

Tetrahedron 55 (1999) 12577-12594

TETRAHEDRON

Syntheses of 6,12-Disubstituted 5,11-Dihydroindolo[3,2b]carbazoles, Including 5,11-Dihydroindolo[3,2b]carbazole-6,12-dicarbaldehyde, an Extremely Efficient Ligand for the TCDD (Ah) Receptor

Joakim Tholander and Jan Bergman*

Department of Chemistry, Royal Institute of Technology, S-100 44 Stockholm, Sweden and Department of Organic Chemistry, KI, Biosciences at Novum, S-141 57 Huddinge, Sweden

Received 22 April 1999; revised 3 August 1999; accepted 19 August 1999

Abstract:

Symmetrically and unsymmetrically 6,12-disubstituted 5,11-dihydroindolo[3,2-b]carbazoles have been synthesized via a range of methods: a) double Fischer indolization of the bis-phenylhydrazone of 2,5-dimethyl-1,4-cyclohexanedione, b) condensation of indole with aliphatic aldehydes, and c) Pd-mediated cyclization of a diphenyl phenylenediamine derivative. Most notably, 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarbaldehyde has been synthesized, whereby a previously assigned structure has been confirmed. This compound is an extremely efficient ligand for the TCDD (Ah) receptor. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: polycyclic heterocyclic compounds, dimerisation, indoles, indolisation

1. Introduction

The TCDD (2,3,7,8-tetrachlorodibenzo-*p*-dioxin 1) receptor is a ubiquitous intracellular protein in virtually all rodent tissues or human cells examined.¹ Another name for the same receptor commonly used in the literature is the aryl hydrocarbon (Ah) receptor protein.

Upon binding to a proper ligand the resulting receptor-ligand complex is translocated to the nucleus where activation of transcription of several genes will take place. These genes encode

proteins involved in metabolism of xenobiotica and in cell growth and differentiation. Most notably, cytochrome P-4501A1 (CYP1A1), considered to play a major role in the activation of procarcinogens, is induced by TCDD-like substances.^{1a,b,2} The hitherto known ligands of the receptor include polychlorinated aromatic hydrocarbons (*e.g.* 1), polycyclic aromatic hydrocarbons, and 5,11-dihydroindolo[3,2-*b*]carbazole 2.³ Since it was shown in 1970 that 2 could be formed from indole-3-carbinol⁴ 3 and thereby have dietary origin⁵ (3 is prevalent in cruciferous vegetables such as cabbage and brussels sprouts), it has been the subject of a number of papers. More recently it has been demonstrated that 3 can be transformed into 2 also in *in vivo* systems.⁶

The importance of the signal pathways involving the TCDD receptor in mammals, including man, can hardly be overestimated. Recent data appear to favour a physiological role for the TCDD receptor in addition to its function in xenobiotic metabolism:⁷ TCDD receptor deficient mice have a low survival rate and show impaired development of the liver and the immune system.⁷ A physiological ligand of the receptor has not yet been found, but the search is on. Studies in rats have indicated that UV light induces CYP1A1 in the skin⁸ and in the liver.⁹ Of the UV-absorbing amino acids, tryptophan is among the most strong-absorbing.¹⁰ Two of the many products formed when UV-irradiating an aqueous solution of tryptophan possess extremely high affinity for the TCDD receptor.¹¹ The compounds were assigned¹² the structures 4 and 5 and the identity of the former has recently been confirmed by an independent synthesis.¹³ Compound 4 is especially intriguing as it binds 5-8 times as strong to the receptor (K_d 7×10⁻¹¹) as TCDD itself. The synthesis of 4 has now made animal studies possible, aiming at further investigating receptor function and if 4 could in fact be an endogenous ligand to the receptor.

So, is 4 an endogenous ligand to the TCDD receptor? To test that hypothesis we were interested in creating antibodies to 4 for detecting minute quantities of it (and probably 5) in biological systems. In this article we want to describe some work regarding our attempts to synthesize the dialdehyde 5 and at this stage the perhaps more important unsymmetrical 6 or a protected version thereof. The assigned structure of compound 5 still needs to be confirmed, and the unsymmetrical 6 could potentially be coupled to a solid phase to give 7 and as such be used as hapten for the creation of antibodies to the monoaldehyde derivative 4.

2.1 Dimerization of indol-2-ylmethanols

Among the syntheses of 6,12-disubstituted indolo[3,2-b]carbazoles in the literature,¹⁴ Katritzky's dimerization of 2-(benzotriazol-1-ylalkyl)indoles 8 to various 6,12-disubstituted indolo[3,2-b]carbazoles under Lewis acidic conditions^{14a} is notable (Scheme 1).

Scheme 1

Cheng has similarly dimerized 9 to give indolo[3,2-b]carbazoles 10 and 11 in fair total yields^{14b} (Scheme 2).

Compound 11 can be considered as a precursor to the desired dialdehyde 5, requiring oxidative cleavage of the alkene side chains, but the multi-step route to 9 was not very attractive from our point of view, so this approach was not considered further. However, the dimerization principle in the examples above seemed to be a very appealing way of synthesizing symmetrical indolo[3,2-b]carbazoles and we therefore decided to try a variant of it (Scheme 3).

It must be pointed out that the dimerization in this case will not be as favoured as in the examples shown above: the developing cation can no longer be stabilized by an extra electrondonating group (Bt, alkyl respectively). Nevertheless, we decided to try it as the reaction would give us a big advantage by directly establishing carbonyl groups in the desired 6- and 12positions.

The hydroxy aldehyde 12 (X = H) seemed hard to obtain, but hydroxy <u>esters</u> 13 (X = OR) might be produced by the addition of 2-lithiated indole (a well-known nucleophile) to a suitable glyoxylate; it should then be possible to transform the resulting indolocarbazole diester 14 into the required dialdehyde 5. Furthermore, the diester 14 is itself of interest for ligand studies.

For the glyoxylate addition we chose to use the excellent Katritzky protocol¹⁵ where CO₂ is used as a readily removed protecting/directing group which essentially makes it possible to perform protection-addition-deprotection in one pot. As can be seen in Scheme 4, such additions gave good yields of hydroxy esters 13 which are difficult to obtain by other methods.

For the dimerization experiments we chose to use the ethyl ester which should give simpler NMR spectra. However, despite extensive experimentation trying a wide range of conditions, not more than minor amounts (3-4 %) of the desired diester 14a could occasionally be found (apart from the established procedures mentioned above, p-TsOH, Yb(OTf)₃, CH₃CN, iso-PrCN, dioxane, toluene, and various temperatures were used in a multitude of combinations). When monitoring the attempted dimerization reactions (TLC), it was found that in all cases approximately the same temperature (50°C) was needed to start the reaction. Indications are (unpublished results) that the coupling product 15 is formed, but to a very small extent undergoes cyclization to tetrahydroindolo[3,2-b]carbazole 16 despite its favoured character, 6-*Exo-Tet* according to the Baldwin classification.¹⁶ Instead oligomers seemed to be formed as a result of intermolecular reactions (Scheme 5).

This would be consistent with the reported¹⁷ oligomerization of hydroxy ester 17, a regioisomer of 13, to give the polymeric pigment 18, which is claimed to give urine its colour (Scheme 6).

Under two conditions, (1) refluxing iso-PrCN with *p*-TsOH as catalyst (2) dioxane with Yb(OTf)₃ as catalyst at 50°C, we obtained somewhat larger yields ($\approx 20-25$ %) of a compound that we first thought was the dimer tetrahydroindolo[3,2-*b*]carbazole 16 or possibly the corresponding trimer¹⁸ of 13a. However, a mass spectrum of the product revealed that the α -keto ester 19¹⁹ had been formed, something which could be confirmed by DDQ-oxidation of the hydroxy ester 13a (Scheme 7).

In control experiments in the absence of acid no α -keto ester 19 was formed from the hydroxy ester 13a, implying that the oxidation is acid-mediated.

The difficulties encountered made us turn to another strategy.

2.2 Double Fischer indolization of bis-phenylhydrazones of 1,4-cyclohexanediones

The classical method for synthesizing the parent 5,11-dihydroindolo[3,2-b]carbazole 2 is by a double Fischer indolization of the *bis*-phenylhydrazone of cyclohexane-1,4-dione.²⁰ Unfortunately, synthesis of the dialdehyde 5 from the *bis*-phenylhydrazone dialdehyde 20 using the same approach is not an option. Compound 20 is not only difficult to prepare, but it would also undergo the same fate as *bis*-phenylhydrazone 21, namely intramolecular ring closure: the formation of imidazolones (to *bis*-imidazolone 22 in the case of 21) when reacting β -keto esters with phenylhydrazines is well known.²¹

Therefore, we reasoned that it should be more sensible to run a Fischer indolization with the dimethyl-*bis*-phenylhydrazone 23 (easily prepared from 2,5-dimethylcyclohexane-1,4-dione²²) as substrate with the aim of preparing the unfunctionalized dimethylindolocarbazole 24: double benzylic oxidation of this molecule might then give us the desired dialdehyde 5. So, the dimethyl-*bis*-phenylhydrazone 23 was prepared and underwent cyclization under appropriate acidic conditions²⁰ to 24 (Scheme 8).

The extreme insolubility of 24 made it difficult to perform further synthetic transformations, but we nevertheless made some attempts. For example, oxidation with CAN gave a plethora of products as indicated by the ¹H NMR spectrum of the crude product. It is not hard to imagine that the amine hydrogens of the molecule can take part in the reaction – the oxidation of indolocarbazole 2 to corresponding azaquinone is known²³ – so it seemed reasonable to find a suitable protecting group for this functionality. Such a protecting group would preferably also be a bulky one, disrupting the stacking of 24 and thereby conferring some solubility to the molecule: this would hopefully give us greater flexibility in the choice of reaction conditions for the oxidation. After much experimentation, it was found that the Boc group seemed to to fulfil the requirements (Scheme 8).²⁴ The Boc groups made the dihydroindolo[3,2-*b*]carbazole system more soluble in CH₂Cl₂ (somewhat) and THF (readily), and also demonstrated reasonable stability towards silica gel, which could be of importance for column chromatography. However, all our attempts to transform the methyl groups of 25 into formyl groups (CAN, NBS-bromination followed by hydrolysis *etc.*) have so far failed.

2.3 Acid-catalyzed condensation of indole with aliphatic aldehydes

In the context of this work we also re-investigated condensations of indole with aldehydes induced by sulfuric acid in hot methanol.¹⁸ By this route large amounts of *e.g.* indolo[3,2-*b*]carbazole **26a** can be prepared¹⁸ (Scheme 9). This reaction has not yet been extended to aliphatic aldehydes (except formaldehyde^{4,18}), probably because all potential explorers have foreseen problems with self-condensations (which certainly is true for acetaldehyde: not even a trace of the desired dimethylindolocarbazole **24** was produced). However, with the relatively hindered iso-butyraldehyde, an excellent yield (80 %) of **26b** could quickly be obtained. Likewise, condensation of indole with pentanal readily gave **26c** in high yield. As a comparison, it can mentioned that compound **26b** has been prepared before *via* a lengthy route involving Fischer indolization (and decarboxylation) of the relatively sophisticated precursor **27**,²⁵ and compound **26c** from a 2-(benzotriazol-1-ylmethyl)indole^{14a} (*vide supra*).

These results spurred us to investigate whether it might be possible to condense indole with aldehydes such as ethyl glyoxylate, glycolic aldehyde, chloroacetaldehyde, or glyoxal to obtain 6,12-difunctionalized indolo[3,2-b]carbazoles. However, these experiments have been a complete disappointment: we have just obtained complex mixtures which are probably due to trapping reactions of the indole dimer **28** formed under the strongly acidic conditions. In this context it should be mentioned that Hasselström²⁶ has reported the condensation of indole with glyoxal under acidic conditions and claimed the isolation of tetraindolylethylene **29**. We have not been able to reproduce this preparation and any dialdehyde **5** could, as previously mentioned, not be detected.

2.4 Pd-mediated cyclization of an ester-substituted diphenyl phenylenediamine

Pd-mediated cyclizations of diphenylamines to carbazoles²⁷ are known, but (to the best of our knowledge) no attempts to synthesize indolocarbazoles in this fashion have been reported. The precursor in our case would preferably be the diester **30** (aldehydes are usually decarbonylated by Pd), which has been known since 1914.²⁸ This diester turned out to be an excellent substrate for the Pd-mediated cyclization,^{27a} giving **14a** in 83 % yield (Scheme 10).

A direct conversion of the diester 14a into the dialdehyde 5 failed: reduction with DIBAL could not be stopped at the aldehyde stage but proceeded to the dialcohol (at ca. -50° C). Therefore, we decided to try to reach the target *via* the dialcohol. So, the diester 14a was conveniently reduced with LAH to give the dialcohol 31 in 76 % yield. We soon discovered that this dialcohol was very difficult to dissolve in most solvents (warm dioxane and DMSO being exceptions), severely limiting the options available for oxidation. In this context the use of the pyridine-SO₃ complex²⁹ seemed to be an attractive alternative. This is a very mild Swern-type method sometimes used in syntheses of natural products.³⁰ However, this type of transformation did not succeed, but gave intractable mixtures.

As a solution to the solubility problem we considered protecting the nitrogens of the diester 14a and selectively reducing the ester groups to obtain the indolocarbazole 32: our experience told us that 32 might be relatively soluble in CH_2Cl_2 or THF, common solvents for many types of oxidations.

So, the diester 14a was protected with Boc-groups to give 33 in 94 % yield using the standard conditions (see Experimental section). It is worth mentioning that the nucleophilicity of the sterically hindered nitrogens in 14a was somewhat surprising considering that complete Bocylation of the diphenyl phenylenediamine 30 to 34 required 10 equivalents of Boc₂O and a stoichiometric amount of DMAP at reflux temperature (toluene-THF) (Scheme 11).

Scheme 11

We now tried various ways to reduce the esters of the indolocarbazole 33 selectively to produce the dialcohol 32, but the results were consistently all or nothing. DIBAL – under appropriate conditions³¹ known to reduce esters, but not carbamates – did not affect the diester 33 at all, even at reflux temperatures. In contrast, LiAlH₄ gave a completely unselective reduction/de-protection already at 0°C. Different tactics were apparently needed.

During the course of the LAH-reduction of the diester 14a we had found that it was possible to stop the reduction at an intermediate stage, and the monoalcohol 35 could be isolated in a 91 % yield (Scheme 12).

Scheme 12

The monoalcohol 35, in contrast to the dialcohol 31, was relatively soluble in organic solvents, so we decided to use it as a model for further oxidation experiments. We found that DDQ was an excellent reagent for oxidation of 35 giving the aldehyde 36 in 87 % yield. The selective monoreduction also gave us good access to a type of unsymmetrically 6,12-substituted dihydroindolo[3,2-b]carbazoles which we had planned to use for antibody-creation (see Introduction). Suitable transformations of 35 before or after attachment to the solid phase should give us the type of hapten 7 we need. At this stage we at least had a potential model system to work with: 37 (coupling of 35 to a proper solid phase) might be used to create antibodies, which then can be tested against both the diester 14a and the previously made monoester $38.^{13b}$

Compound 36 once again showed the importance of bulkier groups for conferring solubility to 5,11-dihydroindolo[3,2-b]carbazoles: the monoaldehyde 36 had much more limited solubility than, for example, the monoalcohol 35 or the diester 14a. Nevertheless, the dialcohol 31 was now given the same DDQ-treatment as the monoalcohol 35 in order to produce the dialdehyde 5. After suitable work-up, the raw product was derivatized with Boc-groups (this has been used to our advantage before^{13b}) and the desired dialdehyde could be isolated as its di-Boc derivative 39 in a 65 % yield in 2 steps (Scheme 13). The Boc-groups of 39 could be removed quantitatively in a final step by heating at reduced pressure^{13b} to leave the pure dialdehyde 5.

The analytical data of the obtained compound were in all aspects identical to those of the authentic sample,¹² whose assigned structure thus could be confirmed. Furthermore, this method allows the preparation of sufficient amounts of the dialdehyde 5 for further probing the TCDD receptor.

We are currently seeking ways to make the synthesis of the diester 14a catalytic in Pd, making this entry into the indolo[3,2-b]carbazole field more attractive. Work on coupling of unsymmetrical indolo[3,2-b]carbazoles (such as the monoalcohol 35) to a proper solid phase for antibody-creation is also in progress.

3. Conclusions

In summary, we have synthesized various 6,12-substituted 5,11-dihydroindolo[3,2-b]carbazoles, most notably 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarbaldehyde 5, an extremely efficient ligand for the TCDD receptor. We have also synthesized the unsymmetrical ethyl 12-(hydroxymethyl)-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate 35 and ethyl 12-formyl-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate 35 and ethyl 12-formyl-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate 36, both intriguing starting points for coupling to a solid phase with the aim of creating antibodies against 5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate 5,11-dihydroindolo[3,2-b]carbazoles was diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate 14a, produced by a Pd-mediated coupling of diethyl 2,5-dianilinoterephthalate 30. Efficient syntheses of symmetrically 6,12-dialkylsubstituted 5,11-dihydroindolo[3,2-b]carbazoles by condensation of indole with aldehydes (alkyl = iso-Pr, n-Bu) and by a double Fischer indolization (alkyl = Me) have also been developed.

4. Experimental section

With the following exceptions all reagents and solvents were purchased from commercial suppliers and used without further purification: ethyl and menthyl glyoxylate were kindly donated by Hoechst (France). Ethyl glyoxylate was delivered as a solution in toluene (50 % w/w) and was refluxed for 3 h before use to effect depolymerization; menthyl glyoxylate was delivered as a white solid (crystallized as a hydrate) and was therefore refluxed for 3 h in toluene in a Dean-Stark apparatus to remove the crystal water. Toluene was thereafter evaporated and the white, solid residue was used for the reaction; 2,5-dimethylcyclohexane-1,4-dione²² and diethyl 1,4-cyclohexanedione-2,5-dicarboxylate³² were synthesized according to known procedures; THF was distilled from Na/benzophenone, and distilled solvents were used for flash chromatography. The petroleum ether used for chromatography had the boiling point range 60-80°C. Silica gel (230-400 mesh) for column chromatography and TLC plates were purchased from Merck. Experiments involving dry solvents were performed under N_2 using oven-dried glassware. The expression "evaporation of solvent(s)" refers to the use of a rotatory evaporator at 30°C at reduced pressure. NMR experiments were performed on a Bruker DPX300 instrument. IR spectra were recorded on a Perkin-Elmer FT-IR 1600 spectrophotometer. Melting points (uncorrected) were determined on an Electrothermal IA9020 digital melting point apparatus and occasionally on a Kofler Hotbench (Leica VM HB) when appropriate. The microanalyses were performed by H. Kolbe Mikroanalytisches Laboratorium, Mülheim an der Ruhr, Germany. High resolution mass spectroscopy (HRMS) experiments were performed by Sveriges Lantbruksuniversitet (SLU), Uppsala, Sweden.

Ethyl 2-hydroxy-2-(1H-2-indolyl)acetate (13a)

Indole (1.172 g, 10 mmol) was dissolved in dry THF (20 mL) under N₂. The solution was cooled to -78 °C and n-BuLi (12.5 mmol, 5.0 mL, 2.5 M in hexane) was added dropwise during 10 min. The lithium salt precipitated within 5-10 min. 1.5 h after the last drop of n-BuLi had been added the solution was protected with a drying tube and CO₂ was bubbled through the mixture during 20 min. A clear solution was obtained almost immediately, whereupon the solution was allowed to stir for 30 min to let most of the dissolved CO₂ evaporate. A vacuum pump was now connected to the system to remove the solvent (to ensure complete removal of CO_2). After pumping for 30 min at -78 °C the CO_2 -EtOH-bath was replaced with an ordinary ice-bath to remove the solvent completely. Freshly distilled THF (20 mL) was added to dissolve the solid residue and the solution was once again cooled to -78 °C. t-BuLi (12.5 mmol. 7.4 mL, 1.7 M in hexane) was added dropwise during 10 min to the stirred solution, with a colour change from yellow to deep orange. 1 h after the addition of t-BuLi ethyl glyoxylate (3.063 g, 15 mmol, 50% w/w in toluene) was added in one portion and then stirred for 2 h at -78°C before quenching with saturated, aqueous NH4Cl (1 mL). The solution was then warmed to room temperature and diluted with CH₂Cl₂ (100 mL). The organic phase was washed consecutively with water (30 mL) and brine (40 mL) before drying (MgSO₄). After filtering off MgSO₄, the solvents were evaporated and the residue was purified by column chromatography (ethyl acetate-petroleum ether gradient, 0-50 %) to give a yellowish sticky solid 13a (1.342 g. 61 %). An analytical sample was obtained as shiny, white crystals by recrystallization from toluene-petroleum ether (50 %), mp 84.5-85.5°C.

¹H NMR (CDCl₃, 300 MHz) δ 8.63 (br s, 1H, NH), 7.61 (d, 1H, J = 7.8 Hz), 7.35 (d, 1H, J = 8.0 Hz), 7.21 (dd, 1H, J = 7.7, 7.7 Hz), 7.13 (dd, 1H, J = 7.7, 7.7 Hz)), 6.56 (s, 1H), 5.44 (s, 1H), 4.41 (m, 2H), 3.70 (br s, 1H, OH), 1.32 (t, 3H, J = 7.1 Hz).

¹³C NMR (CDCl₃, 75 MHz) δ 172.4 (s), 136.2 (s), 134.5 (s), 128.3 (s), 122.6 (d), 120.9 (d), 120.2 (d), 111.3 (d), 101.1 (d), 68.0 (d), 62.9 (t), 14.3 (q).

IR (KBr) 3422, 3370, 1732, 1455, 1292, 1217, 1081, 737 cm⁻¹.

Anal. calcd. for C12H13NO3: C: 65.74; H: 5.98; N: 6.39. Found: C: 65.71; H: 5.89; N: 6.32.

Menthyl 2-hydroxy-2-(1H-2-indolyl)acetate (13b)

The same procedure was used as for 13a. In this case menthyl glyoxylate (2.65 g, 12.5 mmol) was the electrophile and 13b (1.916 g 58 %) was isolated as a yellowish sticky solid (mixture of two diastereomers: \approx 1:1 according to ¹H NMR). An analytical sample was obtained as a shiny, white, fibrous solid by recrystallization from toluene-petroleum ether (50 %), mp 149.5-154.5°C.

¹H NMR (CDCl₃, 300 MHz) δ 8.46 (br s, 0.5H, N*H*), 8.39 (br s, 0.5H, N*H*), 7.60 (d, 0.5H, J= 8.1 Hz), 7.58 (d, 0.5H, J = 7.9 Hz), 7.37 (d, 0.5H, J = 8.9 Hz), 7.34 (d, 0.5H, J = 8.9 Hz), 7.23-7.07 (m, 2H), 6.54 (br s, 1H), 5.41 (s, 0.5H), 5.38 (s, 0.5H), 4.93-4.74 (m, 1H), 3.46 (br s, 1H, OH), 2.13-0.72 (m, 15H), 0.61 (d, 1.5H, J = 6.9 Hz), 0.50 (d, 1.5H, J = 6.8 Hz). IR (KBr) 3445, 3411, 2955, 2868, 1721, 1456, 1289, 1213, 1200, 1080 cm⁻¹.

Anal. calcd. for C₂₀H₂₇NO₃: C: 72.92; H: 8.26; N: 4.25. Found: C: 72.79; H: 8.36; N: 4.21.

Ethyl 2-(1H-2-indolyl)-2-oxoacetate (19)

Ethyl 2-hydroxy-2-(1*H*-2-indolyl)acetate **13a** (99 mg, 0.45 mmol) was dissolved in dioxane (2 mL) at room temperature. DDQ (112 mg, 0.495 mmol) dissolved in dioxane (5 mL) was added

dropwise during 5 min. Initially, the solution darkened, but with time a sand-colured precipitate was formed. After 1 h the reaction was complete as judged by TLC (CH₂Cl₂). The solvent was evaporated and the residue purified by column chromatography to give pure **19** (90 mg, 92 %) as a bright-yellow powder, mp 79.5-80.5°C.

¹H NMR (DMSO- d_6 , 300 MHz) δ 12.17 (br s, 1H, NH), 7.76 (d, 1H, J = 8.1 Hz), 7.58 (s, 1H), 7.48 (d, 1H, J = 8.4 Hz), 7.37 (dd, 1H, J = 8.2, 8.2 Hz), 7.12 (dd, 1H, J = 8.2, 8.2 Hz), 4.41 (q, 2H, J = 7.1 Hz), 1.36 (t, 3H, J = 7.1 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 176.3 (s), 162.3 (s), 139.1 (s), 131.8 (s), 127.3 (d), 126.9 (s), 123.5 (d), 121.0 (d), 114.9 (d), 113.0 (d), 62.2 (t), 13.9 (q).

IR (KBr) 3394, 1728, 1645, 1618, 1523, 1339, 1281, 1219, 1156, 1140, 1047, 756, 742, 649 cm⁻¹.

HRMS (EI+), calcd for C₁₂H₁₁NO₃: 217.0739. Found: 217.0738.

2,5-Dimethylcyclohexane-1,4-dione bis-phenylhydrazone (23)

Phenylhydrazine (2.14 g, 19.8 mmol) was dissolved in EtOH (20 mL). 2,5-Dimethylcyclohexane-1,4-dione²² (1.24 g, 9.0 mmol) was added followed by 3 drops of AcOH. The orange solution was then warmed to reflux and a thick yellow precipitate was soon formed. The suspension was refluxed for 2-3 min before being allowed cool. Pure 23 (2.70 g, 94 %) was filtered off as a light-yellow powder, mp 169-185°C (a mixture of isomers). IR (KBr) 3352, 2975, 2960, 2924, 1597, 1502, 1308, 1251, 1132, 1087, 1062, 751, 693 cm⁻¹.

6,12-Dimethyl-5,11-dihydroindolo[3,2-b]carbazole (24)

2,5-Dimethylcyclohexane-1,4-dione *bis*-phenylhydrazone 23 (4.50 g, 14.0 mmol) was added in portions to a solution of conc. H₂SO₄ (8 mL) in AcOH (20 mL) at 30°C. The red solution obtained was allowed to reach 60°C in 10 min, whereupon a precipitate started to form. The solution was now warmed towards 80°C and at 60°C a thick beige precipitate began to form. The mixture was now stirred at 70-75°C for 15 min and then allowed to cool. After 24 h ethanol (20 mL) and water (10 mL) were added and the precipitate was collected, washed with ethanol and dried to give 24 (3.20 g, 80 %) as a greyish powder. An analytical sample was obtained as light-yellow, shiny flakes by sublimation, mp 296-298°C.

¹H NMR (DMSO- d_6 , 300 MHz) δ 10.83 (s, 2H), 8.25 (d, 2H, J = 7.8 Hz), 7.52 (d, 2H, J = 8.0 Hz), 7.38 (dd, 2H, J = 7.7, 7.7 Hz), 7.14 (dd, 2H, J = 7.7, 7.7 Hz), 3.21 (s, 6H).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 141.2 (s), 134.4 (s), 124.4 (d), 123.5 (s), 121.9 (d), 120.2 (s), 117.4 (d), 110.2 (d), 109.5 (s), 14.1 (q).

IR (KBr) 3421, 1614, 1540, 1459, 1376, 1336, 1324, 1302, 1258, 1108, 1020, 741 cm⁻¹. Anal. calcd. for C₂₀H₁₆N₂: C: 84.48; H: 5.67; N: 9.85. Found: C: 84.52; H: 5.58; N: 9.95.

Di(tert-butyl) 6,12-dimethyl-5,11-dihydroindolo[3,2-b]carbazole 5,11-dicarboxylate (25)

6,12-Dimethyl-5,11-dihydroindolo[3,2-b]carbazole 24 (0.284 g, 1.00 mmol) was suspended in dry THF (20 mL) under N₂. Boc₂O (0.655 g, 3.00 mmol) was added followed by DMAP (27 mg, 0.22 mmol). The suspension gradually became thinner as starting material was consumed and product went into solution. After 24 h the reaction was complete as judged by TLC (10 % ethyl acetate-petroleum ether) and the solvent was evaporated. The residue was purified by column chromatography (CH₂Cl₂-petroleum ether, 0-50 %) which gave pure 25 (0.388 g, 80%) as shiny off-white crystals, mp 231°C (de-Boc-ylation; this process is gradual, so the melting

point given was determined on a Kofler Hotbench in such a way that the crystals were rapidly moved towards ever-higher temperatures until a complete, immediate melt was observed). ¹H NMR (CDCl₃, 400 MHz) δ 8.20 (2×d, 4H, J = 7.9 Hz), 7.47 (dd, 2H, J = 7.8, 7.8 Hz), 7.39 (dd, 2H, J = 7.8, 7.8 Hz), 2.89 (s, 6H), 1.71 (s, 18H).

¹³C NMR (CDCl₃, 100 MHz) δ 151.5 (s), 141.6 (s), 136.9 (s), 127.7 (s), 126.3 (d), 126.0 (s), 123.0 (d), 122.8 (d), 118.5 (s), 115.3 (d), 83.7 (s), 28.3 (q), 19.2 (q).

IR (KBr) 2977, 1729, 1442, 1368, 1354, 1283, 1266, 1251, 1222, 1149, 1079, 766, 744 cm⁻¹. HRMS (EI+), calcd for C₃₀H₃₂N₂O₄: 484.2362. Found: 484.2342.

6,12-Diisopropyl-5,11-dihydroindolo[3,2-b]carbazole (26b)

To a solution of indole (11.72 g, 0.1 mol) and iso-butyraldehyde (7.21 g, 0.1 mol) dissolved in methanol (400 mL) concentrated sulfuric acid (10 mL) was carefully added. The mixture was heated at reflux for 4 h and then allowed to cool. The mixture was now concentrated to appoximately 100 mL and a greyish solid (15.35 g) was collected. The filtate was poured into water (400 mL) to give an additional solid, which was washed consecutively with 5 % aqueous Na₂CO₃ and water before being dried. This solid crystallized from CH₃CN to give **26b** (2.95 g). The less pure first solid was now given the same treatment as the second and the pure material already obtained were used as seed crystals. A total of 13.50 g (80 %) of **26b** was finally obtained, mp 330-333°C (Lit.²⁵ 340 °C).

The spectral data were identical with those already reported²⁵ except that the signal from the NH in the ¹H NMR spectrum appeared at δ 10.5 rather than at δ 9.2.

6,12-Dibutyl-5,11-dihydroindolo[3,2-b]carbazole (26c)

The same procedure as for **26b** was used to give **26c** (72 %) as white crystals, mp 290-291°C (Lit.^{14a} 287-290 °C).

The spectral data were identical with those already reported.^{14a}

Diethyl 2,5-dianilinoterephthalate (30)

A modification of the method of Liebermann²⁸ was used. Diethyl 1,4-cyclohexanedione-2,5dicarboxylate³² (1.025 g, 4 mmol) was suspended in AcOH (12 mL) in a wide-necked flask without a reflux condenser (to give access to air) and aniline (0.894 g, 9.6 mmol) was added. The suspension was heated to 100°C whereupon a red solution was obtained and after about an hour red crystals started to precipitate. The mixture was kept at 100°C during 12 h to assure that the dihydro intermediate was completely oxidized to the target compound. After cooling the mixture was filtered to give pure **30** (1.40 g, 87 %) as dark-red crystals, mp 146-147.5°C (Lit. 143 °C²⁸, 144-146 °C³³).

¹H NMR (CDCl₃, 300 MHz) δ 8.81 (br s, 2H, N*H*), 8.06 (s, 2H), 7.33 (dd, 4H, J = 8.0 Hz), 7.20 (d, 4H, J = 8.5 Hz), 7.01 (t, 2H, J = 7.3 Hz), 4.34 (q, 4H, J = 7.1 Hz), 1.36 (t, 6H, J = 7.1 Hz).

¹³C NMR (CDCl₃, 75 MHz) δ 167.7 (s), 142.4 (s), 137.9 (s), 129.6 (d), 122.0 (d), 119.6 (d), 119.5 (s), 119.0 (d), 61.5 (t), 14.4 (q).

IR (KBr) 3354, 2972, 1687, 1600, 1586, 1541, 1497, 1434, 1410, 1255, 1216, 1100, 1024, 782, 733, 690 cm⁻¹.

Diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate (14a)

Diethyl 2,5-dianilinoterephthalate 30 (0.405 g, 1 mmol) was suspended in AcOH (20 mL) and Pd(OAc)₂ (0.494 g, 2.2 mmol) was added. The mixture was heated to 100 °C and kept at that temperature for 3 h before all starting material was consumed as judged by TLC (CH₂Cl₂). The choice of temperature is essential: at reflux (116-117 °C) acylation of the product takes place and the yield deteriorates rapidly. After cooling of the mixture the solvent was evaporated and the residue was subjected to column chromatography (CH₂Cl₂-petroeum ether, 0-100 %) to give pure 14a (0.334 g, 83 %) as a bright, yellow powder. An analytical sample was obtained as bright, yellow crystallization from toluene, mp 201.5-204 °C.

¹H NMR (DMSO- d_6 , 300 MHz) δ 11.28 (s, 2H, NH), 8.45 (d, 2H, J = 8.1 Hz), 7.72 (d, 2H, J = 8.1 Hz), 7.48 (dd, 2H, J = 7.9, 7.9 Hz), 7.22 (dd, 2H, J = 7.9, 7.9 Hz), 4.71 (q, 4H, J = 7.1 Hz), 1.50 (t, 6H, J = 7.1 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 166.8 (s), 141.8 (s), 134.2 (s), 126.9 (d), 123.7 (d), 120.4 (s), 120.2 (s), 118.6 (d), 111.6 (d), 109.8 (s), 61.6 (t), 14.2 (q).

IR (KBr) 3445, 1701, 1615, 1513, 1462, 1453, 1417, 1316, 1302, 1204, 1177, 1153, 1122, 1025, 749 cm⁻¹.

Anal. calcd. for C24H20N2O4: C: 71.99; H: 5.03; N: 7.00. Found: C: 71.82; H: 5.05; N: 6.88.

6,12-Di(hydroxymethyl)-5,11-dihydroindolo[3,2-b]carbazole (31)

Diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate **14a** (310 mg, 0.774 mmol) was dissolved in dry THF (20 mL) under N₂ and cooled to 0°C. LiAlH₄ (95 %) (247 mg, 6.19 mmol) was added in portions under gas evolution. The bright yellow solution transformed into a red-brown slurry. After 2 h the reaction was complete as judged by TLC (50 % ethyl acetate-petroleum ether) and was carefully quenched with a saturated solution of Rochelle's salt. The mixture was filtered through Celite[®] and the filter-cake was washed with THF (40 mL) and CH₂Cl₂ (120 mL). The filtrate was washed with water (2×40 mL) and then dried with MgSO₄. After filtering off the solid material the solvents were evaporated to give pure **31** (187 mg, 76 %) as a light-brown powder. An analytical sample was obtained as a light-yellow powder by recrystallization from dioxane, mp > 400 °C (upper limit of the melting point apparatus).

¹H NMR (DMSO-*d*₆, 300 MHz) δ 11.02 (s, 2H, N*H*), 8.31 (d, 2H, J = 7.9 Hz), 7.54 (d, 2H, J = 8.0 Hz), 7.38 (dd, 2H, J = 7.9, 7.9 Hz), 7.13 (dd, 2H, J = 7.9, 7.9 Hz), 5.43 (s, 4H), 5.35 (br s, 2H, O*H*).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 141.2 (s), 134.2 (s), 125.0 (d), 123.3 (d), 122.4 (s), 120.7 (s), 117.6 (d), 115.6 (s), 110.4 (d), 57.6 (t).

IR (KBr) 3522, 3294, 2961, 1613, 1534, 1459, 1324, 1300, 1261, 1024, 989, 803, 745 cm⁻¹. HRMS (EI+), calcd for $C_{20}H_{16}N_2O_2$: 316.1186. Found: 316.1212.

5,11-Di(*tert*-butyl) 6,12-diethyl 5,11-dihydroindolo[3,2-b]carbazole-5,6-11,12-tetracarboxylate (33)

Diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate **14a** (0.252 g, 0.630 mmol) was dissolved in dry THF (15 mL) under N₂. Boc₂O (0.345 g, 1.58 mmol) was added followed by DMAP (15 mg, 0.13 mmol). After 2 h the consumption of starting material was complete as judged by TLC (CH₂Cl₂) and the solvent was evaporated. The residue was purified by column chromatography (CH₂Cl₂-petroleum ether, 50-100 %) to give pure **33** (0.356 g, 94 %) as a light-yellow powder. An analytical sample was obtained as light-yellow crystals by

recrystallization from H₂O-CH₃CN (1:9), mp 196-198°C [de-Boc-ylation; this process started earlier (≈ 175 °C), but at the given melting point a complete melt was obtained].

¹H NMR (CDCl₃, 300 MHz) δ 8.33 (d, 2H, J = 7.7 Hz), 8.17 (d, 2H, J = 8.4 Hz), 7.52 (dd, 2H, J = 8.1, 8.1 Hz), 7.36 (dd, 2H, J = 8.1, 8.1 Hz), 4.59 (q, 4H, J = 7.2 Hz), 1.46 (t, 6H, J = 7.2 Hz).

¹³C NMR (CDCl₃, 75 MHz) δ 166.8 (s), 151.6 (s), 140.6 (s), 133.9 (s), 128.2 (d), 124.5 (s), 124.2 (s), 123.4 (d), 123.3 (d), 117.4 (s), 115.9 (d), 85.2 (s), 61.8 (t), 28.5 (q), 14.4 (q).

IR (KBr) 2984, 1724, 1503, 1476, 1448, 1372, 1356, 1330. 1287, 1257, 1221, 1184, 1149, 1128, 1103, 1068, 1021, 762, 740 cm⁻¹.

Anal. calcd. for C₃₄H₃₆N₂O₈: C: 67.99; H: 6.04; N: 4.66. Found: C: 68.13; H: 6.08; N: 4.75.

Diethyl 2,5-[(*N-tert*-butoxycarbonyl)anilino]terephthalate (34)

Diethyl 2,5-dianilinoterephthalate 30 (0.809 g, 2.00 mmol) was dissolved in a mixture of dry THF (24 mL) and dry toluene (24 mL) under N₂. Boc₂O (8.730 g, 40 mmol) and DMAP (0.538 g, 4.4 mmol) was added and the mixture was heated to reflux. After 2 h at reflux the consumption of starting material was complete as judged by TLC (20 % ethyl acetate-petroleum ether) and the solution was cooled to room temperature. The solvents were evaporated and the residue was purified by column chromatography (ethyl acetate-petroleum ether, 1-5 %) to give pure 34 (1.209 g, 100 %) as a white powder. An analytical sample was obtained as shiny, white crystals by recrystallization from H₂O-CH₃CN (1:9), mp 162.5-164°C.

¹H NMR (CDCl₃, 300 MHz) δ 7.61 (br s, 2H), 7.39-7.28 (m, 8H), 7.26-7.11 (m, 2H), 4.27 (q, 4H, J = 7.1 Hz), 1.26 (t, 6H, J = 7.1 Hz).

¹H NMR (DMSO-*d*₆, 300 MHz, <u>80°C</u>) δ 7.56 (s, 2H), 7.38-7.27 (m, 8H), 7.20 (t, 2H, J = 8.4 Hz), 4.22 (q, 4H, J = 7.1 Hz), 1.21 (t, 6H, J = 7.1 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz, <u>80°C</u>) δ 163.9 (s), 151.8 (s), 141.7 (s), 139.2 (s), 132.7 (s)130.6 (d), 128.2 (d), 125.7 (d), 125.2 (d), 80.6 (s), 60.9 (t), 27.3 (q), 13.3 (t). At room temperature the peaks in the ¹³C spektrum were very broad.

IR (KBr) 2979, 1716, 1596, 1497, 1464, 1456, 1412, 1391, 1367, 1328, 1292, 1268, 1251, 1227, 1159, 1121, 1060, 1007, 921, 844, 768, 756, 742, 696 cm⁻¹.

Anal. calcd. for C₃₄H₄₀N₂O₈: C: 67.53; H: 6.67; N: 4.63. Found: C: 67.51; H: 6.73; N: 4.78.

Ethyl 12-(hydroxymethyl)-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate (35)

Diethyl 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarboxylate 14a (0.324 g, 0.809 mmol) was dissolved in dry THF (20 mL) in a flask equipped with a drying tube and cooled to 0°C. Lithium aluminium hydride (65 mg, 1.62 mmol, 95 %) was added in one portion under gas evolution and change of colour (yellow solution to brown suspension). After 30 min the reaction was complete as judged by TLC (ethyl acetate-petroleum ether, 50 %) and quenched with a saturated solution of Rochelle's salt. The suspension was filtered through Celite[®] with the help of THF (20 mL) and CH₂Cl₂ (100 mL). The filtrate was then washed with water (2×30 mL) and dried (MgSO4). After filtering off MgSO4 the solvents were evaporated and the residue subjected to column chromatography (ethyl acetate-CH₂Cl₂, 0-16 %) to give pure 35 (0.263 g, 91 %) as an orange powder. An analytical sample was obtained as dark-orange crystals by recrystallization from toluene, mp, 172-174°C.

¹H NMR (DMSO-*d*₆, 300 MHz) δ 11.51 (s, 1H, NH), 11.00 (s, 1H, NH), 8.69 (d, 1H, J = 8.1 Hz), 8.36 (d, 1H, J = 7.9 Hz), 7.73 (d, 1H, J = 8.0 Hz), 7.63 (d, 1H, J = 8.1 Hz), 7.48-7.41 (m, 2H), 7.22 (dd, 1H, J = 7.9, 7.9 Hz), 7.15 (dd, 1H, J = 7.9, 7.9 Hz), 5.70 (br s, 1H, OH), 5.50 (s, 2H), 4.69 (q, 2H, J = 7.1 Hz), 1.53 (t, 3H, J = 7.1 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 167.3 (s), 141.7 (s), 141.2 (s), 135.9 (s), 134.1 (s), 126.1 (d), 125.7 (d), 124.7 (d), 123.4 (d), 122.6 (s), 121.5 (s), 121.3 (s), 121.1 (s), 120.1 (s), 118.6 (d), 117.6 (d), 111.3 (d), 111.0 (d), 104.2 (s), 60.8 (t), 57.5 (t), 14.5 (q).

IR (KBr) 3533, 3370, 3317, 1654, 1614, 1518, 1459, 1321, 1303, 1244, 1206, 1081, 741 cm⁻¹. Anal. calcd. for C₂₂H₁₈N₂O₃: C: 73.73; H: 5.06; N: 7.82. Found: C: 73.82; H: 4.95; N: 7.78.

Ethyl 12-formyl-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate (36)

Ethyl 12-(hydroxymethyl)-5,11-dihydroindolo[3,2-b]carbazole-6-carboxylate **35** (299 mg, 0.834 mmol) was dissolved in dioxane (15 mL) and a solution of DDQ (246 mg, 1.084 mmol) dissolved in dioxane (6 mL) was added dropwise during 5 min. After 2 h the reaction was complete as judged by TLC (CH₂Cl₂), so the solvent was evaporated and the residue was purified by column chromatography (CH₂Cl₂-petroleum ether, 0-100 %) to give pure **36** (260 mg, 87 %) as red powder. An analytical sample was obtained as a bright-red, fibrous solid by recrystallization from toluene, mp 232.5-234°C.

¹H NMR (DMSO-*d*₆, 300 MHz) δ 12.00 (br s, 1H, N*H*), 11.44 (s, 1H), 11.42 (br s, 1H, N*H*), 8.59 (d, 1H, J = 8.1 Hz), 8.38 (d, 1H, J = 8.1 Hz), 7.83 (d, 1H, J = 8.1 Hz), 7.76 (d, 1H, J = 8.1 Hz), 7.57-7.46 (m, 2H), 7.28 (m, 2H), 4.73 (q, 2H, J = 7.1 Hz), 1.51 (t, 3H, J = 7.1 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 190.7 (d), 166.6 (s), 142.3 (s), 141.9 (s), 134.8 (s), 133.5 (s), 127.3 (d), 126.9 (d), 124.8 (d), 123.3 (d), 122.9 (s), 120.5 (s), 120.2 (s), 119.7 (s), 119.5 (d), 119.3 (d), 114.3 (s), 113.3 (s), 112.3 (d), 112.1 (d), 62.0 (t), 14.2 (q).

IR (KBr) 3408, 3317, 1685, 1649, 1612, 1508, 1463, 1456, 1319, 1302, 1251, 1221, 1204, 1126, 1072, 740 cm⁻¹.

Anal. calcd. for C₂₂H₁₆N₂O₃: C: 74.15; H: 4.53; N: 7.86. Found: C: 74.04; H: 4.62; N: 7.92.

Di(tert-butyl) 6,12-diformyl-5,11-dihydroindolo[3,2-b]carbazole-5,11-dicarboxylate (39)

6,12-Di(hydroxymethyl)-5,11-dihydroindolo[3,2-b]carbazole 31 (188 mg, 0.594 mmol) was dissolved in dioxane (15 mL) with warming. After cooling to room temperature DDQ (405 mg, 1.78 mmol) in dioxane (10 mL) was added dropwise to the solution during 5 min. The solution gradually darkened and a precipitate soon fell out. The consumption of starting material was complete within an hour as judged by TLC (50 % ethyl acetate-petroleum ether), but the stirring was continued for 24 h to assure that oxidation of both hydroxymethyl groups would take place: the mono-oxidized product is most probably rather insoluble in the reaction medium, so by this procedure we hoped to maximize the amount of desired product. After 24 h most of the solvent was evaporated and a 2 M solution of NaOH (40 mL) was added dropwise under stirring to destroy the unreacted DDQ and transfer the DDQ-H₂ to the aqueous phase. Gas evolution soon started and the suspension was stirred for 4 h whereupon the remaining solid was filtered off, thoroughly washed with water, and dried in a desiccator to give crude indolo[3,2-b]carbazole-6,12-dicarbaldehyde 5 (183 mg) as a red-brown powder.

Approximately half of the crude material (90 mg, 0.29 mmol) was suspended in dry THF (8 mL) under a nitrogen atmosphere. Boc₂O (377 mg, 1.73 mmol) was added followed by DMAP (21 mg, 0.17 mmol). The suspension gradually became thinner and finally a clear, yellow solution was obtained. After stirring for 12 h the solution was diluted with CH₂Cl₂ (25 mL)

and washed consecutively with 2 M aqueous HCl (10 mL), saturated, aqueous NaHCO₃ (10 mL), water (10 mL), and brine (10 mL) before being dried (MgSO₄). After filtering off the solid material the solvents were evaporated and the residue subjected to column chromatography to give pure, di-Boc-protected indolo[3,2-b]carbazole-6,12-dicarbaldehyde **39** (97 mg, 66 %) as a yellow solid. The other half of the crude dialdehyde **5** was transformed into **39** in the same way as described above, and the yield was this time 64 %. An analytical sample was obtained as a yellow powder by recrystallization from iso-PrCN. The compound never melted as **39**: it gradually lost its Boc-groups and melted as **5**. The temperature at which the de-Boc-ylation started was highly dependent upon the rate at which the temperature was increased, but **39** was stable up to at least 150° C.

¹H NMR (CDCl₃, 300 MHz) δ 10.85 (s, 2H), 8.62 (d, 2H, J = 7.9 Hz), 8.24 (d, 2H, J = 8.3 Hz), 7.59 (dd, 2H, J = 7.9, 7.9 Hz), 7.45 (dd, 2H, J = 7.9, 7.9 Hz), 1.71 (s, 18H).

¹³C NMR (CDCl₃, 75 MHz) δ 188.8 (d), 151.6 (s), 141.3 (s), 136.0 (s), 128.9 (d), 125.1 (d), 124.9 (s), 124.7 (s), 124.2 (d), 122.9 (s), 116.2 (d), 86.3 (s), 28.3 (q).

IR (KBr) 2979, 2837, 1714, 1698, 1445, 1392, 1373, 1356, 1294, 1256, 1222, 1154, 1111, 1083, 764, 748 cm⁻¹.

Anal. calcd. for C₃₀H₂₈N₂O₆: C: 70.30; H: 5.51; N: 5.47. Found: C: 70.21; H: 5.61; N: 5.48.

5,11-Dihydroindolo[3,2-b]carbazole-6,12-dicarbaldehyde (5)

Di(*tert*-butyl) 6,12-diformyl-5,11-dihydroindolo[3,2-b]carbazole-5,11-dicarboxylate **39** was heated at 200°C under reduced pressure (0.1 mm Hg) for 4 h to remove the Boc groups (-CO₂, -iso-butene) and give pure 5,11-dihydroindolo[3,2-b]carbazole-6,12-dicarbaldehyde **5** (100 %) as a brick-red powder, mp 390°C. The compound has an extremely low solubility in all solvents tested.

¹H NMR (DMSO-*d*₆, 300 MHz) δ 12.11 (s, 2H, N*H*), 11.48 (s, 2H), 8.61 (d, 2H, J = 8.1 Hz), 7.88 (d, 2H, J = 8.1 Hz), 7.54 (dd, 2H, J = 8.0, 8.0 Hz), 7.27 (dd, 2H, J = 8.0, 8.0 Hz).

¹³C NMR (DMSO- d_6 , 75 MHz) δ 191.2 (d), 142.5 (s), 134.3 (s), 127.3 (d), 124.8 (d), 123.3 (s), 119.9 (d), 119.8 (s), 116.8 (s), 112.8 (d).

IR (KBr) 3380, 1649, 1459, 1322, 1298, 1227 cm⁻¹.

HRMS (EI+), calcd for C₂₀H₁₂N₂O₂: 312.0899. Found: 312.0899.

5. References and notes

- For recent reviews of the TCDD receptor (Ah receptor protein), see: a) Okey, A. B.; Riddick, D. S.; Harper, P. A. Trends Pharmacol. Sci. 1994, 15, 226-232. b) Hankinson, O. Annu. Rev. Pharmacol. Tox. 1995, 35, 307-340 c) Schmidt, J. V.; Bradfield, C. A. Annu. Rev. Cell. Dev. Biol. 1996, 12, 55-89 d) Poellinger, L. In Inducible gene expression Vol. 1, Bacuerle, P. A. Ed.; Birkhäuser, Boston, USA, 1995; pp 177-205.
- a) Fujii-Kuryama, Y.; Imataka, H.; Sogawa, K.; Yasumoto, K.-I.; Kikuchi, Y. FASEB J. 1992, 6, 706-710 b) Whitlock Jr., J. P.; Okino, S. T.; Dong, L.; Hyunsung, P. K.; Katzenberg-Clarke, R.; Ma, Q.; Li, H. FASEB J. 1996, 10, 809-818 c) McGuire, J.; Whitelaw, M. L.; Pongratz, I.; Gustafsson, J.-Å.; Poellinger, L. Mol. Cell. Biol. 1994, 14, 2438-2446.
- Gillner, M.; Bergman, J.; Cambillau, C.; Alexandersson, M.; Fernström, B.; Gustafsson, J.-Å. Mol. Pharmacol. 1993, 44, 336-345.
- 4. Bergman, J. Tetrahedron 1970, 26, 3353-3355.
- 5. Gillner, M.; Bergman, J.; Gustafsson, J.-Å. In Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds, Arinç, E. Ed.; Plenum Press, New York, 1991; pp 283-292.

- Bjeldanes, L. F.; Kim, J.-Y.; Grose, K. R.; Bartholomew, J. C.; Bradfield, C. A. Proc. Natl. Acad. Sci. USA, 1991, 88, 9543-9547.
- Fernandez-Salguero, P.; Pineau, T.; Hilbert, D. M.; McPhail, T.; Lee, S. S. T.; Kimura, S.; Nebert, D. W.; Rudikoff, S.; Ward, H. J.; Gonzales, F. J. Science 1995, 268, 722-726.
- 8. Mukhtar, H.; DelTito Jr, B. J.; Matgouranis, P. M.; Das, M.; Asokan, P.; Bickers, D. R. J. Invest. Dermatol., 1986, 87, 348-353.
- 9. Goertz, G.; Merk, H.; Bolsen, K.; Tsambaos, D.; Berger, H. Experientia, 1983, 39, 385-386.
- 10. Creed, D. Photochem. Photobiol. 1984, 39, 537-562.
- 11. Rannug, A.; Rannug, U.; Rosenkranz, H. S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafström, A.-K. J. Biol. Chem. 1987, 262, 15422-15427.
- 12. Rannug, U.; Rannug, A.; Sjöberg, U.; Li, H.; Westerholm, R.; Bergman, J. Chem. & Biol., 1995, 2, 841-845.
- 13. a) Tholander, J.; Bergman, J. Tetrahedron Lett., 1998, 39, 1619-1622 b) Tholander, J.; Bergman, J. Tetrahedron, 1999, 55, 6243-6260.
- a) Katritzky, A. R.; Li, J.; Stevens, C. V. J. Org. Chem., 1995, 60, 3401-3404 b) Lee, V.; Cheung, M.-K.; Wong, W.-T.; Cheng, K.-F. Tetrahedron, 1996, 52, 9455-9468 c) Lin, S.-C.; Yang, F.-D.; Shiue, J.-S.; Yang, S.-M.; Fang, J.-M. J. Org. Chem., 1998, 63, 2909-2917 d) StC. Black, D.; Ivory, A. J.; Kumar, N. Tetrahedron, 1995, 51, 11801-11808 e) Santoso, M. Ph.D. Thesis, Univ. of Sydney, Australia 1998 f) Kistenmacher, A.; Müllen, K. J. Het. Chem., 1992, 29, 1237-1239.
- 15. Katritzky, A. R.; Akutagawa, K. Tetrahedron Lett., 1985, 26, 5935-5938.
- 16. Baldwin, J. J. Chem. Soc., Chem. Commun., 1976, 734-736.
- a) von Doebeneck, H. Z. Klin. Chem., 1966, 4, 141-144 b) Amat-Guerri, F.; Martinez-Utrilla, R.; Pascual, C. J. Chem. Research (S), 1984, 160-161 c) Amat-Guerri, F.; Martinez-Utrilla, R.; Pascual, C. J. Chem. Research (M), 1984, 1575-1586.
- 18. Bergman, J.; Högberg, S.; Lindström, J.-O. Tetrahedron, 1970, 26, 3347-3352.
- Except for the molecular ion peak, the MS data of 15 fit the data of the known methyl ester perfectly. Hasan, I.; Marinelli, E. R.; Lin, L.-C. C.; Fowler, F. W.; Levy, A. B. J Org. Chem., 1981, 46, 157-164.
- For the original reference, see a) Robinson, B. J. Chem. Soc., 1963, 3097-3099. The Fischer indolization of the bisphenylhydrazone of cyclohexane-1,4-dione can give rise to a plethora of side-products, including 3-aminocarbazole and hexahelicenes. For a thorough study, see b) Teuber, H. -J.; Vogel, L. Chem. Ber., 1970, 103, 3302-3318 and c) Teuber, H. -J.; Vogel, L. Chem. Ber., 1970, 103, 3319-3342.
- 21. Robinson, B. The Fischer Indole Synthesis; Wiley: 1982; pp 760-764 and references therein.
- a) Queirot, M.-J.; Joseph, D.; Kirsch, G. Org. Prep. Proced. Int., 1995, 27, 120-122 b) Andersen, J. R.; Jørgensen, O. J. Chem. Soc. Perkin 1, 1979, 3095-3098.
- 23. Hünig, S.; Steinmetzer, H.-C. Liebigs Ann. Chem., 1976, 1090-1102.
- 24. Grehn, L.; Ragnarsson, U. Angew. Chem. Int. Ed. Engl., 1984, 23, 296-301.
- 25. Lehmann, J.; Hartmann, U. Arch. Pharm., 1989, 322, 451-452.
- 26. Hasselström, T. Ann. Acad. Sci. Fenn. Ser. A, 1929, 30, No 13.
- See, for example: a) Åkermark, B.; Eberson, L.; Jönsson, E.; Pettersson, E. J Org. Chem., 1975, 40, 1365-1367 and b) Ames, D. E.; Opalko, A. Tetrahedron, 1984, 40, 1919-1925.
- 28. Liebermann, H. Ann. Chem., 1914, 404, 272-321.
- 29. Parikh, J. R.; von Doering, W. E. J. Am. Chem. Soc., 1967, 89, 5505-5507.
- See for example: a) Harvey, R. G.; Goh, S. H.; Cortez, C. J. Am. Chem. Soc., 1975, 97, 3468-3479 b) Nicolaou, K. C.; Daines, R. A.; Uenishi, J.; Li, W. S.; Papahatjis, D. P.; Chakraborty, T. K. J. Am. Chem. Soc., 1988, 110, 4672-4685 c) Hauser, F. M.; Hewawasam, P.; Mal, D. J. Am. Chem. Soc., 1988, 110, 2919-2924 d) Nicolaou, K. C.; Duggan, M. E.; Hwang, C.-K. J. Am. Chem. Soc., 1989, 111, 6676-6682 e) Schiehser, G. A.; White, J. D. J. Org. Chem., 1980, 45, 1864-1868.
- 31. Greene, T. W. Protective Groups in Organic Synthesis; Wiley, 1981.
- 32. Goi, M.; Miyashita, M. Jap. Patent 91 234, 1976; Chem. Abstr. 1976, 85, 159461c.
- 33. Mann, B. J.; Paul, I. C.; Curtin, D. Y. J. Chem. Soc., Perkin Trans. 2, 1982, 1583-1590.