Tetrahedron Letters 52 (2011) 1348-1350

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Homocoupling of aldimines mediated by zirconocene: synthesis of vicinal diamines and imidazolidines

Mohamad Soueidan^a, Florence Hélion^{a,*}, Jean-Louis Namy^a, Jan Szymoniak^b

^a Equipe de Catalyse Moléculaire, CNRS (UMR 8182), ICMMO, Bât 420, Université Paris-Sud, 91405 Orsay, France ^b Institut de Chimie Moléculaire de Reims, CNRS (UMR 6229), Université de Reims, 51687 Reims Cedex 2, France

ARTICLE INFO

ABSTRACT

diastereoselectivity.

Article history: Received 4 October 2010 Revised 12 January 2011 Accepted 14 January 2011 Available online 20 January 2011

Keywords: Lanthanides Zirconocene Aldimine coupling Imidazolidine

The pinacol coupling of imines to vicinal diamines is an important reaction in organic synthesis because vicinal diamines¹ constitute a class of compounds that have found widespread applications as medicinal products.² Furthermore, some vicinal diamines are used as chiral ligands in asymmetric synthesis³ and as chiral resolving agents.⁴ A variety of reductants⁵ including active metals have been developed for this purpose: for example, samarium(II) iodide,^{5a-c} indium,^{5d} Pb/Al bimetal redox system,^{5e} Zn–Cu couple,^{5f} niobium,^{5g} LVT (low valent titanium).^{5h} In all cases, the diastereoselectivity of the reaction (*dl and meso*) was moderate.

Recently we have explored the potential of $Cp_2Zr(II)$,^{6–8} generated under mild conditions by reduction of Cp_2ZrCl_2 with a pure lanthanide metal (La) or Mischmetall (an alloy of Ce, La, Nd and Pr), to induce coupling reactions (Scheme 1).⁹

Herein, we report that the La-generated Cp₂Zr(II) can be applied to the synthesis of vicinal diamines¹ and imidazolidines.¹⁰ These products were obtained in good yields with high diastereoselectivity by reductive couplings of imines under mild conditions.

The optimized procedure for intermolecular reductive coupling of *N*-aryl or *N*-alkyl imines is as follows: a mixture of Cp_2ZrCl_2 (0.5 mmol) and the powdered La (0.66 mmol) was stirred at 50 °C in 4 mL of THF until a deep red colour appeared (10 min). A solution of the imine (1 mmol) in 1 mL of THF was then added, and the reaction was carried out at 50 °C for 12 h. The mixture was then cooled to room temperature, hydrolysed under argon by HCl 0.1 M and extracted with dichloromethane. The chromatographic purification of the crude product afforded vicinal diamines **1**.

© 2011 Elsevier Ltd. All rights reserved.

The reductive coupling of imines in the presence of the lanthanide-originated zirconocene equivalent

allows the synthesis of vicinal diamines or imidazolidines under mild conditions in good yields with high

Results are presented in Table 1. 1,2-Diamines **1** were obtained in good yields (70–95%) and with excellent to total diastereoselectivity: (*dl*)-isomers were obtained as major products (*dl*/*meso*: 91/ 9–100/0). In no case was the reduction of aldimines to amines (R^2CH_2 –NH R^1) observed. In contrast, coupling of a *N*-aryl ketimine such as phenyl-(1-phenyl-ethylidene)-amine (Table 1, entry 6) under the same conditions was not observed. Only *N*-phenyl-1-phenylethanamine **2f** was obtained in 30% yield. Unfortunately, attempts to have a procedure catalytic in zirconium failed.¹¹

To explain these results, we propose a mechanistic rationale involving the initial formation of the zirconaaziridine **A** and the successive aldimine ($\mathbb{R}^3 = H$) insertion into **A** affording the azazirconacycle **B** stereoselectively. Subsequently, the hydrolysis of **B** gives diamine (*d*,*l*)-**1**. With ketimines (Table 1, entry 6), the steric

Scheme 1. Coupling reactions induced by Cp₂Zr/LnCl₃.

^{*} Corresponding author. Tel.: +33 1 69 15 47 43; fax: +33 1 69 15 46 80. *E-mail address:* florence.helion@u-psud.fr (F. Hélion).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.01.075

Table 1

Coupling of N-aryl imines: formation of vicinal diamines 1

Cp _o ZrCl _o		1) La, THF, 10 mir	R ¹ HN NHR ¹	
0	P221012	2) N ^{-R¹} , TH R ² R ³ , TH 3) HCI 0.1 M	F, 12h, 5	$R^2 \sqrt{R^3 R^2}$ 50°C 1
Entry	\mathbb{R}^1	R ²	R ³	Products, yield ^a (%) (<i>dl/meso</i>) ¹
1	Ph	Ph	Н	1a , 70 (91/9)
2	Ph	p-MeO-C ₆ H ₄	Н	1b , 76 (94/6)
3	Ph	p-Me ₂ N-C ₆ H ₄	Н	1c, 95 (94/6)
4	Ph	p-Me-C ₆ H ₄	Н	1d, 94 (95/5)
5	Ph	Naphthyl	Н	1e , 70 (100/0)
6	Ph	Ph	Me	1f , 0 ^c
7	n-C ₄ H ₉	Ph	Н	1g , 90 (100/0)
8	$n - C_5 H_{11}$	Ph	Н	1h , 85 (90/10)
9	n-C ₃ H ₇	p-Me-C ₆ H ₄	Н	1i , 90 (100/0)
10	$n-C_3H_7$	p-MeO-C ₆ H ₄	Н	1j , 85 (100/0)

 $^{\rm a}$ Isolated yields: entries 1–6: purification by chromatography, entries 7–10: purification by Celite^ $^{\rm B}$ filtration.

^b Ratio determined by ¹H NMR.

^c Only 50% of phenyl-(1-phenyl-ethylidene)-amine was converted to *N*-phenyl-1-phenylethanamine **2f** (isolated yield 30%).

bulk would prevent the formation of \mathbf{B}^{12} from A. Interestingly, the formation of **A** is supported by a partial (50%) incorporation of deuterium into **2f** after deuterolysis. Besides, the reaction of a *N*-trimethylsilylzirconaaziridine with an *N*-trimethylsilylimine gives the expected (*d*,*l*)-diamine as a major product (isolated yield 78%, *dl*/*meso*: 98/2).¹³ Moreover, it is generally admitted that radical coupling of imines gives *meso*-diamines as major products.^{5k,0,14} Therefore, the formation of the (*d*,*l*)-vicinal diamine **1** with an excellent stereoselectivity gives support to the mechanistic Scheme 2.

The monitoring of the benzylidene–phenylamine coupling reaction showed a rapid conversion to diamine **1a** (after 20 min, 80% conversion was observed, based on ¹H NMR analysis of the crude product). Nevertheless, the total conversion was obtained after 12 h. Unexpectedly, a similar monitoring with *N*-alkyl aldimines such as benzylidene–butyl-amine showed that imidazolidine **3g** was obtained together with diamine **1g** (Scheme 3). The ratio diamine **1g**/imidazolidine **3g** gradually increased, **1g** being the major product after the 4 h-reaction time. Analogous observations have been reported recently.¹⁵

Synthesis of imidazolidines **3** was optimized by using 1.5 mmol of alkyl-imines instead of 1 mmol as described above. Hydrolysis was completed after 12 h. Results are collected in Table 2. It should be mentioned that *N*-alkyl aldimines were converted to imidazolidines **3** in good yields (70–85%) except for **30**. In all cases only *dl*

Scheme 2. Mechanistic proposal for the synthesis of amines 1 and 2.

Scheme 3. Reaction of benzylidene-butylamine.

Table 2Formation of imidazolidines 3

Cp ₂ ZrC	2) 2) R ² 3) HC	THF, 10 min, 5	50°C	$H_{A}^{R^{2}} = H_{B}^{R^{2}}$
Entry	R ¹	R ²	<i>T</i> (h)	Products, yield (%)
1	n-C ₄ H ₉	Ph	1.5	3g , 83

1	n-C ₄ H ₉	Ph	1.5	3g , 83	
2	$n-C_5H_{11}$	Ph	1.5	3h , 82	
3	$n-C_3H_7$	p-Me-Ph	1.5	3i , 85 ^a	
4	$n-C_3H_7$	p-MeO-Ph	1.5	3j , 75	
5	$n-C_3H_7$	Ph	1.5	3m , 80	
6	$n-C_3H_7$	Furanyl	1.5	3n , 78	
7	$n-C_3H_7$	Pyridinyl	12	30 , 70	

 $^{^{\}rm a}$ 5% of the diamine 1i was observed in the crude product (determined by $^1{\rm H}$ NMR).

isomers were obtained.¹⁶ It would be noticed that diazazirconacyclopentanes **B** do not react directly with additional equivalent of imines since imidazolidines **3** are obtained in very low yields when reactions are performed for a long period but with a shorttime hydrolysis. Besides, it is known that acidic hydrolysis conditions are compatible with the hydrolysis of *N*-alkylimines to aldehydes and the formation of imidazolidines.^{15b,17} Consequently, the formation of imidazolidines **3** can be rationalized as follows: imines are partly converted (1.5 mmol of imine for 0.5 mmol of zirconocene) to diazazirconacyclopentanes **B**. During hydrolysis, **B** gives corresponding diamines **1** and residual *N*-alkyl aldimines are hydrolysed to aldehydes, thus diamines **1** react slowly (12 h) with aldehydes to give corresponding imidazolidines **3** (Scheme 4).

An additional experiment showed that under hydrolysis conditions applied, metallic species (from Zr or La) were not involved in the reaction of diamines with aldehydes to give imidazolidines **3**. Since a mixture of diamine **1g**, benzaldehyde, HCl 0.1 M in THF, yields in a 12 h-reaction time the imidazolidine **3g**.

It can be noticed that during monitoring the formation of fivemembered ring aminals **3** from *N*-aryl aldimines was not observed,

Scheme 4. Mechanistic proposal for synthesis of imidazolidines 3.

probably due to the lesser sensitivity to hydrolysis. When reactions with *N*-aryl aldimines were stopped at an early stage, *N*-aryl aldimines were recovered after hydrolysis. Under the same conditions *N*-alkyl aldimines were not recovered.

In conclusion, dimerization of aromatic imines was carried out by using Cp₂Zr(II) to afford the corresponding vicinal diamines **1** in excellent yields and high diastereoselectivity. In addition, we found a simple method to prepare only *dl*-isomer five-membered ring aminals **3** in good yields. These products are interesting in synthesis as precursors of chiral imidazolinium salts.¹⁸ Besides they constitute important parts of biologically active compounds.¹⁷

Acknowledgements

We thank the CNRS and the Ministère de l'Enseignement Supérieur et de la Recherche for their financial support.

References and notes

- (a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed. 1998, 37, 2580–2627;
 (b) Robertson, G. M. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pinacol Coupling Reaction-sin; Pergamon Press: Oxford, 1991; Vol. 3, pp 563–611.
- (a) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451–454;
 (b) Reedijk, J. Chem. Commun. 1996, 801–806; (c) Pashini, A.; Zunino, F. Angew. Chem., Int. Ed. Engl. 1987, 26, 615–624.
- (a) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97–102; (b) Seyden Penne, J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis; John Wiley & Sons, Inc.: New York, 1995. p 61.
- (a) Fulwood, R.; Parker, D. J. Chem. Soc., Perkin Trans. 2 1994, 57–64; (b) Alexakis, A.; Frutos, J. C.; Mutti, S.; Mangeny, P. J. Org. Chem. 1994, 59, 3326– 3334.
- (a) Enholm, E. J.; Forbes, D. C.; Holub, D. P. Synth. Commun. 1990, 20, 981–987;
 (b) Liao, P.; Huang, Y.; Zhang, Y. Synth. Commun. 1997, 27, 1483–1486. and references cited therein; (c) Aurrecoechea, J. M.; Ferná ndez-Acebes, A. Tetrahedron Lett. 1992, 33, 4763–4766; (d) Kalyanam, N.; Venkateswara Rao, G. Tetrahedron Lett. 1993, 34, 1647–1648; (e) Tanaka, H.; Dhimane, H.; Fujita, H.; Ikemoto, Y.; Torii, S. Tetrahedron Lett. 1988, 29, 3811–3814; (f) Shimizu, M.; lida, T.; Fujisawa, T. Chem. Lett. 1995, 609–610; (g) Roskamp, E. J.; Pedersen, S. F. J. Am. Chem. Soc. 1987, 109, 3152–3154; (h) Mangeney, P.; Tejero, T.; Alexakis, A.; Grosjean, F.; Normant, J. Synthesis 1988, 255–257; (i) Tanaka, H.; Nakahara, T.; Dhimane, H.; Torii, S. Synlett 1989, 51–52; (j) von Betschart, C.; Seebach, D. Helv. Chim. Acta 1987, 70, 2215–2231; (k) Eisch, J. J.; Kaska, D. D.; Peterson, C. J. J. Org. Chem. 1966, 31, 453–456; (l) Jones, D. S.; Srinivasan, A.; Kasina, S.; Fritzberg, A. R.; Wilkening, D. W. J. Org. Chem. 1972, 37, 653–656; (n) Selvakumar, K.; Harrod, J. F. Angew. Chem., Int. Ed. 2001, 40, 2129–2131; (o) Rangareddy, K.; Selvakumar, K.; Harrod, J. F. J. Org. Chem. 2004, 69, 6843–6850.
- (a)For reviews, see: Titanium and Zirconium in Organic Synthesis; Marrek, I., Ed.; Wiley-VCH: Weinheim, 2002; (b) Negishi, E. Dalton Trans. 2005, 827–848; (c)New Aspects of Zirconium Containing Organic Compounds; Marek, I., Ed.Togis in Organometallic Chemistry; Springer: Berlin, 2005; Vol. 10, (d)Metallocenes in Regio-and Stereoselective Synthesis In Topics in Organometallic Chemistry;

Takahashi, T., Ed.; Springer: Berlin, 2005; Vol. 8, Negishi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755–769.

- Earlier works employed Na or Mg as reductants typically in the presence of alkynes or bipyridine, see for example: (a) Watt, G. W.; Drummond, F. O., Jr. J. Am. Chem. Soc. 1970, 92, 826–828; (b) Wailes, P. C.; Weigold, H. J. Organomet. Chem. 1971, 28, 91–95.
- Negishi, E.; Cederbaum, F. E.; Takahashi, T. *Tetrahedron Lett.* **1986**, *27*, 2829–2832.
- Denhez, C.; Médégan, S.; Hélion, F.; Namy, J.-L.; Vasse, J.-L.; Szymoniak, J. Org. Lett. 2006, 8, 2945–2947.
- (a) Viso, A.; Fernandez de la Pradilla, R.; Garcia, A.; Guerrero-Strachan, C.; Alonso, M.; Tortosa, M.; Flores, A.; Martinez-Ripoll, M.; Fonseca, I.; André, I.; Rodriguez, A. *Chem. Eur. J.* **2003**, *9*, 2867–2876; (b)Duhamel, L., Patai, S., Eds.The Chemistry of Amino, Nitroso and Nito Compounds and their Derivatives; Wiley: New York, 1982; Vol. 2, pp 849–890.
- 11. Soueidan, M.; Hélion, F.; Namy, J.-L.; Szymoniak, J. *Tetrahedron Lett.* **2010**, *51*, 115–117.
- 12. Talukdar, S.; Banerji, A. J. Org. Chem. 1998, 63, 3468-3470.
- Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem. Soc. 1989, 111, 4486–4494.
- (a) Machrouhi, F.; Namy, J.-L. Tetrahedron Lett. **1999**, 40, 1315–1318; (b) Nishino, T.; Nishiyama, Y.; Sonoda, N. Heteroat. Chem. **2002**, 13, 131–135; (c) Hanato, B.; Ogawa, A.; Hirao, T. J. Org. Chem. **1998**, 63, 9421–9424.
- (a) Zhu, Z.; Wang, J.; Zhang, Z.; Xiang, X.; Zhou, X. Organometallics 2007, 26, 2499–2500; (b) Grat, A.; Sinault, L.; Fusaro, M. B.; Vallet, A.-L.; Seu, C.; Kilgore, J. L.; Baum, M. M. Organometallics 2010, 29, 1997–2000.
- 16. Materials and methods. All reactions were performed under an atmosphere of argon using standard Schlenk techniques. Prior to use tetrahydrofuran was distilled under argon from sodium benzophenone ketyl. ¹H NMR spectra were recorded in CDCl₃ on a Brucker 360 AVANCE. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm). ¹³C NMR spectra were recorded in CDCl₃ on a Brucker 250 DPX. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm). Coupling constants are expressed in hertz (Hz). High-resolution mass spectra (HRMS) were obtained with a MAT-95-S Finnigan. GC-MS were obtained with a DSQ-Thermo electron instrument. 2,4-(Di-furane-2-yl)-5-(furane-3-yl)-1,3-dipropylimidazolidine (3n): Purification: eluent pentane/EtOAc (90:10). Yellow oil. Yield (78%). ¹H NMR (CDCl₃): δ 0.70 (t, *J* = 7.4, 3H), 0.72 (t, *J* = 7.4, 3H), 1.20–1.50 (m, 4H), 1.90 (m, 1H), 2.21 (m, 1H), 2.76 (m, 2H), 4.18 (d, *J* = 7.4, 1H), 4.29 (d, *J* = 7.4, 1H), 4.89 (s, 1H), 6.20–6.50 (m, 6H), 7.35 (d, J = 1.7, 1H), 7.41 (d, J = 2.1, 1H), 7.43 (d, J = 1.9, 1H). ¹³C NMR (CDCl₃): δ 155.7, 155.2, 152.5, 142.3, 142.0, 141.8, 110.0, 109.8, 109.2, 107,1, 78.1, 65.5, 63.5, 56.2, 49.2, 21.8, 20.9, 11.7, 11.5. HRMS: [M⁺] calcd C21H26N2O3+[Na⁺] 377.1836; found, 377.1846. 1,3-Dipropyl-2,4,5for dipyridinylimidazolidine (30): Purification: eluent pentane/EtOAc (90:10). Incolored oil. Yield (70%). ¹H NMR (CDCl₃): δ 0.56 (t, *J* = 7.4, 3H), 0.61 (t, J = 7.4, 3H), 1.15 (m, 4H), 1.95–2.15 (m, 2H), 2.45–2.70 (m, 2H), 3.86 (d, J = 7.9, 1H), 4.09 (d, J = 7.9, 1H), 5.05 (s, 1H), 7.25 (m, 2H), 7.38 (dd, J = 7.9, J = 4.7, 1H), IH), 4.09 (d, J = 7.9, IH), 5.05 (5, IH), 7.25 (m, 2H), 7.38 (dd, J = 7.9, J = 4.7, IH), 7.56 (dt, J = 7.9, J = 2.0, IH), 7.62 (dt, J = 7.9, J = 2.0, IH), 7.96 (dt, J = 7.9, J = 2.0, 1H), 8.38 (d, J = 2.2, IH), 8.43 (d, J = 2.2, IH), 8.52 (dd, J = 4.7, J = 1.8, IH), 8.54 (dd, J = 4.7, J = 1.8, IH), 8.61 (dd, J = 4.7, J = 1.8, IH), 8.80 (d, J = 2.2, IH). ¹³C NMR (CDCl₃): δ 150.6, 150.1, 149.6, 149.5, 149.4, 137.8, 136.9, 135.9, 135.2, 135.1, 134.6, 123.4, 123.2, 83.1, 74.4, 72.7, 55.2, 48.0, 21.6, 21.1, 11.5, 11.4. HRMS: [M⁺] calcd for $C_{24}H_{29}N_{5}+[Na^{+}]$ 410.2315; found, 410.2322.
- (a) Kallen, R. G.; Jencks, W. P. J. Biol. Chem. **1966**, 241, 5851–5864; (b) Benkovic,
 S. J.; Benkovic, P. H.; Comfort, D. R. J. Am. Chem. Soc. **1969**, 91, 5270–5279; (c) Benkovic, S. J.; Benkovic, P. H.; Chrzanowski, R. J. Am. Chem. Soc. **1970**, 92, 523–528.
- 18. Jurčík, V.; Wilhelm, R. Tetrahedron: Asymmetry 2006, 17, 801-810.