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An efficient and good yield synthesis of the cyclo-
hexane moiety of enacyloxins, a series of antibiotics
isolated from Frateuria sp. W-315, was achieved
from D-quinic acid using a successive Barton–
McCombie deoxygenation.

Key words: enacyloxin; antibiotics; Barton–McCombie
deoxygenation; D-quinic acid

Enacyloxins (ENXs) are unique polyhydroxy-poly-
enic and yellow-colored antibiotics produced by Frate-
uria sp. W-315 in a Czapek-Dox medium spent by
Neurospora crassa.1) ENXs show antibiotic activity
against Gram-positive and Gram-negative bacteria, but
inactive for yeast and fungi.1,2) Its mode of action was
considered to be an inhibition of peptide biosynthesis
by hindering the release of EF-Tu GDP from the ribo-
some.3) Furthermore, ENXs have attracted considerable
attention because of the inhibitory activity toward orga-
nelle protein synthesis in Plasmodium falciparum.4)

The whole stereochemistry of ENXs [ENX IVa (1)]
was elucidated by our synthetic5–7) and spectroscopic
studies,8) and Parmeggiani’s X-ray crystallographic
analysis of the Escherichia coli EF-Tu/guanylyl imin-
odiphosphate-ENX IIa (2) complex.3) In spite of these
unique properties, synthetic study other than by our
group has not been reported yet. On the continuation
of our chemical works on ENXs,5–7,9,10) we attempted
to improve the synthesis of the cyclohexane moiety 3.
Although our previous synthesis had led us to deter-
mine its (1S,3R,4S) stereochemistry, it suffered from
the long synthetic sequence from tri-O-acetyl-D-glucal
and non-stereoselective intramolecular alkylation.5)

Synthetic trial via cis-dihydroxylation of 3-cyclohexen-
ecarboxylate derivatives resulted in formation of diaste-
reomeric mixtures (Furukawa H and Kiyota H,
unpublished results) (see Scheme 1).

Our new synthesis of the cyclohexane moiety 3
started with D-quinic acid (4) because of its stereo-
chemical similarity.11) According to published proce-
dures, acid-catalyzed reaction of 4 in acetone led to

form lactone ring as well as isopropylidene acetal in
high yield (5).12) Then radical-mediated deoxygenation
of the tertiary hydroxy group was achieved via imidaz-
ole-type thiocarbamate13) with retention of the C1 con-
figuration to give the known lactone 6 in 72% yield.14)

Ring-opening of the lactone ring of 6 was performed
using sodium methoxide to give methyl ester 7 in 86%.
The second two-step reductive deoxygenation of 7
afforded 8 in 93% yield. Then hydrolysis of the acetal
group in 8 with aqueous trifluoroacetic acid gave the
target cyclohexane moiety 3 of ENXs in 87% yield.
The overall yield was 55% in 7 steps from D-quinic
acid (4). To confirm the stereochemistry, 3 was con-
verted to the corresponding dibenzoate 9.5) The physi-
cochemical and spectroscopic data of 9 are identical
with those reported by us.5)

In summary, the short, efficient, and facile synthesis
of the cyclohexane moiety of enacycloxins, a series of
polyhydroxy-polyenic antibiotics produced by Frateuria
sp. W-315, was achieved using Barton–McCombie
deoxygenation as the key steps from D-quinic acid (see
Scheme 2).

Experimental

Optical rotation values were measured by a Horiba
Sepa-300 polarimeter. FT-IR spectra were recorded as
films by a Jasco 4100 spectrometer (ATR, Zn-Se). 1H
and 13C NMR spectra were recorded with Agilent
NMR System 600 (600MHz for 1H) and 400-MR
(400MHz for 1H and 100MHz for 13C) spectrometers
in CDCl3 with tetramethylsilane (δH 0 ppm) and CHCl3
(δC 77 ppm) as internal standards. Mass spectra (FAB)
were recorded with a Jeol JMS-700 spectrometer.
Merck silica gel 60 (70–230 mesh) was used for col-
umn chromatography.

(1S,3R,4R,5R)-3,4-O-Isopropylidenedioxycyclohexane-
1,5-carbolactone (6). To a suspension of 5 (500 mg,
2.3 mmol) in dry 1,2-dichloroethane (6.7 mL) was added
thiocarbonyldiimidazole (530 mg, 2.9 mmol, 1.3 eq) and
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Scheme 1. Enacyloxin IIa (1), IVa (2), and retrosynthesis of the cyclohexane fragment 3 from D-quinic acid (4).
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Scheme 2. Synthesis of 3. Reagents and conditions: (a) Sanchez-Abella’s procedure;12) (b) (i) Im2C = S, imidazole, ClCH2CH2Cl, reflux; (ii)
Bu3SnH, AIBN, xylene, reflux (72%); (c) NaOMe, MeOH, 20 °C (86%); (d) (i) Im2C = S, imidazole, ClCH2CH2Cl, reflux; (ii) Bu3SnH, AIBN,
xylene, reflux (93%); (e) TFA, H2O, 0 °C (87%); (f) see lit.5) (37%).
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imidazole (240 mg, 3.5 mmol, 1.5 eq) at 20 °C and the
reaction mixture was stirred under reflux for 3 h after
being cooled to 20 °C, the reaction mixture was concen-
trated and diluted by 50% of 2-butanone in acetonitrile.
The dilute was concentrated to give crude thiocarbamate
as an orange amorphous solid.

N2 gas was passed through a dry xylene (86 mL)
solution of the crude thiocarbamate and AIBN (16 mg,
0.092 mmol, 0.04 eq) for 5 min. To this was added tri-
butyltin hydride (1.3 mL, 5.0 mmol, 2.2 eq) and the
mixture was stirred under reflux for 1.5 h, and then
cooled to 20 °C. The solvent was evaporated under
reduced pressure, and the residue was purified by silica
gel column chromatography (hexane-diethyl ether,
15:1–6:1) and recrystallization (hexane-diethyl ether) to
give 6 (323 mg, 1.7 mmol, 72%) as a white amorphous
solid; mp 95–96 °C [Lit.:14) 96–98 °C (hexane-diethyl
ether), ½a�22D −36.3° (c 2.2, CHCl3) [Lit.:14) −36.2°
(c 2.2, CHCl3)].

The spectroscopic data were in good agreement with
those reported.14)

Methyl (1S,3R,4S,5R)-5-Hydroxy-3,4-O-isopropyli-
dendioxycyclohexanecarboxylate (7). To a solution of
lactone 6 (380 mg, 1.9 mmol) in anhydrous methanol
(4.6 mL) was added dropwise a solution of sodium
methoxide (57 mg, 2.5 mmol) in anhydrous methanol
(8.5 mL) over 30 min at 0 °C, and the mixture was neu-
tralized with AcOH. Then, to this was added an aque-
ous saturated solution of NaHCO3 and the mixture was
extracted with CH2Cl2. The combined organic fraction
was dried over Na2SO4, and concentrated under
reduced pressure. The residue was purified by silica gel
column chromatography (hexane-ethyl acetate, 5:1) to
give 7 (380 mg, 1.6 mmol, 86%) as a colorless
oil; ½a�24D −71.7° (c 1.0, CHCl3). IR νmax cm−1: 3466
(s, O–H), 2952 (m), 1730 (s, C=O), 1240 (m, C–O),
1055 (m, C–O). NMR (400MHz): δH 1.37 (6 H, s,
gem-CH3), 1.49 (1 H, dd, J = 13.4, 8.0 Hz, H-6), 1.88
(1 H, ddd, J = 15.3, 12.0, 3.8 Hz, H-2), 2.12 (1 H, dd,
J = 13.4, 4.0 Hz, H-6), 2.35 (1 H, ddd, J = 15.3, 6.0,
1.9 Hz, H-2), 2.74 (1 H, dddd, J = 12.0, 8.0, 4.0, 3.0
Hz, H-1), 3.70 (3 H, s, OCH3), 3.75 (1 H, m, H-5),
3.84 (1 H, dd, J = 12.4, 6.0 Hz, H-4), 4.37 (1 H, m, H-
3). NMR (100MHz): δC 25.99, 28.17, 28.78, 32.60,
36.03, 51.91 (OMe), 71.44, 72.98, 107.89 (Me2C),
175.20 (C-1). MS: m/z: 95, 155, 173 [M + H –
CO2Me]+, 215 [M + H – OH]+, 231 [M + H]+. HRMS
m/z ([M + H]+): Calcd. for C11H19O5: 231.1233; Found:
231.1232.

Methyl (1S,3R,4S)-3,4-O-Isopropylidenedioxycyclo-
hexanecarboxylate (8). To a suspension of 7 (380
mg, 1.6 mmol) in dry 1,2-dichloroethane (7.8 mL) was
added thiocarbonyldiimidazole (380 g, 2.1 mmol, 1.3
eq) and imidazole (220 mg, 3.2 mmol, 2 eq) at 20 °C
and the reaction mixture was stirred under reflux for 3
h. After being cooled to 20 °C, the reaction mixture
was concentrated under reduced pressure and diluted
by 50% of 2-butanone in acetonitrile. The dilute was
concentrated under reduced pressure to give crude thio-
carbamate as an orange amorphous solid.

N2 gas was passed through a dry toluene (31 mL)
solution of the crude thiocarbamate and AIBN (5.5 mg,
0.033 mmol, 0.02 eq) for 5 min. To this was added tri-
butyltin hydride (0.49 mL, 1.8 mmol, 1.1 eq) and the
mixture was stirred under reflux for 1.5 h, and then
cooled to 20 °C. The solvent was evaporated under
reduced pressure, and the residue was purified by silica
gel column chromatography (hexane-diethyl ether,
10:1) to give 8 (320 mg, 1.5 mmol, 93%) as a colorless
oil; ½a�23D −10.3° (c 2.0, CHCl3). IR νmax cm−1: 2953
(m), 1730 (s, C=O), 1217 (m, C–O), 1040 (m, C–O).
NMR (400MHz): δH 0.92 (2 H, t, J = 7.3 Hz, H-6),
1.34 (6 H, s, gem-CH3), 1.45 (1 H, m, H-5), 1,65 (1 H,
m, H-5), 1.85 (1 H, ddd, J = 15.3, 11.3, 4.1 Hz, H-2),
2.19 (1 H, ddd, J = 15.3, 4.1, 3.5 Hz, H-2), 2.68 (1 H,
m, H-1), 3.68 (3 H, s, OCH3), 4.11 (1 H, dd, J = 11.8,
5.0 Hz, H-4), 4.30 (1 H, ddd, J = 5.0, 3.5, 4.1 Hz, H-3).
NMR (100MHz): δC 23.51, 25.88, 27.80, 28.04, 29.13,
36.37, 51.69 (OMe), 72.40, 73.02, 107.93 (Me2C),
175.94 (C-1). MS m/z: 175, 177, 179, 185 [M + H –
OMe]+, 199 [M + H – Me]+, 216 [M + H]+. HRMS m/z
([M + H]+): Calcd. for C11H19O4: 215.1283; Found:
215.1285.

Methyl (1S,3R,4S)-3,4-Dihydroxycyclohexanecarbox-
ylate (3). Cooled TFA/H2O (1:1) solution (2.0 mL)
was added to 8 (130 mg, 0.57 mmol) at 0 °C and the mix-
ture was stirred for 1 h at 0 °C. Then the reaction mixture
was allowed to warm to 20 °C and concentrated under
reduced pressure. The residue was purified by silica gel
column chromatography (hexane-ethyl acetate, 1:1) to
give 3 (86 mg, 0.49 mmol, 87%) as a colorless oil; ½a�23D
–1.8° (c 1.0, CHCl3). IR νmax cm

−1: 3419 (s, O–H), 2950
(m), 2361 (s), 1725 (s, C=O), 1212 (m, C–O), 1065 (m,
C–O). NMR (600MHz): δH 1.49 (1 H, ddd, J = 16.8,
13.3, 11.2 Hz, H-6), 1.68 (1 H, ddd, J = 13.0, 11.4, 2.4
Hz, H-2), 1.73 (1 H, m, H-5), 1.98 (1 H, ddd, J = 16.8,
4.0, 2.4 Hz, H-6), 2.14 (1 H, ddd, 13.3, 13.0, 4.1 Hz, H-
5), 2.18 (1 H, m, H-2), 2.72 (1 H, dddd, J = 15.1, 11.4,
11.2, 4.0 Hz, H-1), 3.65 (1 H, m, H-4), 3.67 (3 H, s,
OCH3), 4.01 (1 H, m, H-3). NMR (100MHz): δC 26.04,
27.61, 32.95, 36.38, 51.72 (OMe), 68.56, 70.73, 176.18
(C=O). MS m/z: 97, 125, 137, 154, 175 [M + H]+.
HRMS m/z ([M + H]+): Calcd. for C8H15O4: 175.0970;
Found: 175.0971.

Methyl (1S,3R,4S)-3,4-Dibenzoyloxycyclohexanecarb
oxylate (9). 9 was obtained as a colorless oil in 37%
from 3 according to our reported procedure; ½a�22D
−30.2° (c 0.54, CHCl3). [Lit.:5) −36.8° (c 0.54,
CHCl3)].
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