, structure B).[22,25] Herein, we report the synthesis of a
new series of NHC precursors, [2.2]paracyclophanyl imidazo[1,5-a]pyridinium
(Scheme 1, structure D), which combines imidazo[1,5-a]pyridine and [2.2]paracyclo-
phane. Then, these NHC precursors were used as ligands for the rhodium-NHC-
catalyzed asymmetric 1,2-addition of arylboronic acids to aldehydes.

RESULTS AND DISCUSSION

Synthesis of N-[(4Sp,13Rp)-13-R-4-[2.2]Paracyclophanyl]-imidazo
[1,5-a]pyridinium Triflates [5a–e]

A range of substituted pyridine-derived NHC precursors was synthesized from
pyridine carboxaldehydes 3 and sterically hindered 4-amino-[2.2]paracyclophane

Scheme 1. Representative N-heterocyclic carbene precursors.
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derivative 2, which was prepared by Suzuki–Miyaura coupling reaction from
(4Sp,13Rp)-4-amino-13-bromo[2.2]paracyclophane and arylboronic compounds.[39]

The condensation of 4-amino[2.2]paracyclophane derivative 2 and pyridine carbox-
aldehyde 3 in toluene afforded the corresponding imine 4 in excellent yield
(Scheme 2).[25] Then, treatment of pyridine imines 4 with a reagent formed from
equal amounts of AgOTf and chloromethyl pivalate in tetrahydrofuran (THF)
resulted in the formation of the desired imidazolium triflates 5a–e in good yields
(Scheme 2).[18] However, imidazolium triflates 5f–g could not be prepared from
4f–g, although we changed the reaction conditions, such as temperature and sol-
vents. Their lack of reactivity may be ascribed to the steric hindrance of the R0 group
at the 6-position of the pyridinyl group.

Catalytic Addition of Arylboronic Acids to Aromatic Aldehydes

Imidazolium salts 5a–e were used as precursors for Rh-NHC complexes and
applied in the catalytic asymmetric addition of arylboronic acids to aromatic
aldehydes (Table 1). To develop an effective Rh-NHC catalysis for the reaction, sev-
eral experimental variables were investigated. Foremost among the factors that can
influence the rate and enantioselectivity of the reaction are the solvents and catalysts.
Therefore, a systematic study of these two variables was performed. The 1,2-addition
of phenylboronic acid to 1-naphthaldehyde with a catalyst generated in situ from
imidazolium salt 5d (3mol%) and [Rh(OAc)2]2 (3mol%) in the presence of KOBu-t

Scheme 2. Synthesis of imidazolium triflates 5.
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was examined in different solvents at 80 �C for 2 h (Table 1). The results showed that
the solvent had a great impact on both the yield and the enantioselectivity of this
catalyzed addition reaction. The rapid rate and good enantioselectivity of the
addition in MeOH=DME (5:1) (Table 1, entry 6) compared to other solvents clearly
identified it as the solvent of choice for this transformation. Next, various precata-
lysts, such as [Rh(nbd)Cl]2, [Rh(COD)Cl]2, RhCl3 � xH2O, and [Ru(p-cymene)Cl2]2
were subjected to the same reaction, but none of them exhibited any catalytic activity.
Then we tested different bases, such as NaOH, K2CO3, and Cs2CO3, in place of
KOBu-t, but none of these bases improved the yield or enantiomeric excess. Finally,
we investigated the effect of the amount of the catalyst on this reaction. The catalytic
activity decreased significantly when the catalyst loading was reduced to 1.0mol%.

Based on these results, we chose MeOH=DME (5:1) as the solvent system,
KOBu-t as the base, and [Rh(OAc)2]2 (3mol%) as the precatalyst. Other imidazo-
lium salts 5a, 5b, 5c, and 5e were screened in the phenylation of 1-naphthaldehyde
(Table 2), which showed that all the Rh-NHC complexes prepared by combining
[Rh(OAc)2]2 with the corresponding imidazolium salts could afford the desired dia-
rylmethanol in good yield and moderate enantioselectivity (Table 2, entries 1, 3, 4
and 5). Among them, imidazolium salt 5d gave the best enantioselectivity. The lowest
ee (Table 2, entry 2), obtained using imidazolium salt 5b, may be explained by too
much congestion around the ligand, preventing complete complexation of the ligand
to the rhodium center. The ligand screening revealed that ligand substitution can
greatly affect the enantioselectivity.

The optimized catalyst system was tested in the asymmetric arylation of
aldehydes with different steric and electronic properties (Table 3). The systemwas com-
patible with a wide variety of functional groups on both reaction partners, and in most
cases, the reaction could proceed with notable efficiency (up to 98% isolated yield) with

Table 1. Solvent effect on the arylationa

Entry Solvent Yield (%)b ee (%)c

1 CH3CN=DME (5:1) 12

2 Pyridine 0

3 DMF 0

4 MeOCH2CH2OH=DME (5:1) 62 16 (R)

5 MeOH=DME (1:1) 98 17 (R)

6 MeOH=DME (5:1) 92 20 (R)

aReaction conditions: [Rh(OAc)2]2 (3mol%), 5d (3mol%), KOBu-t (1 eq), arylboronic acids (2 eq), N2,

80 �C, 2 h.
bIsolated yield.
cDetermined by chiral HPLC (CHIRALPAK IA Columns) analysis.
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Table 3. Evaluation of different reaction partnersa

Entry Ar1 Ar2 Yield (%)b ee (%)c

1 1-naphthyl (6a) Phenyl (7b) 92 (8ab) 20 (R)

2 1-naphthyl (6a) 2-Methoxyphenyl (7c) 98 (8ac) 27 (�)

3 1-naphthyl (6a) 3-Methoxyphenyl (7d) 60 (8ad) 57 (þ)

4 Phenyl (6b) 1-naphthyl (7a) 69 (8ba) 16 (S)

5 2,4,6-trimethylphenyl (6c) 1-naphthyl (7a) 65 (8ca) 30 (�)

6 4-chlorophenyl (6d) Phenyl (7b) 43 (8db) 17 (S)

7 4-chlorophenyl (6d) 2-MethoxyPhenyl (7b) 57 (8dc) 12 (�)

8 4-chlorophenyl (6d) 3-Methoxyphenyl (7d) 62 (8dd) 22 (R)

9 4-chlorophenyl (6d) 1-naphthyl (7a) 88 (8da) 13 (R)

10 2-Methoxyphenyl (6e) Phenyl (7b) 37 (8eb) 24 (R)

11 2-Methoxyphenyl (6e) 1-naphthyl (7a) 76 (8ea) 10 (þ)

12 4-(methoxylcarbonyl)phenyl (6f) 1-naphthyl (7a) 79 (8fa) 18 (þ)

13 4-(methoxylcarbonyl)phenyl (6f) Phenyl (7b) 93 (8fb) 45 (�)

14 4-(methoxylcarbonyl)phenyl (6f) 2-Methoxyphenyl (7c) 97 (8 fc) 22 (�)

15 4-(methoxylcarbonyl)phenyl (6f) 3-Methoxyphenyl (7d) 85 (8fd) 32 (þ)

aReaction conditions: [Rh(OAc)2]2 (3mol%), ligand 5d (3mol%), KOBu-t (1 eq), arylboronic acids (2

eq), N2, MeOH=DME (5:1), reflux, 2 h.
bIsolated yield.
cDetermined by chiral HPLC (CHIRALPAK IA Columns) analysis.

Table 2. Evaluation of ligand effectsa

Entry Ligand Yield (%)b ee (%)c

1 5a 89 14.5 (R)

2 5b 45 0.8 (S)

3 5c 76 16 (R)

4 5d 92 20 (R)

5 5e 87 18 (R)

aReaction conditions: [Rh(OAc)2]2 (3mol%), ligand 5 (3mol%), KOBu-t (1 eq), arylboronic acids (2 eq),

N2, MeOH=DME (5:1), reflux, 2 h.
bIsolated yield.
cDetermined by chiral HPLC (CHIRALPAK IA Columns) analysis.
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a catalyst generated in situ from the same amount of imidazolium salt 5d (3mol%) and
[Rh(OAc)2]2 (3mol%). The substitution of the substrate has an important effect on the
enantioselectivity of the catalytic reaction. Aromatic aldehydes or arylboronic acids
bearing meta-substituents afforded chiral diarylmethanols with greater enantiomeric
excess than those bearing ortho-substituents (Table 3, entries 2 and 3, 7 and 8, and
14 and 15). An interesting feature of this methodology is that in most cases both enan-
tiomers of a given diarylmethanol can be easily prepared with the same chiral ligand,
just by appropriate choice of the reaction partners—the arylboronic acid and aldehyde.

CONCLUSIONS

A new type of planar-chiral NHC precursor, 2H-imidazo[1,5-a]pyridin-4-ium
triflate, has been synthesized in good yield from 4-amino-13-bromo[2.2]paracyclo-
phane and pyridylaldehyde. Their application in rhodium-catalyzed asymmetric
1,2-additions of arylboronic acids to aromatic aldehydes has been demonstrated.
The system was shown to be widely compatible with many functional groups in both
reaction partners and the enantiomeric excess of the corresponding diarylmethanols
reached 57%. Future investigations are in progress, aiming at modification of the
[2.2]paracyclophane-based NHC ligands to improve the catalytic performance in
terms of activity and enantioselectivity.

EXPERIMENTAL

All nonaqueous reactions were carried out in flame-dried glassware under a
slight positive pressure of nitrogen. THF, dioxane, dimethoxyethane (DME), and
toluene were dried by sodium benzophenone ketyl and distilled under nitrogen before
use. CH2Cl2 was dried by P2O5 and distilled under nitrogen before use. Other
commercially available solvents were used without further purification. Commer-
cially available reagents were used without further purification unless otherwise
noted. (4Sp,13Rp)-4-Amino-13-bromo[2.2]paracyclophane 1 and (4Sp,13Rp)-4-amino-
12-aryl-[2.2]paracyclophane 2were prepared according to the literature procedures.[49]

Pyridylaldehyde 3 was purchased from J&K Chemical Ltd. Reactions were magneti-
cally stirred and monitored by thin-layer chromatography (TLC) on silica-gel
0.25-mm precoated plates. All thin-layer chromatography (TLC) plates were visua-
lized by ultraviolet (UV) fluorescence quenching. Yields refer to chromatographically
and spectroscopically pure material unless otherwise noted. Melting points were
recorded on a melting-point apparatus and are uncorrected. 1H and 13C NMR spectra
were recorded on a 300-MHz spectrometer. Chemical shifts were reported as d values
in parts per million (ppm) and were referenced to residual solvent signals: CDCl3 (H
7.26 ppm and C 77.0 ppm) and dimethylsulfoxide (DMSO-d6) (H 2.50 and C 39.5)
using tetramethylsilane (TMS) as an internal standard. Data are reported as [d shift]
([s¼ singlet, d¼ doublet, t¼ triplet, q¼ quartet, m¼multiplet]). The electropray
ionization–mass spectrometry (ESI-MS) spectra were recorded on a mass spec-
trometer. Optical rotations were measured on a polarimeter with a wavelength of
589 nm: the concentration ‘‘c’’ has units of g=100mL unless otherwise noted. Enantio-
meric and diastereomeric analyses were determined by chiral high-performance liquid
chromatography (HPLC) (Chiralpak IA column).
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General Procedure for the Synthesis of Planar Chiral (4,13)-
Disubstituted [2.2]Paracyclophanyl Imidazo[1,5-a]pyridinium Triflate
5a–e

4-Amino-[2.2]paracyclophane derivative 1 or 2 (1mmol) and pyridylaldehyde 3
(1.1mmol) were dissolved in dry toluene (4mL), and anhydrous MgSO4 (240mg,
2mmol) was added as dehydration agent. The resulting mixture was heated to
90 �C for 30–60min. After filtration of MgSO4, evaporation of the solvent in vacuo,
and crystallization from EtOH, imine 4 was obtained as a yellow solid (yield >90%).

To a suspension of AgOTf (308mg, 1.2mmol) in THF (2mL), chloromethyl
pivalate (170 mL, 1.2mmol) was added and the resulting suspension was stirred in a
sealed tube in the dark at 40 �C for 1 h. Then imine 4 (0.9mmol) was added to the
tube. The resulting mixture was stirred at 40–80 �C for 5–6 h. After the suspension
was cooled to room temperature, the solvent was removed in vacuum. The resulting
oil was chromatographed on silica gel (2.5� 20 cm, CH2Cl2=MeOH¼ 50:1 to 10:1),
and the pure product was isolated. The resulting foam was crystallized from EtOH
to give imidazolium triflate 5 as colorless crystals.

Imidazolium triflate 5a. Compound 4a: 95.5% yield. Compound 5a: 84%
yield. Mp: 229–231 �C (decomp), Rf¼ 0.45 (CH2Cl2=MeOH¼ 10:1); ½a�20D ¼þ113.9
(c 0.13, DMSO); 1HNMR (300MHz, DMSO, rt): d 10.10 (s, 1 H), 8.54 (d, J¼ 1.5Hz,
Hz, 1 H), 7.80 (d, J¼ 9.0Hz, 1 H), 7.67 (d, J¼ 7.2Hz, 1 H), 7.47 (s, 1 H), 7.36 (d,
J¼ 6.3Hz, 2 H), 7.22 (dd, J¼ 9.3Hz, J¼ 7.2Hz, 1 H), 7.11–6.98 (m, 6 H), 6.89 (d,
J¼ 7.8Hz, 1 H), 6.77 (d, J¼ 7.8Hz, 1 H), 3.15–3.35 (m, 8 H); 13C NMR (75MHz,
DMSO, rt): d 142.7, 140.0, 139.5 139.2, 138.2, 136.9, 136.5, 135.9, 134.1, 132.8,
132.1, 131.1, 131.0, 128.8, 128.5, 127.4, 126.5, 126.0, 125.4, 123.1, 121.1 (q,
J¼ 319Hz), 118.1, 116.7, 112.6, 34.9, 34.6, 34.4, 34.3. HRMS (ESI): calcd for
C29H24BrN2 (M–OTf)þ 479.1123; found 479.1118.

Imidazolium triflate 5b. Compound 4b: 92% yield. Compound 5b: 78% yield.
Mp: 146–148 �C (decomp), Rf¼ 0.44 (CH2Cl2=MeOH¼ 10:1); ½a�20D ¼þ69.9 (c 0.39,
CHCl3);

1H NMR (300MHz, CDCl3, rt): d 8.98 (s, 1 H), 8.28 (s, 1 H), 7.83 (d,
J¼ 9.3Hz, 1 H), 7.76 (d, J¼ 8.4Hz, 2 H), 7.54 (d, J¼ 8.1Hz, 1 H), 7.49 (s, 1 H),
7.39–7.23 (m, 5 H), 7.08–7.03 (m, 1 H), 6.91–6.78 (m, 6 H), 3.33–3.14 (m, 6 H),
2.91–2.87 (m, 2 H); 13C NMR (75MHz, CDCl3, rt): d 143.7, 140.5, 138.0, 137.7,
137.6, 137.2, 135.7, 135.0, 133.8, 133.1, 132.6, 132.5, 132.0, 131.6, 130.5, 128.5,
128.4, 127.1, 126.5, 126.0, 125.7, 125.4, 124.2, 124.1, 122.7, 121.0 (q, J¼ 318Hz),
118.2, 116.8, 111.7, 35.1, 34.9, 34.6, 33.2. HRMS (ESI): calcd. for C33H26BrN2 (M–
OTf)þ 529.1279; found 529.1266.

Imidazolium triflate 5c. Compound 4c: 97.2% yield. Compound 5c: 92%
yield. Mp: 215–217 �C (decomp), Rf¼ 0.47 (CH2Cl2=MeOH¼ 10:1); ½a�20D ¼þ83.7
(c 0.47, CHCl3);

1H NMR (300MHz, CDCl3, rt): d 10.57 (s, 1 H), 8.84 (d, J¼ 7.2Hz,
Hz, 1 H), 7.77 (s, 1 H), 7.67 (d, J¼ 9.3Hz, 1 H), 7.33 (s, 1 H), 7.25–7.20 (m, 1 H),
7.12–7.04 (m, 2 H), 6.78–6.65 (m, 4 H), 3.50–2.80 (m, 8 H); 13C NMR (75MHz,
CDCl3, rt): d 142.8, 142.6, 138.0, 137.5, 136.4, 136.1, 135.5, 134.1, 131.6, 131.5,
129.6, 126.4, 125.3, 125.2, 124.5, 124.4, 120.7 (q, J¼ 319Hz), 118.3, 114.3, 36.9,
34.8, 34.2, 28.6. HRMS (ESI): calcd. for C23H20BrN2 (M–OTf)þ 403.0810; found
403.0816.
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Imidazolium triflate 5d. Compound 4d: 93.4% yield. Compound 5d: 86%
yield. Mp: 208–211 �C (decomp), Rf¼ 0.42 (CH2Cl2=MeOH¼ 10:1); ½a�20D ¼þ62.1
(c 0.12, CHCl3);

1H NMR (300MHz, CDCl3, rt): d 9.82 (s, 1 H), 8.43 (d, J¼ 1.2Hz,
Hz, 1 H), 7.84 (d, J¼ 9.3Hz, 1 H), 7.41 (s, 1 H), 7.32 (d, J¼ 6.9Hz, 1 H), 7.10 (dd,
J¼ 9.3Hz, J¼ 7.2Hz, 1 H), 6.97 (s, 1 H), 6.69–6.63 (m, 3 H), 6.48 (d, J¼ 7.8Hz, 1
H), 3.46–3.08 (m, 6 H), 2.92–2.78 (m, 2 H); 13C NMR (75MHz, CDCl3, rt): d
142.7, 137.8, 137.4, 136.5, 136.1, 135.4, 133.9, 131.8, 131.5, 130.8, 126.3, 126.1,
125.2, 124.7, 124.5, 122.6, 120.9 (q, J¼ 319Hz), 118.3, 117.7, 112.5, 36.9, 34.5,
34.1, 28.6. HRMS (ESI): calcd. for C23H19Br2N2 (M–OTf)þ 480.9909; found
.480.9918.

Imidazolium triflate 5e. Compound 4e: 96.0% yield. Compound 5e: 95%
yield. Mp: 214–215 �C (decomp), Rf¼ 0.47 (CH2Cl2=MeOH 10:1); ½a�20D ¼�26.7 (c
2.21, CHCl3);

1H NMR (300MHz, CDCl3, rt): d 9.36 (s, 1 H), 8.68 (s, 1 H), 8.11
(d, J¼ 9.0Hz, 1 H), 7.42 (d, J¼ 7.2Hz, 1 H), 7.26–7.18 (m, 1 H), 7.04 (s, 1 H),
6.87 (d, J¼ 7.8Hz, 1 H), 6.72–6.63 (m, 3 H), 6.55 (d, J¼ 7.8Hz, 1 H), 6.50–6.47
(d, J¼ 8.1Hz, 1 H), 3.42–2.89 (m, 7 H), 2.74–2.71 (m, 1 H); 13C NMR (300MHz,
CDCl3, rt): d 144.0, 140.3, 138.4, 137.4, 136.2, 133.9, 133.4, 132.8, 132.5, 132.3,
128.6, 127.3, 125.1, 124.6, 123.0, 119.1, 116.8, 35.0, 34.8, 34.5, 31.9. HRMS (ESI):
C23H20BrN2 (M–OTf)þ 403.0810; found 403.0796.

General Procedure for the Solvent Effect on the Arylation (Table 1)

[Rh(OAc)2]2 (3.3mg, 7.5� 10�3mmol, 3mol%) was weighted into a flame-dried
tube equipped with a condenser under an argon atmosphere. The solvent (1.0mL)
was added and the suspension was stirred at room temperature for 5min. Then,
NHC precursor 5d (4.8mg, 7.5� 10�3mmol, 3mol%), phenylboronic acid
(61.0mg, 0.50mmol), KOBu-t (28.0mg, 0.25mmol, 1 eq), and 1-naphthaldehyde
(34.0mg, 0.25mmol) were successively added. The resulting mixture was stirred at
80 �C for 3 h. The reaction mixture was concentrated under reduced pressure, and
the residue was purified by chromatography (ethyl acetate = hexane), yielding the
desired secondary alcohol as a yellowish oil, which crystallized upon standing at
low temperature (�4 �C in the refrigerator).

General Procedure for the Evaluation of Ligand Effects (Table 2)

[Rh(OAc)2]2 (3.3mg, 7.5� 10�3mmol, 3mol%) was weighted in a flame-dried
tube equipped with a condenser under an argon atmosphere. MeOH=DME (5:1)
(1.0mL) was added, and the suspension was stirred at room temperature for 5min.
Then, NHC precursor 5 (7.5� 10�3mmol, 3mol%), phenylboronic acid (61.0mg,
0.50mmol), KOBu-t (28.0mg, 0.25mmol), and 1-naphthaldehyde (34.0mg,
0.25mmol) were successively added. The resulting mixture was stirred at reflux for
3 h. The reaction mixture was concentrated under reduced pressure, and the
residue was purified by chromatography (ethyl acetate = hexane), yielding the desired
secondary alcohol as a slightly yellow oil, which crystallized upon standing at low
temperature (�4 �C in the refrigerator).
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General Procedure for the Evaluation of Different Reaction Partners
(Table 3)

[Rh(OAc)2]2 (3.3mg, 7.5� 10�3mmol, 3mol%) was weighted into a flame-
dried tube equipped with a condenser under an argon atmosphere. MeOH=DME
(5:1) (1.0mL) was added, and the suspension was stirred at room temperature for
5min. Then, NHC ligand precursor 5d (4.8mg, 7.5� 10�3mmol, 3mol%) arylboro-
nic acid (0.50mmol), KOBu-t (28.0mg, 0.25mmol), and aryl aldehyde (0.25mmol)
were successively added. The resulting mixture was stirred at reflux for 3 h. The reac-
tion mixture was concentrated under reduced pressure, and the residue was purified
by preparative thin, layer chromatography (ethyl acetate = hexane), yielding the
desired secondary alcohol as a yellowish oil, which crystallized upon standing at
low temperature (�4 �C in the refrigerator).

(1-Naphthyl)phenylmethanol (8ab and 8ba)

R-(þ)-8ab. Yield 92%; ½a�20D ¼þ5.5 (c 0.5, CHCl3) with 20% ee. The ee value
was determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
18.8min (minor) and 20.1min (major).

S-(–)-8ba. Yield 69%; ½a�20D ¼�4.2 (c 0.5, CHCl3) with 16% ee. The ee value
was determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
18.7min (major) and 20.0min (minor).

1H NMR (300MHz, CDCl3, rt): d 8.03 (d, J¼ 3.3Hz, 1 H), 8.01–7.80 (m, 2 H),
7.64 (d, J¼ 6.9Hz, 1 H), 7.50–7.35 (m, 5 H) 7.34–7.24 (m, 3 H), 6.53 (s, 1 H), 2.35 (s,
1 H). 13C NMR (75MHz, CDCl3, rt): d 143.1, 138.7, 133.9, 130.7, 128.8, 128.6,
128.5, 127.7, 127.06, 126.1, 125.6, 125.3, 124.6, 123.9, 73.6. HRMS (ESI): calcd.
for C17H13 (M–OH)þ 217.1017; found 217.1022.

(1-Naphthyl) (2-methoxyphenyl)methanol (8ac and 8ea)

(–)-8ac. Yield 98%; ½a�20D ¼�14.7 (c 0.6, CHCl3) with 27% ee; The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column, n-
hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
15.6min (minor) and 18.3min (major).

(þ)-8ea. Yield 76%; ½a�20D ¼þ4.9 (c 0.6, CHCl3) with 10% ee; The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column, n-
hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
13.7min (major) and 14.7min (minor).

1H NMR (300MHz, CDCl3, rt): d 8.00 (d, J¼ 7.8Hz 1 H), 7.86–7.78 (m, 2 H),
7.65 (d, J¼ 7.2Hz, 1 H), 7.50–7.38 (m, 3 H) 7.28–7.23 (m, 1 H), 6.96–6.78 (m, 4 H),
3.89 (s, 3 H), 3.05 (s, 1 H). 13C NMR (75MHz, CDCl3, rt): d 156.9, 138.0, 133.7, 131.3,
131.0, 129.0, 128.6, 128.4, 125.9, 125.5, 125.4, 124.3, 124.2, 120.8, 110.5, 101.1, 72.6,
68.4, 55.5. HRMS (ESI): calcd. for C18H15O (M–OH)þ 247.1123; found 247.1116.
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(1-Naphthyl) (3-methoxyphenyl)methanol 8ad

(þ)-8ad: Yield 60%; ½a�20D ¼þ34 (c 0.4, CHCl3) with 57% ee; The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column, n-
hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254nm), retention times
29.8min (minor) and 32.3min (major). 1H NMR (300MHz, CDCl3, rt): d 8.06–8.03
(m, 1 H), 7.86–7.78 (m, 2 H), 7.60 (d, J¼ 7.2Hz, 1 H), 7.48–7.40 (m, 3 H),
7.25–7.20 (m, 1 H), 6.98–6.98 (m, 1 H), 6.80 (d, J¼ 8.1Hz, 1 H), 6.49 (s, 1 H), 3.75
(s, 3 H), 2.36 (s, 1 H). 13C NMR (75MHz, CDCl3, rt): d 159.8, 144.8, 138.7, 133.9,
130.7, 129.5, 128.8, 128.5, 126.2, 125.6, 125.3, 124.7, 123.9, 119.4, 113.0, 112.7, 73.5,
55.2. HRMS (ESI): calcd. for C18H15O (M–OH)þ 247.1123; found 247.1118.

(2-Methoxyphenyl)phenylmethanol (8eb)

R-(þ)-8eb: 95% yield; ½a�20D ¼þ9.3 (c 0.4, CHCl3) with 24% ee; The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column, n-
hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
13.2min (minor) and 14.1min (major). 1H NMR (300MHz, CDCl3, rt): d
7.39–7.26 (m, 7 H), 6.95–6.85 (m, 2 H), 6.04 (d, J¼ 4.5Hz, 1 H), 3.78 (s, 3 H),
3.05 (s, 1 H). 13C NMR (75MHz, CDCl3, rt): d 156.7, 143.3, 132.0, 128.7, 128.1,
127.8, 127.1, 126.6, 120.8, 110.8, 72.1, 55.4. HRMS (ESI): calcd. for C14H13O (M–
OH)þ 197.0966; found 197.0960.

(4-Chlorophenyl)(1-naphthyl)methanol (8da)

R-(–)-8da: 88% yield; ½a�20D ¼�10.2 (c 07, CHCl3) with 13% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column, n-
hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm); retention times
23.8min (major) and 25.1min (minor).

1H NMR (300MHz, CDCl3, rt): d 7.95–7.76 (m, 3 H), 7.51–7.20 (m, 8 H), 6.37
(s, 1 H), 2.56 (s, 1 H). 13C NMR (75MHz, CDCl3, rt): d 141.6, 138.4, 134.0, 133.3,
130.6, 128.8, 128.7, 128.6, 128.3, 126.3, 125.7, 125.3, 124.8, 123.8, 73.0. HRMS (ESI):
calcd for C17H12Cl (M–OH)þ 251.0628, found 251.0622.

(4-Chlorophenyl) (2-methoxyphenyl)methanol (8dc)

(–)-8dc: 57% yield; ½a�20D ¼�4.5 (c 0.7, CHCl3) with 12% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
15.1min (major) and 15.9min (minor). 1H NMR (300MHz, CDCl3, rt): d
7.32–7.19 (m, 6 H), 6.96–6.85 (m, 2 H), 6.00 (s, 1 H), 3.79 (s, 3 H), 3.03 (s, 1 H).
13C NMR (75MHz, CDCl3, rt): d 156.6, 141.9, 132.8, 131.5, 128.9, 128.2, 127.9,
127.7, 120.9, 110.8, 71.6, 55.4. HRMS (ESI): calcd. for C14H12ClO (M–OH)þ

231.0577; found 231.0573.
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(4-Chlorophenyl) (3-methoxyphenyl)methanol (8dd)

R-(–)-8dd: 62% yield; ½a�20D ¼�1.6 (c 1.2, CHCl3) with 22% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
33.1min (major) and 36.1min (minor). 1H NMR (300MHz, CDCl3, rt): d
7.33–7.21 (m, 5 H), 6.91–6.79 (m, 3 H), 5.76 (s, 1 H), 3.77 (s, 3 H), 2.27 (s, 1 H).
13C NMR (75MHz, CDCl3, rt): d 159.8, 145.0, 142.1, 133.3, 129.6, 127.8, 118.8,
113.1, 112.1, 75.5, 55.2. HRMS (ESI): calcd for C14H12ClO (M–OH)þ 231.0577,
found 231.0579.

(4-Chlorophenyl) Phenylmethanol (8db)

S-(–)-8db: 43% yield; ½a�20D ¼þ5.7 (c 0.36, CHCl3) with 24% ee. The ee value
was determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
19.6min (minor) and 23.4min (major). 1H NMR (300MHz, CDCl3, rt): d
7.35–7.25 (m, 9 H), 5.81 (s, 1 H), 2.23 (s, 1 H); 13C NMR (75MHz, CDCl3, rt): d
143.4, 142.2, 133.3, 128.7, 128.6, 127.9, 127.86, 126.5, 75.6. HRMS (ESI): calcd.
for C13H12ClO (MþH)þ 219.0532; found 219.0249.

(1-Naphthyl)(2,4,6-trimethylphenyl)methanol (8ca)

(–)-8ca: 65% yield; ½a�20D ¼�12.4 (c 1.1, CHCl3) with 30% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=chloroform¼ 3:1, flow 1.0mL=min, detection at 254 nm), retention times
24.9min (major) and 26.2min (minor). 1H NMR (300MHz, CDCl3, rt): d 8.22 (d,
J¼ 3.3Hz, 1 H), 7.89 (d, J¼ 5.2Hz, 1 H), 7.87 (d, J¼ 6.9Hz, 1 H), 7.80–7.86 (m,
7 H) 6.53 (s, 1 H), 2.30 (s, 9 H), 2.15 (s, 1 H); 13C NMR (75MHz, CDCl3, rt): d
137.2, 137.1, 137.06, 135.4, 134.1, 131.5, 130.4, 128.8, 128.5, 126.2, 125.6, 125.1,
125.0, 124.4, 70.9, 21.2, 20.9. HRMS (ESI): calcd. for C20H19 (M–OH)þ 259.1487;
found 259.1493.

(1-Naphthyl) [4-(methoxylcarbonyl)phenyl] Methanol (8fa)

(þ)-8fa: 79% yield; ½a�20D ¼þ11.6 (c 0.45, CH2Cl2) with 18% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=i-propanol¼ 4:1, flow 1.0mL=min, detection at 254 nm), retention times
15.7min (major) and 18.0min (minor). 1H NMR (300MHz, CDCl3, rt): d
8.04–8.00 (t, 1 H), 7.97 (d, J¼ 6.0Hz, 2 H), 7.87–7.80 (m, 2 H), 7.53–7.40 (m, 6 H),
6.53 (s, 1 H), 3.87(s, 3 H), 2.55 (s, 1 H); 13C NMR (75MHz, CDCl3, rt): d 166.9,
148.2, 138.3, 134.1, 130.6, 129.8, 129.3, 128.9, 128.8, 126.8, 126.3, 125.8, 125.3,
125.2, 123.9, 73.5, 52.1. HRMS (ESI): calcd. for C19H15O2 (M-OH)þ 275.1072; found
275.1079.
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[4-(Methoxylcarbonyl)phenyl]phenylmethanol (8fb)

(–)-8fb: 93% yield; ½a�20D ¼�12.2 (c 0.38, CH2Cl2) with 45% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=i-propanol¼ 4:1, flow 1.0mL=min, detection at 254 nm), retention times
13.2min (major) and 14.3min (minor). 1H NMR (300MHz, CDCl3, rt): d
8.05–7.97 (m, 3 H), 7.98–7.81 (m, 2 H), 7.54–7.40 (m, 6 H), 6.55 (s, 1 H), 3.88 (s, 3
H), 2.50 (d, J¼ 3.0Hz, 2 H); 13C NMR (75MHz, CDCl3, rt): d 166.9, 148.1, 138.3,
134.1, 130.6, 129.8, 129.3, 128.9, 126.8, 126.4, 125.8, 125.3, 125.2, 123.9, 73.6, 52.1.
HRMS (ESI): calcd. for C15H13O2 (M-OH)þ 225.0916; found 225.0910.

(2-Methoxyphenyl)[4-(methoxylcarbonyl)phenyl]methanol (8fc)

(–)-8 fc: 97% yield; ½a�20D ¼�9.2 (c 0.25, CH2Cl2) with 22% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=i-propanol¼ 4:1, flow 1.0mL=min, detection at 254 nm), retention times
14.7min (major) and 16.2min (minor). 1H NMR (300MHz, CDCl3, rt): d
8.00–7.97 (d, 2 H), 7.47 (d, J¼ 9.0Hz, 2 H), 7.31–7.20 (m, 2 H), 6.97–6.88 (m, 2
H), 6.08 (s, 1 H), 3.90 (s, 3 H), 3.80 (s, 3 H), 3.08 (s, 1 H); 13C NMR (75MHz, CDCl3,
rt): d 156.7, 148.5, 131.4, 129.5, 129.1, 128.9, 127.9, 126.4, 120.9, 110.9, 72.1, 55.4,
52.0. HRMS (ESI): calcd. for C16H15O3 (M-OH)þ 255.1021; found 255.1010.

(3-Methoxyphenyl)[4-(methoxylcarbonyl)phenyl]methanol (8fd)

(þ)-8fd: 85% yield; ½a�20D ¼þ20.1 (c 0.23, CH2Cl2) with 32% ee. The ee value was
determined by HPLC analysis using a chiral column (Chiralpak IA column,
n-hexane=i-propanol¼ 4:1, flow 1.0mL=min, detection at 254 nm), retention times
16.4min (major) and 20.0min (minor). 1H NMR (300MHz, CDCl3, rt): d 7.99 (d,
J¼ 6.0Hz, 2 H), 7.46 (d, J¼ 6.0Hz, 2 H), 7.28–7.22 (m, 1 H), 6.92 (d, J¼ 6.0Hz, 2
H), 6.83–6.79 (m, 1 H), 5.84 (s, 1 H), 3.89 (s, 3 H), 3.77 (s, 3 H), 2.38 (s, 1 H); 13C
NMR (75MHz, CDCl3, rt): d 166.9, 159.9, 148.5, 144.9, 129.8, 129.7, 129.3, 126.3,
118.9, 113.3, 112.2, 75.8, 55.2, 52.1. HRMS (ESI): calcd. for C16H15O3 (M-OH)þ

255.1021; found 255.1031.
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