Green Chemistry

View Article Online

PAPER

(Check for updates

Cite this: DOI: 10.1039/c9gc03608c

Visible light-promoted copper catalyzed regioselective acetamidation of terminal alkynes by arylamines[†]

V. Kishore Kumar Pampana, 🕩 Arunachalam Sagadevan, ២ Ayyakkannu Ragupathi ២ and Kuo Chu Hwang 🕩 *

Herein, we describe a copper photoredox catalyzed synthesis of acetamide *via* regioselective C–N coupling of arylamines with terminal alkynes using molecular oxygen (O_2) as an oxidant at room temperature under visible light irradiation (47 examples). Unique simultaneous formation of both amide and ester functionalities occurs *via* intramolecular cyclization in a single-step reaction in the case of anthranilic acids using inexpensive copper as a catalyst and eco-friendly O_2 as an oxidant and reagent. Different substrates undergo different reaction pathways to generate similar acetamide products, as evidenced by ¹⁸O₂ labelling experiments. The current protocol was also applied for the rapid, few step preparation of biologically active inhibitors (BACE-1 and PDE4). This process can be readily scaled up to a gram scale, and calculations of green metrics suggest the economic feasibility and eco-friendly nature of the current photoredox approach.

Received 20th October 2019, Accepted 19th November 2019 DOI: 10.1039/c9gc03608c

rsc.li/greenchem

Introduction

Amide functionalities are important and ubiquitous structural motifs found in natural products, pharmaceutical drugs, and polymeric materials, and they represent important synthetic intermediates that can be utilized for further construction of complex molecules.1 Traditional methods for the synthesis of amides include; (i) condensation of amines with carboxylic acids at high temperatures,² (ii) nucleophilic addition of amines to activated carbonyl moieties, such as water-sensitive acyl chlorides and anhydrides,³ (Scheme 1a), and (iii) coupling reaction of acids and amines using stoichiometric coupling reagents (typically used in excess)⁴ (Scheme 1b). Transitionmetal-catalysis has emerged as a powerful and alternative attractive approach for amide bond construction.5 In this regard, Chang et al. reported that inexpensive copper catalysis has successfully facilitated amide bond formation, wherein terminal alkynes and TsN3 were employed as coupling partners (Scheme 1c).⁶ Consequently, Jiao et al. recently reported Au/Ag-co-catalyzed nitrogenation of alkynes via Csp2-Csp cleavage at elevated temperatures to synthesize amides using $TMSN_3$ (Scheme 1d).⁷ Despite indisputable advances, these

transformations necessitate the use of stoichiometric unstable azides (*e.g.*, TsN₃ or TMSN₃) as coupling partners with terminal/internal alkynes for amide bond formation. Moreover, several other methods have been developed including amidation of alcohols at high temperature using expensive Ru/Rhcatalysts.⁸ As such, the development of a new method for amide bond construction using commercially available stable arylamines to couple with terminal alkynes using inexpensive catalysts (*e.g.*, copper) under low energy visible light irradiation would be a desirable goal in contemporary organic synthesis.

In recent years, photoredox catalysis has enabled the development of a wide range of challenging chemical transformations *via* outer-sphere single electron transfer (SET) processes.⁹ Unlike expensive photoredox catalysts (Ru- and Ircomplexes),^{9b} Earth-abundant cheaper copper-based photoredox catalysts can be much more feasible in various transformations¹⁰ *via* an outer-sphere^{10a,b} or inner-coordination-sphere mechanism.^{10c,d}

Herein, we report the first visible light-induced acetamidation of terminal alkynes by arylamines and molecular O_2 using copper as a catalyst that opens a new synthetic route to acetamides.¹¹ The reaction proceeds at room temperature using an inexpensive catalyst (5 mol% CuCl), K_2CO_3 as a base, and O_2 as an oxidant, without the use of additional oxidants and ligands (Scheme 1e). Notably, the current work represents the first literature method for mono-ketonation/amidation of terminal alkynes by arylamines, which is complementary to the reported copper-catalyzed process for diketonation/amidation

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China. E-mail: kchwang@mx.nthu.edu.tw; Fax: (+886) 35711082 † Electronic supplementary information (ESI) available. CCDC 1893991–1893993. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9gc03608c

Scheme 1 Different synthetic approaches for amide formation.

of terminal alkynes.^{11,12} The notable key features of the current method include: (a) avoiding the use of protecting groups in the cases of 2-aminophenol and anthranilic acid to synthesize acetamide, which would be an important task in organic synthesis,^{13a} (b) simultaneous single-step formation of amide and ester functionalities in the case of anthranilic acids, which are not possible by using previously reported literature methods,^{13b} and (c) as compared to the previous unstable azide (Ts-N₃ or TMS-N₃) protocol,⁶ the current method achieves mono-ketonization/amidation using simple anilines and eco-friendly O₂ (as an oxidant and reagent) in a clean manner under sustainable conditions.

Results and discussion

Inspired by our previous work where α -ketoamides were obtained by C-N coupling of anilines and terminal alkynes under neutral conditions,^{11c,14} we were delighted to find that the presence of an inorganic base drives the reaction to a different pathway, leading to the formation of acetamides, instead of a-ketoamides, as dominant products (for mechanistic comparison, please see Scheme S6 in the ESI[†]). Although the current reaction conditions (the presence of an additional base) are only slightly different from our previous work,^{11c} the chemistry (i.e., mono-ketonation amidation), reaction mechanisms, and products are totally different from our previous diketonation/amidation reaction under neutral conditions.^{11c} Visible light irradiation of 4-methoxyaniline 1a and phenylacetylene 2a in the presence of Cs₂CO₃ (1.1 equiv.) with 5 mol% CuCl in CH₃CN-MeOH (1:1 v/v) afforded acetamide 3a in 68% yield (Table 1, entry 1) with yield being improved to 82% when K₂CO₃ was used as a base (entry 2). After screening different solvents, $CH_3CN : CH_3OH (1 : 1 v/v)$ turned out to give the best yields, whilst alternative Cu-salts (CuBr & CuCl₂) were scrutinized and showed inferior results. A series of control experiments were then carried out. Exclusion of either base,

Table 1 Optimization of the reaction conditions^a

MeO	$H_2 + H_2$	Ph 5 mol% solve base blue LE	6 catalyst ent ,02 (1.1 eq.) MeO Ds, RT, 12h 3	H N O Ph O
Entry	Cu [catalyst]	Base	Solvent	[Yield %] ^b
1	CuCl	Cs_2CO_3	CH ₃ CN-MeOH	68
2	CuCl	K ₂ CO ₃	CH ₃ CN-MeOH	82
3	Other Cu-salts	K_2CO_3	CH ₃ CN-MeOH	<65
4	CuCl	K_2CO_3	ACN or ACN-DMF	0
5 ^c	CuCl	K_2CO_3	CH ₃ CN-MeOH	78
6^d	CuCl	None	CH ₃ CN-MeOH	0
7^e	None	K_2CO_3	CH ₃ CN-MeOH	n.r.
8^f	CuCl (dark)	K_2CO_3	CH ₃ CN-MeOH	0
9^g	CuCl	K_2CO_3	CH ₃ CN-MeOH	0

^{*a*} Unless otherwise noted, the reaction conditions are as follows; **1a** (0.50 mmol), **2a** (0.7 mmol), base (1.1 equiv.), [Cu]-catalyst (5 mol%), and solvents (8 mL) in 1:1 v/v. The reaction mixture was irradiated with blue LEDs (40 mW cm⁻² at 460 nm) for 12 h under O₂ (1 atm). ^{*b*} Yield of the isolated product. ^{*c*} Under 1 atm. air. ^{*d*} In absence of a base. ^{*e*} In absence of a copper catalyst. ^{*f*} Under dark conditions at 70 °C. ^{*g*} Under a N₂ atm. n.r = no reaction.

light, O_2 , or [Cu]-catalyst all resulted in no product formation (entries 6–9) (for detailed optimization, please see Table S1, ESI†).

Under the optimized conditions, the scope of this reaction with various arylamines 1 and terminal alkynes 2 was explored (Table 2). Arylamines containing electron-donating groups, in general, facilitate the transformation to afford their corresponding acetamides in high yields (3a-3e). In addition, a gram scale reaction of 1a with 2a generates acetamide 3a in 77% yield. Notably, when 2-aminophenol 1b was used to couple with 2a (affording 3b in 74%), there was no need of pre-protection and deprotection of the phenolic OH group. However, electron poor anilines fail to produce acetamides, probably due to their weaker nucleophilic nature and thus poor interaction with Cu(π)-phenylacetylide. Consequently, the C–N

Table 2 Substrate scope of aryl amines and terminal alkynes^a

^{*a*} Standard reaction conditions. Isolated yields after purification by column chromatography on silica gel. ^{*b*} Reaction performed on the 10.0 mmol scale.

bond formation step might be very slow or difficult to achieve. As compared to anilines, aliphatic amines and 2° aryl, alkylamines do not work in the current protocol, probably due to their stronger tendency to compete with alkynes and form complexes with the Cu(I) ion, forbidding the formation of the key Cu(I)-phenylacetylide photoredox light absorbing species.¹⁵

Next, the scope of terminal alkynes in the current oxidative C–N coupling reactions was explored. Aryl alkynes bearing butyl, ethyl, and methoxy groups performed well (**3f–3i**, 79–85% yields, Table 2). Moreover, a diverse array of electron withdrawing phenylacetylenes (–NO₂, di-CF₃, and acyl) was found to be competent substrates with **1b** (**3j–3l**, 68%–71% yields). **1**,3- and **1**,4-Di-alkynes work well to generate the corresponding acetamides (**3m** & **3n**). Bulky 1-ethynylnaphthalene also showed good reactivity with **1b** to generate **30** in 70% yield. Notably, heterocyclic alkynes, such as ethynylthiophenes (**2p** & **2q**) and carbazole alkynes (**2r**) which are usually sensitive to oxidative conditions, however, reacted smoothly in the current protocol to generate the desired acetamides in good yields (**3p–3r**).

Furthermore, 2-aminobenzoic acid **4a** could react with phenylacetylene **2a** to produce **5a** in 83% yield (Table 3), demonstrating a single step simultaneous formation of amide and ester functionalities from the co-solvent methanol. Anthranilic acids bearing electron-rich groups (–OMe & –Me)

 Table 3
 Substrate scope of anthranilic acids and terminal alkynes^a

^{*a*} Standard reaction conditions. Isolated yields after purification by column chromatography on silica gel. ^{*b*} ACN–EtOH was used as a co-solvent. When longer chain alcohols, such as propanol and butanol, were used to mix with ACN as a co-solvent, no product was observed.

and halogen substituents (F, Cl & Br) react well with 2a to furnish the corresponding acetamides (5a-5e & 5f-5h) in good to moderate yields. In addition, amino naphthoic acid couples with 2a effectively to afford 5i in 78% yield. However, no desired products were obtained when anthranilamide, 2-aminobenzenesulfonamide and orthanilic acids were used as starting materials, instead of anthranilic acid. Finally, a wide range of terminal alkynes including electron-rich and electron withdrawing groups were employed to react with 2-aminobenzoic acid 4a, furnishing their acetamides in good yields (Table 3). Aryl alkynes bearing -Me, -OMe, halogen substituents (F, Cl, Br & I), an electron withdrawing group (-CF₃), and naphthyl alkyne showed excellent tolerance in the current transformation (5j-5s) in 69% to 87% yields. Notably, acetamides bearing halogen substituents can be used in late-stage functionalization. Furthermore, aliphatic terminal alkynes were also successfully employed in this photoredox transformation. Long-chain terminal alkynes, such as hexyne, heptyne and octyne, performed well. Linear-chain terminal alkynes bearing a benzyl group, electron withdrawing groups (-CN and

Paper

-Cl), and branched aliphatic alkyne smoothly underwent the reaction to furnish the corresponding acetamides (5t-5z)without having any side reactions. Structurally labile tetrahydro-2H pyran type alkyne underwent regioselective C-N coupling with 4a to produce acetamide 5za in 76% yield without having oxidation at the α -methyne/methylene C-H bonds. Additionally, we found that there is a dramatic decrease in the vield of product 5a to 18% when methanol was replaced by ethanol and used as a co-solvent. When methanol was replaced by other longer-chain alcohols (*i.e.* propanol, butanol, and isopropyl alcohol), no product formation was detected. Methanol is a less hindered, better nucleophile as compared to ethanol and other long-chain alcohols (bulky hindered nucleophiles). Thus, a methoxide anion (MeO⁻) would attack more easily on the six-membered cyclic anhydride type intermediate 15 (see, the proposed mechanism in Scheme 4) than other longer-chain counterparts, which leads to higher product yields. The structures of 3b, 3o and 3q were confirmed by single crystal X-ray diffraction (Fig. S5-S7, ESI[†]).

Finally, the current methodology can be applied to synthesize pharmacologically active drugs, such as BACE-1 $3oa^{13a}$ and PDE4 **5zb** (Scheme 2).^{13b} The BACE-1 β -secretase inhibitor **3oa** was successfully synthesized *via* late-stage functionali-

Scheme 2 Synthesis of pharmacologically active inhibitors.

zation of 30, which evades the use of unwanted protection and de-protection steps,¹⁶ demonstrating the practical application of the current protocol. The PDE4 phosphodiesterase inhibitor 5zb was synthesized via simultaneous formation of ester and amide bonds in a single-step reaction, which is unprecedented (see Schemes S3 and S4, ESI[†]). Furthermore, 3p and 3g are potential anti-tubercular agents.¹⁷ We further evaluated the calculations of green metrics for the synthesis of 30a and made a comparison with those obtained from the existing literature methods. Our current photoredox process to synthesize 30a (overall yield of 63%) with an overall E-factor of 48.6, atomeconomy of 94.5% and 84.2% in two steps, and with a 100% overall carbon efficiency is better in comparison with thermal literature procedures that involve multistep processes (4 steps) to synthesize 30a (overall yield of 41%) (see the detailed green metric calculations in the ESI[†]).

To gain mechanistic insight, several control experiments were carried out (Scheme 3, eqn (1)-(6)). First, pre-synthesised Cu(I) phenylacetylide 2a' was used as a stoichiometric starting material in the absence of CuCl to react with 1a, which afforded 3a in 63% yield after 30 h irradiation (see eqn (1)), suggesting that in situ generated Cu(I) phenylacetylide is most probably the key light-absorbing photocatalyst.^{11b,c} Next, when the reaction of **1a** with **2a** was carried out in the presence of a radical scavenger TEMPO (1.0 equiv.), the formation of acetamide product 3a was completely inhibited (see eqn (2)), which is in line with the radical intermediate nature of the transformation. Thereafter, we carried out the reaction of 4a and 2a using deuterated methanol solvents (CD₃OD and CH_3OD) under standard conditions (see eqn (3) & (4)), which successfully afforded deuterated products 5a-D₅ and 5a-D₂. Physical mixing of acetamide 5a with CD₃OD or in the presence of K₂CO₃ does not lead to H/D exchange at the methylene protons. These control experiments suggest that the source of the methylene protons is H^+/D^+ from water, which undergoes H/D exchange with deuterated methanol. When o-aminophenol was used as a substrate, instead of 4a, in eqn (4), similar deuteration at the methylene protons was also

Scheme 3 Mechanistic control studies.

observed for product 3b-D₂ (for details, see the ESI[†]). Finally, we carried out the reaction using 1b and 4a under a labelled $^{18}O_2$ (98%) atmosphere (see eqn (5) & (6)). Mass spectra measurements show that 92% of ¹⁸O₂ was incorporated into acetamide 3b, but only 2% of ¹⁸O₂ was incorporated into product 5a (Schemes S7 and S8, ESI[†]). Thus, these results reveal that the carbonyl oxygen in acetamide 5a originates from the ortho-carboxylic acid group via intra-molecular nucleophilic addition of a carboxylic anion to imine carbon, followed by the addition of methanol (see the mechanism in Scheme 4). Note that in the reaction with aniline substrates bearing the o-carboxylic acid moiety, molecular O2 does not get incorporated into the final products, but simply acts as an electron acceptor to initiate the reaction via a SET process. More precisely, aniline derivatives bearing o-hydroxy/-carboyxlic acid moieties undergo different reaction pathways to generate similar acetamide products. Furthermore, the reduction potential of photo-excited copper(I)-phenyl acetylide 2a' is -2.048 V_{SCE} in CH₃CN, which is sufficiently higher than that of O_2 ($E_{1/2}$ = +0.98 V_{SCE}). Therefore, the SET process from the triplet excited state 2a' to O2 is exothermic and occurs spontaneously.^{11c}

Based on the above results and our previous studies,¹¹ we propose a reaction mechanism (Scheme 4) as below. Photoexcitation of *in situ* formed Cu(i)-phenylacetylide (λ_{abs} = 476 nm) by visible light generates a long-lived triplet excited state Cu(i)-phenylacetylide 7,^{11*a*} which then undergoes a facile SET event with O₂ to generate Cu(i)-phenylacetylide **8** and a superoxide radical anion, as evidenced by EPR measurements

(Fig. S1, ESI[†]).^{11c} A superoxide radical anion eventually becomes H₂O₂, and then H₂O via metal ion induced decomposition of H_2O_2 .^{11c,18} In the next step, nucleophilic addition by anilines, either 1b or 4a, with 8 (at the α C-site of terminal alkynes), followed by electron transfer to molecular oxygen generated an amine-Cu(III)-phenylacetylide species (not shown in the mechanism cycle, as we already showed this step in our previous studies, ref. 11c). Coordination of amine to Cu(II)-phenylacetylide could facilitate the oxidative conversion of the Cu(II)-phenylacetylide to the Cu(III) state.¹⁹ Subsequent reductive elimination of amine-Cu(m)-phenylacetylide leads to the formation of highly reactive Cu(1)- π coordinated ynamine intermediates 9 and 13, in which the ortho group i.e., the carboxylic group would be in chelation with the Cu(1) ion.^{11c,20} Acetamides 3 and 5 were formed from different pathways A and **B**, respectively. In the presence of a base, a hydroxyl anion will be formed and it would attack the electron deficient imine carbon centre 10 to form Cu(1)-coordinated hydroxyl intermediate 11, which abstracts a H^+/D^+ from water to form the amide carbonyl (C=O) bond 12, and finally affords the desired product 3 acetamide and regenerates the CuCl catalyst. In path B, a carboxylic acid proton was abstracted by a base, followed by a subsequent intramolecular nucleophilic attack of the carboxylic anion on the electrophilic imine carbon centre 14, resulting in the formation of a six-membered cyclic intermediate 15. Further nucleophilic attack by the methoxy group (from methanol solvent) on the carbonyl carbon of 15 leads to the transfer of acid oxygen to ketone and the formation of acetamide 5 with concomitant regeneration of CuCl. Notably,

Scheme 4 Plausible reaction mechanisms.

path **B** allows a simultaneous formation of both ester (C–OMe) and amide carbonyl (C==O) functionalities, which is not possible using previously reported literature methods.^{13b} The ¹⁸O₂ experiment confirms that the carbonyl oxygen in 5 is from the *o*-carboxylic acid (CO–OH) group, instead of molecular O₂ (see eqn (6)).

Conclusion

In summary, we report the first literature example of photoredox copper catalyzed regioselective acetamidation, including both mono-ketonization and amidation, of terminal alkynes by arylamines using molecular O_2 as a sustainable oxidant at room temperature (47 examples) which can be readily scaled up to a gram scale. The presence of an inorganic base drives a subtle change in the reaction pathway from diketonizationamidation (under neutral conditions)^{11c} to mono ketonization-amidation (under basic conditions) of terminal alkynes under visible light irradiation. The current method achieves unprecedented single-step formation of both ester and amide functionalities which are not possible using previously reported literature thermal methods, and evades the need of pre-protection and de-protection of ortho-hydroxyl/-carboxylic acid groups in the synthesis of acetamides. The photoredox chemistry reported here was never disclosed by any previous literature work. Mechanistic studies illustrated that different substrates, such as anthranilic acid and 2-aminophenol, undergo different reaction mechanisms to produce the same acetamide core structure. The current protocol was applied to synthesize two biologically active inhibitors with fewer steps (2 steps for BACE-1 inhibitor 30a and 1 step for PDE-4 inhibitor 5zb) without using water-sensitive (SOCl₂) reagents, and is more practicable than the literature reported thermal methods.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Ministry of Science & Technology, Taiwan.

References

- 1 J. M. Humphrey and A. R. Chamberlin, *Chem. Rev.*, 1997, 97, 2243.
- 2 A. Ojeda-Porras, A. Hernández-Santana and D. Gamba-Sánchez, *Green Chem.*, 2015, **17**, 3157.
- 3 (a) D. H. B. Ripin and M. Vetelino, Synlett, 2003, 2353;
 (b) A. Temperini, R. Terlizzi, L. Testaferri and M. Tiecco, Synth. Commun., 2009, 40, 295.

- 4 (a) E. Valeur and M. Bradley, *Chem. Soc. Rev.*, 2009, 38, 606;
 (b) V. R. Pattabiraman and J. W. Bode, *Nature*, 2011, 480, 471.
- 5 (a) R. M. de Figueiredo, J.-S. Suppo and J.-M. Campagne, *Chem. Rev.*, 2016, **116**, 12029; (b) H.-Q. Do, S. Bachman,
 A. C. Bissember, J. C. Peters and G. C. Fu, *J. Am. Chem. Soc.*, 2014, **136**, 2162.
- 6 (a) S. H. Cho, E. J. Yoo, I. Bae and S. Chang, J. Am. Chem. Soc., 2005, 127, 16046; (b) S. H. Cho and S. Chang, Angew. Chem., Int. Ed., 2007, 46, 1897.
- 7 C. Qin, P. Feng, Y. Ou, T. Shen, T. Wang and N. Jiao, *Angew. Chem., Int. Ed.*, 2013, **52**, 7850.
- 8 (a) A. O. Gálvez, C. P. Schaack, H. Noda and J. W. Bode, J. Am. Chem. Soc., 2017, 139, 1826; (b) N. D. Schley, G. E. Dobereiner and R. H. Crabtree, Organometallics, 2011, 30, 4174; (c) X. Wang, T. Gensch, A. Lerchen, C. G. Daniliuc and F. Glorius, J. Am. Chem. Soc., 2017, 139, 6506; (d) C. Gunanathan, Y. Ben-David and D. Milstein, Science, 2007, 317, 790; (e) I. Kim and C. Lee, Angew. Chem., Int. Ed., 2013, 52, 10023; (f) J. Zhang, Y. Hou, Y. Ma and M. Szostak, J. Org. Chem., 2019, 84, 338; (g) L. Hie, N. F. F. Nathel, X. Hong, Y.-F. Yang, K. N. Houk and N. K. Garg, Angew. Chem., Int. Ed., 2016, 55, 2810.
- 9 (a) M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org. Chem., 2016, 81, 6898; (b) C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322; (c) A. Sagadevan and M. F. Greaney, Angew. Chem., Int. Ed., 2019, 58, 9826.
- 10 (a) O. Reiser, Acc. Chem. Res., 2016, 49, 1990;
 (b) A. C. Hernandez-Perez and S. K. Collins, Acc. Chem. Res., 2016, 49(8), 1557; (c) J. M. Ahn, T. S. Ratani, K. I. Hannoun, G. C. Fu and J. C. Peters, J. Am. Chem. Soc., 2017, 139, 12716;
 (d) A. Hazra, M. T. Lee, J. F. Chiu and G. Lalic, Angew. Chem., Int. Ed., 2018, 57, 5492; (e) A. Hossain, A. Bhattacharyya and O. Reiser, Science, 2019, 364, eaav9713; (f) R. Kancherla, K. Muralirajan, A. Sagadevan and M. Rueping, Trends Chem., 2019, 1, 510.
- 11 (a) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (b) A. Sagadevan, V. P. Charpe, A. Ragupathi and K. C. Hwang, J. Am. Chem. Soc., 2017, 139, 2896; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, V. K. K. Pampana and K. C. Hwang, Angew. Chem., Int. Ed., 2019, 58, 3838; (e) D. K. Das, V. K. K. Pampana and K. C. Hwang, Chem. Sci., 2018, 9, 7318.
- 12 C. Zhang and N. Jiao, J. Am. Chem. Soc., 2010, 132, 28.
- 13 (a) W. Huang, H. Yu, R. Sheng, J. Li and Y. Hu, *Bioorg. Med. Chem.*, 2008, 16, 10190; (b) Y.-D. Cheng, T.-L. Hwang, H.-H. Wang, T.-L. Pan, C.-C. Wu, W.-Y. Chang, Y.-T. Liu, T.-C. Chu and P.-W. Hsieh, *Org. Biomol. Chem.*, 2011, 9, 7113.
- 14 In the absence of a base, the reaction produces α -ketoamide as a major product; see ref. 11*c*.
- 15 J.-P. Wan, S. Cao and Y. Jing, Appl. Organomet. Chem., 2014, 28, 631.
- 16 G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi and P. Righi, *Chem. Rev.*, 2004, **104**, 199.

- 17 M. C. S. Lourenço, F. R. Vicente, M. G. M. O. Henriques, A. L. P. Candéa, R. S. B. Gonçalves, T. C. M. Nogueira, M. L. Ferreira and M. V. N. Souza, *Bioorg. Med. Chem. Lett.*, 2007, 17, 6895.
- 18 H. W. Richter and W. H. Waddell, J. Am. Chem. Soc., 1982, 104, 4630.
- 19 (a) A. King, L. M. Huffman, A. Casitas, M. Costas, X. Ribas and S. Stahl, *J. Am. Chem. Soc.*, 2010, 132, 12068;
 (b) A. E. Wendlandt, A. M. Suess and S. S. Stahl, *Angew. Chem.*, *Int. Ed.*, 2011, 50, 11062.
- 20 J. Li and L. Neuville, Org. Lett., 2013, 15, 1752.