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allows the synthesis of vicinal diamines or imidazolidines under mild conditions in good yields with high
diastereoselectivity.
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The pinacol coupling of imines to vicinal diamines is an impor-
tant reaction in organic synthesis because vicinal diamines1 consti-
tute a class of compounds that have found widespread applications
as medicinal products.2 Furthermore, some vicinal diamines are
used as chiral ligands in asymmetric synthesis3 and as chiral
resolving agents.4 A variety of reductants5 including active metals
have been developed for this purpose: for example, samarium(II)
iodide,5a–c indium,5d Pb/Al bimetal redox system,5e Zn–Cu couple,5f

niobium,5g LVT (low valent titanium).5h In all cases, the diastere-
oselectivity of the reaction (dl and meso) was moderate.

Recently we have explored the potential of Cp2Zr(II),6–8 gener-
ated under mild conditions by reduction of Cp2ZrCl2 with a pure
lanthanide metal (La) or Mischmetall (an alloy of Ce, La, Nd and
Pr), to induce coupling reactions (Scheme 1).9

Herein, we report that the La-generated Cp2Zr(II) can be applied
to the synthesis of vicinal diamines1 and imidazolidines.10 These
products were obtained in good yields with high diastereoselectiv-
ity by reductive couplings of imines under mild conditions.

The optimized procedure for intermolecular reductive coupling
of N-aryl or N-alkyl imines is as follows: a mixture of Cp2ZrCl2

(0.5 mmol) and the powdered La (0.66 mmol) was stirred at
50 �C in 4 mL of THF until a deep red colour appeared (10 min). A
solution of the imine (1 mmol) in 1 mL of THF was then added,
and the reaction was carried out at 50 �C for 12 h. The mixture
was then cooled to room temperature, hydrolysed under argon
by HCl 0.1 M and extracted with dichloromethane. The chromato-
ll rights reserved.
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n).
graphic purification of the crude product afforded vicinal diamines
1.

Results are presented in Table 1. 1,2-Diamines 1 were obtained
in good yields (70–95%) and with excellent to total diastereoselec-
tivity: (dl)-isomers were obtained as major products (dl/meso: 91/
9–100/0). In no case was the reduction of aldimines to amines
(R2CH2–NHR1) observed. In contrast, coupling of a N-aryl ketimine
such as phenyl-(1-phenyl-ethylidene)-amine (Table 1, entry 6) un-
der the same conditions was not observed. Only N-phenyl-1-phen-
ylethanamine 2f was obtained in 30% yield. Unfortunately,
attempts to have a procedure catalytic in zirconium failed.11

To explain these results, we propose a mechanistic rationale
involving the initial formation of the zirconaaziridine A and the
successive aldimine (R3 = H) insertion into A affording the azazirc-
onacycle B stereoselectively. Subsequently, the hydrolysis of B
gives diamine (d,l)-1. With ketimines (Table 1, entry 6), the steric
R = Ph, 81%
R = n-C5H11, 83%

Scheme 1. Coupling reactions induced by Cp2Zr/LnCl3.
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Table 1
Coupling of N-aryl imines: formation of vicinal diamines 1

R2 R3

N
R1

R3

R1HN NHR1

R3
R2R2

 1) La, THF, 10 min, 50°C

1

Cp2ZrCl2

2)                  , THF, 12h, 50°C

3) HCl 0.1 M

Entry R1 R2 R3 Products, yielda (%) (dl/meso)b

1 Ph Ph H 1a, 70 (91/9)
2 Ph p-MeO–C6H4 H 1b, 76 (94/6)
3 Ph p-Me2N–C6H4 H 1c, 95 (94/6)
4 Ph p-Me–C6H4 H 1d, 94 (95/5)
5 Ph Naphthyl H 1e, 70 (100/0)
6 Ph Ph Me 1f, 0c

7 n-C4H9 Ph H 1g, 90 (100/0)
8 n-C5H11 Ph H 1h, 85 (90/10)
9 n-C3H7 p-Me–C6H4 H 1i, 90 (100/0)

10 n-C3H7 p-MeO–C6H4 H 1j, 85 (100/0)

a Isolated yields: entries 1–6: purification by chromatography, entries 7–10:
purification by Celite� filtration.

b Ratio determined by 1H NMR.
c Only 50% of phenyl-(1-phenyl-ethylidene)-amine was converted to N-phenyl-

1-phenylethanamine 2f (isolated yield 30%).
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Scheme 3. Reaction of benzylidene–butylamine.

Table 2
Formation of imidazolidines 3

R2 H

N
R1

R1

R1

H

H
H

R2

R2

R2

N

N 1) La, THF, 10 min, 50°C

3

Cp2ZrCl2

2)                  , THF, 1.5-12h, 50°C

3) HCl 0.1 M

Entry R1 R2 T (h) Products, yield (%)

1 n-C4H9 Ph 1.5 3g, 83
2 n-C5H11 Ph 1.5 3h, 82
3 n-C3H7 p-Me–Ph 1.5 3i, 85a

4 n-C3H7 p-MeO–Ph 1.5 3j, 75
5 n-C3H7 Ph 1.5 3m, 80
6 n-C3H7 Furanyl 1.5 3n, 78
7 n-C3H7 Pyridinyl 12 3o, 70

a 5% of the diamine 1i was observed in the crude product (determined by 1H
NMR).
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bulk would prevent the formation of B12 from A. Interestingly, the
formation of A is supported by a partial (50%) incorporation of deu-
terium into 2f after deuterolysis. Besides, the reaction of a N-trim-
ethylsilylzirconaaziridine with an N-trimethylsilylimine gives the
expected (d,l)-diamine as a major product (isolated yield 78%, dl/
meso: 98/2).13 Moreover, it is generally admitted that radical cou-
pling of imines gives meso-diamines as major products.5k,o,14

Therefore, the formation of the (d,l)-vicinal diamine 1 with an
excellent stereoselectivity gives support to the mechanistic
Scheme 2.

The monitoring of the benzylidene–phenylamine coupling reac-
tion showed a rapid conversion to diamine 1a (after 20 min, 80%
conversion was observed, based on 1H NMR analysis of the crude
product). Nevertheless, the total conversion was obtained after
12 h. Unexpectedly, a similar monitoring with N-alkyl aldimines
such as benzylidene–butyl-amine showed that imidazolidine 3g
was obtained together with diamine 1g (Scheme 3). The ratio dia-
mine 1g/imidazolidine 3g gradually increased, 1g being the major
product after the 4 h-reaction time. Analogous observations have
been reported recently.15

Synthesis of imidazolidines 3 was optimized by using 1.5 mmol
of alkyl-imines instead of 1 mmol as described above. Hydrolysis
was completed after 12 h. Results are collected in Table 2. It should
be mentioned that N-alkyl aldimines were converted to imidazoli-
dines 3 in good yields (70–85%) except for 3o. In all cases only dl
N
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H
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H
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Scheme 2. Mechanistic proposal for the synthesis of amines 1 and 2.
isomers were obtained.16 It would be noticed that diazazircona-
cyclopentanes B do not react directly with additional equivalent
of imines since imidazolidines 3 are obtained in very low yields
when reactions are performed for a long period but with a short-
time hydrolysis. Besides, it is known that acidic hydrolysis condi-
tions are compatible with the hydrolysis of N-alkylimines to alde-
hydes and the formation of imidazolidines.15b,17 Consequently, the
formation of imidazolidines 3 can be rationalized as follows: imi-
nes are partly converted (1.5 mmol of imine for 0.5 mmol of zirco-
nocene) to diazazirconacyclopentanes B. During hydrolysis, B gives
corresponding diamines 1 and residual N-alkyl aldimines are
hydrolysed to aldehydes, thus diamines 1 react slowly (12 h) with
aldehydes to give corresponding imidazolidines 3 (Scheme 4).

An additional experiment showed that under hydrolysis condi-
tions applied, metallic species (from Zr or La) were not involved in
the reaction of diamines with aldehydes to give imidazolidines 3.
Since a mixture of diamine 1g, benzaldehyde, HCl 0.1 M in THF,
yields in a 12 h-reaction time the imidazolidine 3g.

It can be noticed that during monitoring the formation of five-
membered ring aminals 3 from N-aryl aldimines was not observed,
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Scheme 4. Mechanistic proposal for synthesis of imidazolidines 3.
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probably due to the lesser sensitivity to hydrolysis. When reactions
with N-aryl aldimines were stopped at an early stage, N-aryl aldi-
mines were recovered after hydrolysis. Under the same conditions
N-alkyl aldimines were not recovered.

In conclusion, dimerization of aromatic imines was carried out
by using Cp2Zr(II) to afford the corresponding vicinal diamines 1
in excellent yields and high diastereoselectivity. In addition, we
found a simple method to prepare only dl-isomer five-membered
ring aminals 3 in good yields. These products are interesting in
synthesis as precursors of chiral imidazolinium salts.18 Besides
they constitute important parts of biologically active compounds.17
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