Accepted Manuscript

CrystEngComm

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

www.rsc.org/crystengcomm

RSCPublishing

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

1	Three cob	alt(II) coordination polymers based on
2	V-shaped	aromatic polycarboxylates and rigid
3	bis(imidazo	ole) ligand: Syntheses, crystal structures,
4 5	physical pr	operties and theoretical studies
6 7	Hong Zhou ^a , Gu	ang-Xiang Liu, ^{a,} * Xiao-Feng Wang ^a and Yan Wang ^{b,*}
8	^a School of Bio	chemical and Environmental Engineering, Nanjing Xiaozhuang
9	University, Nanjin	ng 211171, P. R. China
10	^b School of Chem	istry and Chemical Engineering, Anqing Normal University, Anqing
11	246003, P. R. Chi	na
12		
13		
14	Corresponding A	Author:
15	Dr. Guang-Xiang	Liu
16	Mailing Address:	School of Biochemical and Environmental Engineering
17		Nanjing Xiaozhuang University, Nanjing 211171, P. R. China
18	Telephone:	+86-25-86178260
19	E-mail:	njuliugx@gmail.com (G. X. Liu)
20		
21	Dr. Yan Wang	
22	Mailing Address:	School of Chemistry and Chemical Engineering
23		Anqing Normal University, Anqing 246003, P. R. China
24	Telephone:	+86-556-5500090
25	E-mail:	wangyan@aqtc.edu.cn (Y. Wang)
26		
27		

CrystEngComm Accepted Manuscript

28 Abstract

29	To investigate the effect of organic anions on the coordination frameworks, we
30	synthesized three new complexes, namely, Co(SDBA)(BIMB) (1),
31	$Co_2(SA)(BIMB)_{1.5}(H_2O)$ (2) and $Co(FBA)(BIMB)_{0.5}$ ·H ₂ O (3) (H ₂ SDBA =
32	4,4'-dicarboxybiphenylsulfone, $H_4SA = 3,3',4,4'$ -diphenylsulfonetetracarboxylate
33	acid and $H_2FBA = 4,4$ '-(hexafluoroisopropylidene)bis(benzoic acid)), which were
34	obtained by the reactions of 4,4'-bis(1-imidazolyl)biphenyl (BIMB), and three
35	V-shaped aromatic polycarboxylates as organic anions with $Co(NO_3)_2 \cdot 6H_2O$. Single
36	crystal structure analysis shows that complex 1 features a 3-fold interpenetrating
37	three-dimensional (3D) framework with $CdSO_4$ -type topology. Complex 2 has an
38	previously unknown 3D trinodal (4,4,6)-connected framework with Schläli symbol of
39	$(4.6^{4}.8)_{2}(4^{3}.6^{3})_{2}(4^{4}.6^{10}.8)$. Complex 3 exhibits a three-dimensional 2-fold
40	interpenetrating pillared helical-layer open framework of α -Po topology based upon
41	binuclear paddlewheel units. The results reveal that the carboxylic building blocks
42	with different conformations play a significant role in promoting the diversity of the
43	observed structural motifs. The magnetic properties of three complexes as well as
44	SHG and ferroelectric properties for 1 have also been investigated. Finally, theoretical
45	calculations were carried about the conformation of the BIMB ligand in three
46	complexes.

47

Keywords: cobalt(II) coordination polymer; magnetic property; nonlinear optical
property; ferroelectric property; theoretical calculation

50

View Article Online

51 Introduction

52	Crystal engineering to synthesis rationally coordination polymers attract much interest
53	because of their potential applications as functional materials in the field of
54	heterogeneous catalysis porosity, luminescence, conductivity, molecular magnetism,
55	nonlinear optics and chirality. ¹⁻⁴ Their fascinating architectures and topological
56	networks also account for their wide interest. ⁵⁻⁸ In order to build novel molecular
57	architectures, much effort has been devoted to modify the building blocks and to
58	control the assembled motifs for required products via selecting different organic
59	ligands. ^{9,10} Besides that, several factors also influence the construction of molecular
60	architecture, such as pH value, template, reaction temperature, the solvent system,
61	metal ions and counterions. ¹¹⁻¹³ Among these factors, the selection of organic ligands
62	is one of the most important aspects. ¹⁴ The configuration, rigidity, substituent and
63	coordination modes of organic ligands have an important effect on the final structures.
64	Generally, polycarboxylate ligands feature prominently in the construction of
65	coordination polymers, and the reported coordination polymers are mostly constructed
66	by rigid polycarboxylate ligands. ¹⁵ Recently, more and more attention has been paid
67	to the flexible polycarboxylate ligands, ¹⁶ but studies of semirigid V-shaped
68	polycarboxylate ligands are relatively few. ¹⁷

69 Up to now, a number of pyridyl-containing ligands have been widely employed 70 as the second ligands for meeting the requirement of coordination geometries of metal 71 ions or tuning the fine structure.¹⁸ Compared with rigid bridging pyridyl ligands, 72 4,4'-bis(1-imidazolyl)biphenyl (BIMB) possesses a similar rigid structure but a more

73 flexible coordination fashion and an excellent coordination ability, and has the 74 potential to construct porous MOFs. BIMB has two coordination fashions (Scheme 1), *cis*-configuration and *trans*-configuration, while free rotation of the imidazolyl ring 75 and benzene ring makes its style more diverse.¹⁹ In the progress of linking metal ions, 76 77 terminal nitrogen atoms from the five-membered ring units of imidazolyl ligands have 78 a weaker steric hindrance than those from six-membered ring units of pyridyl ligands. 79 Inspired by those ideas, we successfully obtained three new three-dimensional (3D) 80 MOFs. namely, Co(SDBA)(BIMB) (1), $Co_2(SA)(BIMB)_{1.5}(H_2O)$ (2) and $Co(FBA)(BIMB)_{0.5}$ ·H₂O (3). They are characterized by elemental analysis and X-ray 81 crystallography. The crystal structures as well as topological analysis of these 82 83 complexes will be represented and discussed in detail. In addition, their physical properties are also studied. 84

85

86 Experimental section

87 Materials and general methods

All the reagents and solvents for syntheses and analyses were purchased from Sigma or TCI and employed as received without further purification. The BIMB ligand was prepared according to the reported method.²⁰ Elemental analyses (C, H and N) were performed on a Vario EL III elemental analyzer. Infrared spectra were performed on a Nicolet AVATAR-360 spectrophotometer with KBr pellets in the 4000 - 400 cm⁻¹ region. The second-order nonlinear optical intensity was estimated by measuring a powder sample relative to urea. A pulsed Q-switched Nd:YAG laser at a wavelength

View Article Online

95	of 1064 nm was used to generate a SHG signal from powder samples. The
96	backscattered SHG light was collected by a spherical concave mirror and passed
97	through a filter that transmits only 532 nm radiation. The ferroelectric property of the
98	solid-state sample was measured by the Premier II ferroelectric tester at room
99	temperature. Variable-temperature susceptibilities were measured using a MPMS-7
100	SQUID magnetometer. Diamagnetic corrections were made with Pascal's constants
101	for all constituent atoms. ²¹

102 Preparation of Co(SDBA)(BIMB) (1). A mixture containing Co(NO₃)₂·6H₂O 103 (29.6mg, 0.1 mmol), H₂SDBA (30.6 mg, 0.1 mmol), BIMB (28.6 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15 ml deionized water was sealed in a 25 ml Teflon 104 lined stainless steel container and heated at 160 °C for 3 days. Purple pillar crystals of 105 106 1 were collected by filtration and washed with water and ethanol several times with a 107 yield of 64%. Anal. calcd for C₃₂H₂₂N₄O₆SCo: C 59.17; H 3.41; N 8.63; Found: C 59.12; H 3.38; N 8.60%. IR(KBr pellet, cm⁻¹): 3443(br), 3151(m), 1634(s), 1603(s), 108 109 1564(m), 1519(s), 1361(s), 1300(m), 1253(w), 1158(m), 1095(s), 958(m), 833(m), 110 751(s), 690(w), 626(w), 561(w).

Preparation of $Co_2(SA)(BIMB)_{1.5}(H_2O)$ (2). A mixture containing $Co(NO_3)_2$ ·6H₂O (59.2 mg, 0.2 mmol), H₄SA (39.4 mg, 0.1 mmol), BIMB (57.2 mg, 0.2 mmol) and LiOH·H₂O (16.8 mg, 0.4 mmol) in 15 ml deionized water was sealed in a 25 ml Teflon lined stainless steel container and heated at 140 °C for 3 days. Purple platelet crystals of **2** were collected by filtration and washed with water and ethanol several times with a yield of 41%. Anal. calcd for $C_{43}H_{29}N_6O_{11}SCo_2$: C 54.04; H 3.06; N 8.79;

View Article Online

- 118 1580(s), 1520(m), 1407(s), 1366(s), 1325(m), 1244(w), 1101(m), 1067(m), 969(m),
- 119 818(m), 796(m), 745(w), 715(w), 644(w), 532(w).
- 120 **Preparation of Co(FBA)(BIMB)**_{0.5}·H₂O (3). A mixture containing Co(NO₃)₂·6H₂O
- (59.2mg, 0.2 mmol), H₂FBA (39.2 mg, 0.1 mmol), BIMB (28.6 mg, 0.1 mmol) and 121 122 LiOH·H₂O (8.4 mg, 0.2 mmol) in 15 ml deionized water was sealed in a 25 ml Teflon 123 lined stainless steel container and heated at 140 °C for 3 days. Purple pillar crystals of 124 **3** were collected by filtration and washed with water and ethanol several times with a yield of 46%. Anal. calcd for $C_{26}H_{17}F_6N_2O_5C_0$: C 51.16; H 2.81; N 4.59; Found: C 125 51.13; H 2.77; N 4.55%. IR (KBr pellet, cm⁻¹): 3442(br), 3139(w), 1605(s), 1517(m), 126 1391(s), 1259(s), 1208(m), 1167(s), 1116(m), 1066(m), 964(w), 933(w), 832(m), 127 781(m), 740(m), 720(m), 648(w), 577(w). 128
- 129 X-Ray crystallography

Crystallographic data collections for complexes 1 - 3 were carried out on a Bruker 130 Smart Apex II CCD with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) 131 132 at 293(2) K using the ω -scan technique. The data were integrated by using the SAINT program.²² which was also used for the intensity corrections for the Lorentz and 133 134 polarization effects. An empirical absorption correction was applied using the SADABS program.²³ The structures were solved by direct methods using the program 135 SHELXS-97 and all non-hydrogen atoms were refined anisotropically on F^2 by the 136 137 full-matrix least-squares technique using the SHELXL-97 crystallographic software package. The hydrogen atoms of the water molecules were located in a difference 138

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

139	Fourier map, and the other hydrogen atoms were generated geometrically. All
140	calculations were performed on a personal computer with the SHELXL-97
141	crystallographic software package. ²⁴ The details of the crystal parameters, data
142	collection and refinement for the complexes are summarized in Table 1, and selected
143	bond lengths and angles with their estimated standard deviations are listed in Table 2.
144	CCDC-893724 (1), 893725 (2) and 893726 (3) contain the crystallographic data for
145	this paper.
146	
147	<table 1="" 2="" and="" here="" table=""></table>
148	
149	Results and discussion
150	ID speatra
150	ik spectra
150	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes
150 151 152	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H_2SDBA , H_4SA and H_2FBA . The
150 151 152 153	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for
150 151 152 153 154	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The
150 151 152 153 154 155	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The separations (Δ) between v_{asym} (CO ₂) and v_{sym} (CO ₂) bands indicate the presence of
 150 151 152 153 154 155 156 	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The separations (Δ) between v_{asym} (CO ₂) and v_{sym} (CO ₂) bands indicate the presence of different coordination modes. The bands in the region 640 -1310 cm ⁻¹ are attributed to
 150 151 152 153 154 155 156 157 	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The separations (Δ) between v_{asym} (CO ₂) and v_{sym} (CO ₂) bands indicate the presence of different coordination modes. The bands in the region 640 -1310 cm ⁻¹ are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring deformation
 150 151 152 153 154 155 156 157 158 	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The separations (Δ) between v_{asym} (CO ₂) and v_{sym} (CO ₂) bands indicate the presence of different coordination modes. The bands in the region 640 -1310 cm ⁻¹ are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring deformation absorptions of benzene ring, respectively. Weak absorptions observed at 3139 – 3159
 150 151 152 153 154 155 156 157 158 159 	The absence of such bands at around 1700 cm ⁻¹ in the IR spectrum of three complexes indicates the complete deprotonation of H ₂ SDBA, H ₄ SA and H ₂ FBA. The characteristic bands of carboxyl groups are shown in the range of 1540 - 1620 cm ⁻¹ for antisymmetric stretching and 1360 - 1460 cm ⁻¹ for symmetric stretching. The separations (Δ) between v_{asym} (CO ₂) and v_{sym} (CO ₂) bands indicate the presence of different coordination modes. The bands in the region 640 -1310 cm ⁻¹ are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring deformation absorptions of benzene ring, respectively. Weak absorptions observed at 3139 – 3159 cm ⁻¹ can be attributed to v_{C-H} of benzene ring. The IR spectra exhibit the

CrystEngComm Accepted Manuscript

161 Crystal structure of Co(SDBA)(BIMB) (1)

162 Single-crystal X-ray structural analysis reveals that complex 1 crystallizes in the 163 acentric group Cc with Flack parameter of 0.025(10). The asymmetry unit contains 164 one independent cobalt ion, one SDBA dianion, and one BIMB ligand. The Co(II) ion is coordinated by two oxygen atoms from two adjacent SDBA dianions and two 165 166 nitrogen atoms from BIMB linkers to give the CoO_2N_2 tetrahedral geometry (Fig. 1a). 167 The Co-O/N bond lengths are in the range of 1.9538(19) - 2.052(2) Å, which are comparable to those reported in other relative Co(II) polymers.²⁶ The completely 168 169 deprotonated SDBA ligand shows a bi(monodentate) coordination manner, while the BIMB adopts a trans-conformation. The Co(II) cations are bridged by SDBA to form 170 a 1D zigzag chain, as shown in Fig. 1b. These chains are further connected by 171 172 bridging BIMB linkers to give rise to a complicated 3D network with the small solvent-accessible void space (equal to 4.2% of the cell volume) (Fig. 1c). Better 173 174 insight into the elegant framework of 1 can be accessed by the topology method. In 175 this analysis, the metal center can be viewed as 4-connect node. In this way, this net can be simplified as CdSO₄ topology (Fig. 1d).²⁷ Moreover, the occurrence of 3-fold 176 interpenetration and polycatenane character are also observed, as exhibited in Fig. 1e 177 178 and 1f. 179

<Figure 1 here>

181

180

182 Crystal structure of Co₂(SA)(BIMB)_{1.5}(H₂O) (2)

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

CrystEngComm

183	To investigate the influence of the carboxylate ligand on the structure of the
184	complexes, the reaction of BIMB and H ₄ SA with Co(NO ₃) ₂ ·6H ₂ O was carried out, and
185	a new complex 2 was obtained. As illustrated in Fig. 2a, although all the Co(II)
186	centers have octahedral geometries, the two unique metal centers exhibit different
187	coordination environments: Co1 lies in a distorted octahedral coordination sphere, the
188	equatorial plane of which comprises three carboxylate oxygen atoms (O1, O2, and
189	O4A) from two distinct SA ⁴⁻ anions and one BIMB nitrogen atom (N5); another
190	imidazole nitrogen atom (N1) and one coordinated water molecule (O1W) occupy the
191	axial coordination site. Co2 is surrounded by five carboxylate oxygen atoms from
192	three inequivalent SA ⁴⁻ ainions and one BIMB nitrogen atom in a distorted octahedron
193	sphere. In 2, the Co-O bond lengths range between 2.041(3) and 2.343(3) Å, and the
194	Co-N distances are 2.064(4) and 2.152(3) Å, both of which are in the normal range. ²⁸
195	Two Co2 atoms are double bridged by two carboxylate groups with Co2…Co2
196	separations of 3.612 Å to from a dinuclear Co_2 unit. The fully deprotonated $\text{SA}^{4\text{-}}$
197	ligand coordinates to five Co atoms with four carboxylate groups adopting four
198	different coordination fashions: $\mu_1 - \eta^1 : \eta^0$ -monodentate, $\mu_1 - \eta^1 : \eta^1$ -chelating,
199	$\mu_2 - \eta^1 : \eta^1$ -bridging and $\mu_2 - \eta^2 : \eta^1$ -bridging fashion. ²⁵ The SA ⁴⁻ ligand thus links cobalt
200	ions to form a 1D chain structure (Fig. 2b). In addition, it should be noted that there
201	are two independent sets of BIMB spacers adopting cis- and trans-conformations,
202	respectively, which establish a physical bridge between Co atoms with Co…Co
203	separations of 17.28 and 17.36 Å, and one of them resides at a crystallographic
204	inversion center, resulting in the formation of a complicated 3D structure (Fig. 2c).

CrystEngComm Accepted Manuscript

View Article Online

205 A better insight into the nature of this intricate framework can be acquired by using topological analysis. In 2, each SA⁴⁻ anion is four-connected by linking to two 206 207 Co atoms and two dinuclear Co₂ units; the BIMB groups can be simplified to be linear 208 connectors. Co1 and dinuclear Co2 unit were also considered as distinct nodes; 209 therefore, the combination of nodes and connectors suggests an uncommon trinodal (4,4,6)-connected network with a Schäfli symbol of $(4.6^4.8)_2(4^3.6^3)_2(4^4.6^{10}.8)$ for 210 (Co1)₂(SA)₂(Co₂) (Fig. 2d).²⁹ As far as we know, this topology is completely new 211 212 within coordination polymer chemistry. The discovery of this new topology is useful 213 at the basic level in the crystal engineering of coordination networks. 214 <Figure 2 here> 215 216

217 Crystal structure of Co(FBA)(BIMB)_{0.5}·H₂O (3)

218 Single-crystal X-ray analysis revealed that complex 3 displays a 3D 2-fold 219 interpenetrated polymeric structure with 1D helical channels. The asymmetric unit 220 contains one cobalt ion, one FBA dianion, and half of the BIMB ligand (Fig. 3a) with 221 the metal-based building unit comprising a binuclear Co(II)-tetracarboxylate paddlewheel cluster.³⁰ In this binuclear unit (Fig. 3b), each Co(II) ion resides in a 222 223 square pyramidal coordination geometry with the apical position occupied by one nitrogen atom from the BIMB ligand, while the basal plane consists of four 224 carboxylate oxygen atoms. The intradimer Co. Co separation is 2.9177(11) Å, within 225 the normal range found in other reported bimetallic paddlewheel units of type 226

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

CrystEngComm

View Article Online

227	$[M_2(O_2CR)_4]$. ³¹ In 3 , each paddlewheel unit connects to four neighboring paddlewheel
228	clusters via bridging FBA ²⁻ dianions, which adopt a bridging tetradentate mode to
229	form a 2D undulating (4,4) net with large rhomb-like windows (Fig. 3c). The
230	dimensions of the rhombic window are 14.24 \times 14.24 \AA^2 as measured between the
231	centroids of the binuclear Co(II) subunits at the corners of the window. As depicted in
232	Fig. 3d, the skeleton of this 2D sheet can also be described as a unique helical layer in
233	which the left and right helical chains appear alternatively by sharing the paddlewheel
234	clusters. The pitch of helix is double the <i>b</i> parameter (14.393 Å).
235	Most strikingly, the two diagonals of the rhombic window are equal to unit cell
236	parameters b and c , respectively. Two closest identical helical layers shift by b so that

the paddlewheel units from one layer fall in the center of the window of the other 237 layer, and interpenetrate each other in a parallel $2D\rightarrow 2D$ fashion, resulting in an 238 interwoven bilayer with 1D double helical channels. The FBA²⁻ ligand presents a 239 dihedral angle of 77.98° between the two benzene rings, and this configuration 240 contributes to the parallel $2D \rightarrow 2D$ interpenetration. The skeleton of these 2D layers 241 can also be viewed as a unique helical tubular double layer, which is similar to the 242 previously reported Co-FBA sheets in the compound [Co(FBA)(py)]_n.³² These helical 243 244 interpenetrated double layers are extended to a 3D framework with the aid of the 245 pillar BIMB ligand (Fig. 3e). The BIMB ligand connects the two paddle wheels of 246 two different double layers with a separation of 17.92 Å in a regular trans-conformation. The connectivity pattern of linker BIMB forms 1D chains 247 through the crystallographic c axis connecting the double layers in the ab plane. The 248

CrystEngComm Accepted Manuscript

249	two imidazole rings in the BIMB ligand twist from the phenyl ring plane by a torsion
250	angle of 75.89°. If the paddle-wheel dimer can be topologically viewed as an
251	octahedral node, meanwhile the FBA ²⁻ and BIMB bridges can be viewed as linkers,
252	the topology of single net for 3 can be best described as an uninodal six-connected
253	distorted primitive cubic (α -Po) net (Fig. 3f). ³⁰ Two identical nets interpenetrate each
254	other, giving rise to a 2-fold interpenetrating framework.
255	
256	<figure 3="" here=""></figure>
257	
258	It is well known that the organic anions play an important role in determining the
259	final structures of the compounds. By varying the anions under similar synthetic

260 conditions three related Co(II) complexes with different structures were successfully 261 synthesized. The roles played by the carboxylate anions in complexes **1-3** can be 262 explained in terms of their differences in the positions and numbers of the carboxylate 263 groups. It is a feasible method to introduce ligands to construct coordination polymers 264 with different structural types.

265 SHG activity and ferroelectric properties of complex 1

Second-order non-linear optical (NLO) materials have attracted more and more attention in fields such as laser frequency conversion and optical parameter oscillators. Among them, new NLO materials made from metal-organic coordination polymers have been a major point of focus in recent years because of their advantages over pure inorganic or organic compounds. It is well-known that only a non-centrosymmetric

View Article Online

structure may have second-order NLO effects.³³ Therefore, it is believed that complex 271 quasi-Kurtz 272 1 with Cc space group has а NLO response, and a 273 second-harmonic-generation (SHG) measurement was carried out to evaluate their 274 potential application as a second-order NLO material. The preliminary experimental results revealed that complex 1 exhibits modest powder SHG activity with a response 275 276 of 0.8 times of that for urea, which indicates that the complex 1 can be used as a 277 potential optical material.

Recently, a prevalent research have focused on developing ferroelectric 278 279 materials based on metal-organic frameworks (MOFs) and have reported some such materials.³⁴ However, the reported ferroelectric materials are mostly built upon chiral 280 organic tectons, whereas the proper use of achiral ligands by spontaneous are scarce.³⁵ 281 282 Herein, we describe the preliminary investigation of the possible ferroelectric property 283 of complex 1. Complex 1 crystallizes in the acentric space group Cc, which belongs to 284 the polar point group Cs, which falls in one of the 10 polar point groups (C1, Cs, C2, C2v, C4, C4v, C3, C3v, C6, C6v) required for ferroelectric materials. Therefore, the 285 286 ferroelectric behavior of 1 was examined. Fig. 4 clearly shows that there is an electric hysteresis loop that is a typical ferroelectric feature with a remanent polarization (Pr)287 of ca. 0.051 µC cm⁻² and coercive field (Ec) of ca. 3.38 kV cm⁻¹. The saturation 288 spontaneous polarization (*Ps*) of 1 is ca. 0.238 μ C cm⁻². Furthermore, we also studied 289 the behavior of permittivity $(\varepsilon) = \varepsilon_1(\omega) - i\varepsilon_2(\omega)$, where $\varepsilon_1(\omega)$ and $i\varepsilon_2(\omega)$ are the real 290 291 (dielectric constant) and imaginary (dielectric loss) parts, respectively. The results 292 reveal that the frequency dependence of the dielectric constant ε_1 at room temperature

CrystEngComm Accepted Manuscript

(20 °C) indicates that ε_1 rapidly decreases with the increase of frequency, while
dielectric loss remains unchanged.
<figure 4="" here=""></figure>

298 Magnetic properties

299 The variable-temperature magnetic susceptibility measurements of complexes 1 - 3 were performed on the Quantum Design SQUID MPMS XL-7 instruments in the 300 temperature range of 2-300 K under a field of 1000 Oe. Temperature dependence of 301 $\chi_M T$ and χ_M for complexes 1-3 as displayed in Fig. 5. Magnetic susceptibility data of 302 per Co(II) ion of 1 shows the $\chi_{\rm M}T$ value of 2.16 cm³ K mol⁻¹ at room temperature, 303 which is much higher than the expected value of 1.875 cm³ K mol⁻¹ for one 304 305 magnetism-isolated Co(II) ion with S = 3/2 and g = 2.0, they are common values for high-spin complexes in tetrahedral Co(II) centers (4.30-5.20 $\mu_{\rm B}$). The magnetic 306 behavior should be due to a larger orbital contribution arising from the ${}^{4}A_{2g}$ 307 ground-state of Co(II).³⁶ The $\chi_M T$ value increases gradually with decreasing 308 temperature and move up to a maximum value of 3.257 cm³ K mol⁻¹ at ca. 36.1 K. 309 310 which suggests ferromagnetic behavior, and then decrease sharply down to a minimum value of 1.49 cm³ K mol⁻¹ at 2 K, such behavior is possibly due to ZFS 311 (zero-field splitting) and/or antiferromagnetic interactions.³¹ From the structure of 312 313 complex 1, though the magnetic centers separated by the long BIMB and SDBA ligands are weakly magnetic coupled (17.298 and 13.758 Å), the nearest Co…Co 314

View Article Online

315	distance between adjacent chains is about 7.659 Å which should make a contribution
316	to the ferromagnetic behavior <i>via</i> intermolecular interactions. The plot of $1/\chi_M$ versus
317	T can be fitted by the Curie-Weiss law $[\chi_M = C/(T-\theta)]$ above 18 K, giving the Curie
318	constant value $C = 2.75 \text{ cm}^3 \text{ K mol}^{-1}$ and Weiss constant $\theta = +6.12 \text{ K}$. The Curie
319	constant value is consistent with the $\chi_{\rm M}T$ value at room temperature. The positive
320	value of θ further conforms the ferromagnetic behavior.

As for **2**, the $\chi_M T$ value at room temperature is 4.44 cm³ K mol⁻¹ per two Co(II) 321 ions, which is much higher than the calculated spin-only value (3.87 cm³ K mol⁻¹) for 322 two uncoupled high-spin Co(II) ion (S = 3/2, g = 2). This is as expected for octahedral 323 high-spin cobalt(II) ions, which have a large first-order orbital contribution to the 324 magnetic moment.³⁶ Upon cooling the $\chi_{\rm M}T$ value decreases smoothly to reach a value 325 of 1.125 cm³ K mol⁻¹ at 26 K and slightly shifts the curve and then decreases to a 326 minimum value of 0.280 cm³ K mol⁻¹ at 2 K. The results show that the complex 327 shows overall antiferromagnetic interactions and also spin-orbit coupling interactions 328 329 between the adjacent Co(II) ions.

Complex **3** is essentially a Co-dimer with four carboxyl ligands coordinating to two Co(II) ions that form a typical paddle wheel SBU, which is further connected through the axial site by the BIMB ligand. The $\chi_M T$ value at the room temperature is 2.22 cm³ K mol⁻¹, which is little lager than the calculated spin-only value of 1.875 cm³ K mol⁻¹ for one isolated Co(II) ion (S = 3/2), with octahedral geometry, indicating the orbital contribution of Co(II) ions. The plot of $1/\chi_M$ versus *T* can be fitted by the Curie-Weiss law above 2 K, giving the Curie constant value C = 2.93 cm³ K mol⁻¹ and

Weiss constant θ = -3.81 K. The negative θ value is indicative of a dominant

antiferromagnetic interaction between Co(II) centers. According to the structure of

View Article Online

	339	complex 3, it could be presumed that the main magnetic interactions are between the
	340	paddle-wheel unit metal center, while the superexchange interactions between Co(II)
06G	341	ions through the BIMB bridge can be ignored due to the length of the BIMB ligands.
2CE266	342	The results indicates the typical antiferromagnetic and spin-orbit coupling interactions
10.1039/0	343	present in the complex.
org doi:1	344	
pubs.rsc.o	345	<figure 5="" here=""></figure>
on http://j	346	
oer 2012 o	347	Theoretical calculations
) Noveml	348	To compare the stability of the BIMB ligand in their different conformations in three
hed on 3(349	complexes, theoretical calculations have been performed. The molecular geometries
Publis	350	of only the ligands were taken from the CIF files, generated during the crystal
	351	structure determination of the complexes, and are optimized. Single point energy
	352	calculations have been carried out by using B3LYP with 6-311g** basis set. It is a
	353	common practice in the field of polymeric metal complexes to compute the energies,
	354	using a model structure that very closely resembles the particular moiety to reduce
	355	mainly the computational time. ³⁷ In the present study, we have considered only the
	356	BIMB ligand geometries in the complexes without considering coordination for the

337

338

Downloaded by Dalhousie University on 02 December 2012

ere> in their different conformations in three performed. The molecular geometries CIF files, generated during the crystal nd are optimized. Single point energy B3LYP with 6-311g** basis set. It is a etal complexes to compute the energies, embles the particular moiety to reduce ent study, we have considered only the vithout considering coordination for the computational simplification as model structures. These considerations are adopted in 357 these calculations only to compare the energies of the particular conformations. It has 358

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

CrystEngComm

View Article Online

359	been shown, however, that these considerations can have a significant consequence on
360	the absolute values, and therefore, only a qualitative comparison could be expected.
361	From the literature, the energy calculations of the crystal structures have been
362	performed by optimizing the crystal structures through various optimization
363	procedures (Dreiding force field) using density functional theory (DFT) methods. ³⁸
364	The optimized energy of the BIMB ligand in three complexes show almost the same
365	energy (kcal/mol) in all its conformers, -452463.3423 (-452381.345) for 1,
366	-452617.4654 (-452589.452) and -452477.8070 (-452436.275) for 2 and
367	-452471.7657 (-452461.842) for 3 . The values in the parentheses indicate single
368	point energies. From the optimized energy values, all the conformations of the BIMB
369	ligand converge to global minima in the potential energy surface (which corresponds
370	to energies of stable conformations). A qualitative comparison of single point energy
371	calculations reveals a slight difference in the energy values of the conformers. The
372	results indicate that the BIMB ligands can show stable cis- and trans-conformations,
373	and the energy difference between these conformations are very less, so that the
374	ligand can exist in different conformations depending upon the coordination
375	requirements.

376

377 Conclusions

In this work, we have successfully fabricated three novel coordination polymers under hydrothermal condition. Complex **1** features a 3-fold interpenetrating three-dimensional (3D) framework with CdSO₄-type topology. Complex **2** has an

3	81	previously unknown 3D trinodal (4,4,6)-connected framework with Schläli symbol of
3	82	$(4.6^{4}.8)_{2}(4^{3}.6^{3})_{2}(4^{4}.6^{10}.8)$. Complex 3 exhibits a three-dimensional 2-fold
3	83	interpenetrating pillared helical-layer open framework of α -Po topology based upon
3	84	binuclear paddlewheel units. The results reveal that the carboxylic building blocks
3	85	with different conformations play a significant role in promoting the diversity of the
3	86	observed structural motifs. The magnetic properties of three complexes indicate the
3	87	typical antiferromagnetic interactions and spin-orbit coupling interactions between the
3	88	adjacent Co(II) ions. Complex 1 has modest power SHG activity and ferroelectric
3	89	properties. Moreover, theoretical calculations indicate that the BIMB ligands can
3	90	show stable cis- and trans-conformations, and the energy difference between these
3	91	conformations are very less.
3	92	
3	93	Acknowledgements
3	94	This work was supported by the National Natural Science Foundation of China (Nos.
3	95	21271116, 21171097), the Key Project of Chinese Ministry of Education (No. 210102)
3	96	and the Natural Science Foundation of Anhui Province (No. 11040606M45).
3	97	
3	98	References
3	99	1 (a) S. R. Halper, L. Do, J. R. Stork and S. M. Cohen, J. Am. Chem. Soc., 2006,
4	00	128, 15255; (b) S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki,
4	01	Y. Kinoshita and S. Kitagawa, J. Am. Chem. Soc., 2007, 129, 2607; (c) F. Luo, J.
4	02	M. Zheng and S. R. Batten, Chem. Commun., 2007, 3744; (d) S. Kitagawa and R.

View Article Online

403		Matsuda, Coord. Chem. Rev., 2007, 251, 2490; (e) V. K. Rao, S. Chakrabarti and
404		S. Natarajan, Inorg. Chem., 2007, 46, 10781; (f) O. M. Yaghi, M. O'Keeffe, N. W.
405		Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003, 423, 705; (g) B.
406		Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
407	2	(a) D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim and K. Kim, J. Am. Chem. Soc.,
408		2004, 126, 32; (b) B. Zhao, H. L. Gao, X. Y. Chen, P. Cheng, W. Shi, D. Z. Liao,
409		S. P. Yan and Z. H. Jiang, ChemEur. J., 2006, 12, 149; (c) B. L. Chen, S. Q. Ma,
410		F. Zapata, F. R. Fronczek, E. B. Lobkovsky and H. C. Zhou, Inorg. Chem., 2007,
411		46, 1233; (d) M. Dinca and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376; (e) D.
412		Dubbeldam, C. J. Galvin, K. S. Walton, D. E. Ellis and R. Q. Snurr, J. Am. Chem.
413		Soc., 2008, 130, 10884; (f) J. R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc.
414		<i>Rev.</i> , 2009, 38 , 1477.
415	3	(a) R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young,
416		D. Q. Yuan, D. Zhao, W. J. Zhuang and H. C. Zhou, Coord. Chem. Rev., 2009,
417		253 , 3042; (b) C. Janiak and J. K. Vieth, New J. Chem., 2010, 34 , 2366; (c) S. K.
418		Henninger, H. A. Habib and C. Janiak, J. Am. Chem. Soc., 2009, 131, 2776; (d) S.
419		Q. Ma and H. C. Zhou, Chem. Commun., 2010, 46, 44.
420	4	(a) B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P. Yan and Z. H. Jiang, J. Am.
421		Chem. Soc., 2004, 126, 15394; (b) Y. C. Qiu, H. Deng, J. X. Mou, S. H. Yang, M.
422		Zeller, S. R. Batten, H. H. Wu and J. Li, Chem. Commun., 2009, 5415; (c) A. J.
423		Lan, K. H. Li, H. H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. C. Hong and J. Li,
424		Angew. Chem., Int. Ed., 2009, 48, 2334; (d) S. A. Sapchenko, D. G. Samsonenko,

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

CrystEngComm Accepted Manuscript

425		D. N. Dybtsev, M. S. Melgunov and V. P. Fedin, <i>Dalton Trans.</i> , 2011, 40, 2196.
426	5	(a) M. Higuchi, D. Tanaka, S. Horike, H. Sakamoto, K. Nakamura, Y. Takashima,
427		Y. Hijikata, N. Yanai, J. Kim, K. Kato, Y. Kubota, M. Takata and S. Kitagawa, J.
428		Am. Chem. Soc., 2009, 131, 10336; (b) K. H. Li, D. H. Olson, J. Seidel, T. J.
429		Emge, H.W. Gong, H. P. Zeng and J. Li, J. Am. Chem. Soc., 2009, 131, 10368; (c)
430		X. D. Chen, X. H. Zhao, M. Chen and M. Du, ChemEur. J., 2009, 15, 12974; (d)
431		M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long and M.
432		Kurmoo, J. Am. Chem. Soc., 2010, 132, 2561.
433	6	(a) H. He, D. Yuan, H. Ma, D. Sun, G. Zhang and H. C. Zhou, Inorg. Chem., 2010,
434		49, 7605; (b) X. Zhao, H. He, T. Hu, F. Dai and D. Sun, Inorg. Chem., 2009, 48,
435		8057; (c) Y. L. Zhou, M. H. Zeng, L. Q. Wei, B. W. Li and M. Kurmoo, Chem.
436		Mater., 2010, 22, 4295; (d) B. Gil-Hernandez, P. Gili, J. K. Vieth, C. Janiak and J.
437		Sanchiz, Inorg. Chem., 2010, 49, 7478; (e) Y. Z. Zheng, W. Xue, M. L. Tong, X.
438		M. Chen and S. L. Zheng, Inorg. Chem., 2008, 47, 11202; (f) X. Bao, P. H. Guo, J.
439		L. Liu, J. D. Leng and M. L. Tong, ChemEur. J., 2011, 17, 2335.
440	7	(a) O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D.
441		Zacher, R. A. Fischer and C. Woll, Nat. Mater., 2009, 8, 481; (b) J. Xu, W. Su and
442		M. Hong, Cryst. Growth Des., 2011, 11, 337; (c) Q. Y. Yang, K. Li, J. Luo, M.
443		Pan and C. Y. Su, Chem. Commun., 2011, 47, 4234; (d) A. S. Degtyarenko, P. V.
444		Solntsev, H. Krautscheid, E. B. Rusanov, A. N. Chernega and K. V. Domasevitch,
445		New J. Chem., 2008, 32 , 1910; (e) Q. Pan, J. Li, Q. Chen, Y. Han, Z. Chang, W. C.
446		Song and X. H. Bu, Microporous Mesoporous Mater., 2010, 132, 453; (f) C. M.

447		Gandolfo and R. L. LaDuca, Cryst. Growth Des., 2011, 11, 1328; (g) B. Zheng, J.		
448		Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748.		
449	8	(a) R. L. LaDuca, Coord. Chem. Rev., 2009, 253, 1759; (b) X. F. Kuang, X. Y. Wu		
450		R. M. Yu, J. P. Donahue, J. S. Huang and C. Z. Lu, Nat. Chem., 2010, 2, 461; (c)		
451		V. Niel, A. L. Thompson, M. C. Muñoz, A. Galet, A. E. Goeta and J. A. Real,		
452		Angew. Chem., Int. Ed., 2003, 42, 3760; (d) L. Q. Ma and W. B. Lin, Angew.		
453		Chem. Int. Ed., 2009, 48, 3637; (e) Y. Gong, Y. C. Zhou, T. F. Liu, J. Lu, D. M.		
454		Proserpio and R. Cao, Chem Commun, 2011, 47, 5982; (f) K. M. Park, D. Whang,		
455		E. Lee, J. Heo and K. Kim, ChemEur. J., 2002, 8, 498; (g) J. A. Aitken and M.		
456		G. Kanatzidis, J. Am. Chem. Soc., 2004, 126, 11780.		
457	9	(a) J. Gopalakrishnan, Chem. Mater., 1995, 7, 1265; (b) A. Stein, S. W. Keller		
458		and T. E. Mallouk, Science, 1993, 259, 1558; (c) J. Zubieta, Comp. Coord. Chem.,		
459		2004, 1, 697; (d) E. Burkholder and J. Zubieta, Solid State Sci., 2004, 6, 1421; (e)		
460		D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro and H. C. Zhou, Chem. Commun.,		
461		2005, 5447; (f) B. Zheng, H. Dong, J. F. Bai, Y. Z. Li, S. H. Li and M. Scheer, J.		
462		Am. Chem. Soc., 2008, 130, 7778; (g) P. Kanoo, K. L. Gurunatha and T. K. Maji,		
463		Cryst. Growth Des., 2009, 9, 4147.		
464	10	(a) O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J.		
465		Kim, Nature, 2003, 423, 705; (b) X. Shi, G. S. Zhu, X. H. Wang, G. H. Li, Q. R.		
466		Fang, X. J. Zhao, G. Wu, G. Tian, M. Xue, R. W. Wang and S. L. Qiu, Cryst.		
467		Growth Des., 2005, 5, 341; (c) C. B. Aakeröy, N. C. Schultheiss, A. Rajbanshi, J.		
468		Desper and C. Moore, Cryst. Growth Des., 2009, 9, 432; (d) J. H. Jia, X. Lin, C.		

469		Wilson, A. J. Blake, N. R. Champness, P. Hubberstey, G. Walker, E. J. Cussena
470		and M. Schröder, Chem. Commun., 2007, 840; (e) M. X. Li, Z. X. Miao, M. Shao,
471		S. W. Liang and S. R. Zhu, Inorg. Chem., 2008, 47, 4481; (f) A. H. Yuan, R. Q.
472		Lu, H. Zhou, Y. Y. Chen and Y. Z. Li, CrystEngComm, 2010, 12, 1382.
473	11	(a) B. Dey, S. R. Choudhury, P. Gamez, A. V. Vargiu, A. Robertazzi, C. Y. Chen,
474		H. M. Lee, A. D. Jana and S. Mukhopadhyay, J. Phys. Chem. A, 2009, 113, 8628;
475		(b) A. Das, A. D. Jana, S. K. Seth, B. Dey, S. R. Choudhury, T. Kar, S.
476		Mukhopadhyay, N. J. Singh, I. C. Hwang and K. S. Kim, J. Phys. Chem. B, 2010,
477		114, 4166; (c) G. Mezei, P. Baran and R. G. Raptis, Angew. Chem., Int. Ed., 2004,
478		43, 574; (d) H. K. Liu, X. H. Huang, T. H. Lu, X. J. Wang, W. Y. Sun and B. S.
479		Kang, Dalton Trans., 2008, 3178; (e) Y. Cui, O. R. Evans, H. L. Ngo, P. S. White
480		and W. B. Lin, Angew. Chem., Int. Ed., 2002, 41, 1159; (f) O. M. Yaghi, M.
481		O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi and J. Kim, Nature, 2003,
482		423, 705; (g) R. Carballo, B. Covelo, E. M. Vázquez-López, E. García-Martínez,
483		A. Castiñeiras and J. Niclós, Z. Anorg. Allg. Chem., 2005, 631, 785; (h) D. L.
484		Reger, R. P. Watson and M. D. Smith, Inorg. Chem., 2006, 45, 10077; (i) F. Luo,
485		Y. X. Che and J. M. Zheng, Cryst. Growth Des., 2009, 9, 1066.
486	12	(a) D. N. Dybtsev, H. Chun and K. Kim, Chem. Commun., 2004, 1594; (b) Y. B.
487		Dong, H. X. Xu, J. P. Ma and R. Q. Huang, Inorg. Chem., 2006, 45, 3325; (c) L.
488		H. Weng and D. Y. Zhao, ChemEur. J., 2007, 13, 4146; (d) R. Sarma, D. Kalita
489		and J. B. Baruah, Dalton Trans., 2009, 7428; (e) R. Cao, D. F. Sun, Y. C. Liang,
490		M. C. Hong, K. Tatsumi and Q. Shi, Inorg. Chem., 2002, 41, 2087; (f) J. C.

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

CrystEngComm

491		MacDonald, T. J. M. Luo and G. T. R. Palmore, Cryst. Growth Des., 2004, 4,
492		1203; (g) P. Mahata and S. Natarajan, Inorg. Chem., 2007, 46, 1250; (h) Z. W.
493		Wang, C. C. Ji, J. Li, Z. J. Guo, Y. Z. Li and H. G. Zheng, Cryst. Growth Des.,
494		2009, 9 , 475.
495	13	(a) S. Masaoka, D. Tanaka, Y. Nakanishi and S. Kitagawa, Angew. Chem., Int. Ed.,
496		2004, 43, 2530; (b) D. F. Sun, Y. X. Ke, T. M. Mattox, B. A. Ooro and H. C. Zhou,
497		Chem. Commun., 2005, 5447; (c) B. Zheng, H. Dong, J. F. Bai, Y. Z. Li, S. H, Li
498		and M. Scheer, J. Am. Chem. Soc., 2008, 130, 7778; (d) P. Kanoo, K. L.
499		Gurunatha and T. K. Maji, Cryst. Growth Des., 2009, 9, 4147.
500	14	(a) V. S. S. Kumar, F. C. Pigge and N. P. Rath, New J. Chem., 2004, 28, 1192; (b)
501		A. J. Blake, N. R. Brooks, N. R. Champness, M. Crew, A. Deveson, D. Fenske, D.
502		H. Gregory, L. R. Hanton, P. Hubberstey and M. Schröder, Chem. Commun., 2001,
503		1432; (c) Y. J. Qi, Y. H. Wang, C. W. Hu, M. H. Cao, L. Mao and E. B. Wang,
504		Inorg. Chem., 2003, 42 , 8519.
505	15	(a) X. L.Wang, C. Qin, E. B. Wang, Z. M. Su, L. Xu and S. R. Batten, Chem.
506		Commun., 2005, 4789; (b) B. Chen, F. R. Fronczek, B. H. Courtney and F. Zapata,
507		Cryst. Growth Des., 2006, 6, 825; (c) C. A. Williams, A. J. Blake, P. Hubberstey
508		and M. Schröder, Chem. Commun., 2005, 5435.
509	16	(a) Z. H. Zhou, J. M. Yang and H. L. Wan, Cryst. Growth Des., 2005, 5, 1825; (b)
510		S. L. Childs, L. J. Chyall, J. T. Dunlap, V. N. Smolenskaya, B. C. Stahly and G. P.
511		Stahly, J. Am. Chem. Soc., 2004, 126, 13335; (c) P. Vishweshwar, A. Nangia and
512		V. M. Lynch, Cryst. Growth Des., 2003, 3, 783; (d) A. Dimos, D. Tsaousis, A.

CrystEngComm Accepted Manuscript

513		Michaelides, S. Skoulika, S. Golhen, L. Ouahab, C. Didierjean and A. Aubry,
514		Chem. Mater., 2002, 14, 2616; (e) D. T. de Lill, N. S. Gunning and C. L. Cahill,
515		Inorg. Chem., 2005, 44, 258; (f) L. A. Borkowski and C. L. Cahill, Inorg. Chem.,
516		2003, 42 , 7041.
517	17	(a) Y. X. Tan, Y. P. He and J. Zhang, Inorg. Chem., 2012, 51, 9649; (b) Y. X. Tan,
518		F. Wang, Y. Kang and J. Zhang, Chem. Commun., 2011, 47, 770; (c) S. Q. Zhang,
519		F. L. Fang, M. Y. Wu, J. Ma, Y. Bu and M. C. Hong, Cryst. Drowth Des., 2012, 12,
520		1452; (d) C. Ren, P. Liu, Y. Y. Wang, W. H. Huang and Q. Z. Shi, Eur. J. Inorg.
521		Chem., 2010, 5545; (e) G. X. Liu, K. Zhu, H. M. Xu, S. Nishihara, R. Y. Huang
522		and X. M. Ren, CrystEngComm, 2010, 12, 1175; (f) H. L. Wang, K. Wang, D. F.
523		Sun, Z. H. Ni and J. Z. Jiang, CrystEngComm, 2011, 13, 279; (g) S. Q. Zang, J. B.
524		Li, Q. Y. Li, H. W. Hou and T. C. W. Mak, CrystEngComm, 2010, 12, 2907; (h) G.
525		X. Liu, R. Y. Huang, L. F. Huang, X. J. Kong and X. M. Ren, CrystEngComm,
526		2009, 11, 643.
527	18	(a) Y. L. Lu, W. J. Zhao, Y. Liu, B. Liu, X. Feng, J. T. Tan, X. Li and X. W. Yang,
528		J. Solid State Chem., 2012, 192, 144; (b) G. X. Liu, Y. Q. Huang, Q. Chu, Ta.
529		Okamura, W. Y. Sun, H. Liang and N. Ueyama, Cryst. Growth Des., 2008, 8,
530		3233; (c) W. H. Zhang, Z. Dong, Y. Y. Wang, L. Hou, J. C. Jin, W. H. Huang and
531		Q. Z. Shi, Dalton Trans., 2011, 40, 2509; (d) G. P. Yang, Y. Y. Wang, P. Liu, A. Y.
532		Fu, Y. N. Zhang, J. C. Jin and Q. Z. Shi, Cryst. Growth Des., 2010, 10, 1443; (e)
533		S. N. Wang, H. Xing, Y. Z. Li, J. F. Bai, Y. Pan, M. Scheer and X. Z. You, Eur. J.
534		Inorg. Chem., 2006, 3041.

View Article Online

CrystEngComm Accepted Manuscript

535	19	(a) Y. Wang, F. H. Zhao, Y. X. Che and J. M. Zheng, Inorg. Chem. Commun.,
536		2012, 17, 180; (b) L. L. Wen, J. B. Zhao, K. L. Lv, Y. H. Wu, K. J. Deng, X. K.
537		Leng and D. F. Li, Cryst. Growth Des., 2012, 12, 1603; (c) F. Wang, X. H. Ke, J.
538		Zhao, K. J. Deng, X. K. Leng, Z. F. Tian, L. L. Wen and D. F. Li, Dalton Trans.,
539		2011, 40, 11856; (d) S. Y. Zhang, J. B. Lan, Z. H. Mao, R. G. Xie and J. S. You,
540		<i>Cryst. Growth Des.</i> , 2008, 8 , 3134.
541	20	(a) J. Fan and B. E. Hanson, Chem. Commun., 2005, 2327; (b) Y. H. So,
542		Macromolecules, 1992, 25 , 516.
543	21	(a) R. L. Carlin, Magnetochemistry, Springer-Verlag, Berlin, Heidelberg, 1986; (b)
544		O. Kahn, Molecular Magnetism, VCH Publishers, Weinheim, 1993.
545	22	SAINT, Version 6.02a; Bruker AXS Inc., Madison, W1, 2002.
546	23	G. M. Sheldrick, SADABS, Program for Bruker Area Detector Absorption
547		Correction, University of Göttingen, Göttingen, Germany, 1997.
548	24	(a) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution,
549		University of Göttingen, Göttingen, Germany, 1997. (b) G. M. Sheldrick,
550		SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen,
551		Göttingen, Germany, 1997.
552	25	(a) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordinated
553		Compounds, 5th edn, Wiley & Sons, New York, 1997; (b) C. G. Wang, Y. H. Xing,
554		Z. P. Li, J. Li, X. Q. Zeng, M. F. Ge and S. Y. Niu, Cryst. Growth Des., 2009, 9,
555		1525.

26 (a) Y. Liu, Y. Qi, Y. Y. Lv, Y. X. Che and J. M. Zheng, Cryst. Growth Des., 2009,

9, 4797; (b) J. Yang, J. F. Ma, S. R. Batter and Z. M. Su, Chem. Commun., 2008,

CrystEngComm Accepted Manuscript

View Article Online

558		2233; (c) B. K. Tripuramallu, P. Manna, S. N. Reddy and S. K. Das, Cryst.
559		Growth Des., 2012, 12, 777; (d) S. Q. Zang, M. M. Dong, Y. J. Fan, H. W. Hou
560		and T. C. W. Mak, Cryst. Growth Des., 2012, 12, 1239; (e) J. Q. Liu, Y. Y. Wang,
561		T.Wu and J. Wu, CrystEngComm, 2012, 14, 2906.
562	27	(a) L. F. Ma, L. Y. Wang, D. H. Lu, S. R. Batten and J. G. Wang, Cryst. Growth
563		Des., 2009, 9, 1741; (b) W. Q. Kan, J. Yang, Y. Y. Liu and J. F. Ma,
564		CrystEngComm, 2012, 14, 6934.
565	28	(a) Y. Y. Liu, J. F. Ma, J. Yang and Z. M. Su, Inorg. Chem., 2007, 46, 3027; (b) Y.
566		Liu, Y. Qi, Y. Y. Lv, Y. X. Che and J. M. Zheng, Cryst. Growth Des., 2010, 10,
567		4797.
568	29	(a) M. O'Keeffe, O. M. Yaghi, Reticular Chemistry Structure Resource; Arizona
569		State University: Tempe, AZ, 2005; http://okeeffews1.la.asu.edu/rcsr/home.htm;
570		(b) I. A. Baburin, V. A. Blatov, L. Carluccib, G. Ciani and D. M. Proserpio, J.
571		Solid State Chem., 2005, 178, 2452; (c) V. A. Blatov, 2006,
572		http://www.topos.ssu.samara.ru/starting.html.
573	30	(a) L. Pan, D. H. Olson, L. R. Ciemnolonski, R. Heddy and J. Li, Angew. Chem.
574		Int. Ed., 2006, 45, 616; (b) W. B. Yang, X. Lin, A. J. Blake, C. Wilson, P.
575		Hubberstey, N. R. Champness and M. Schröder, Inorg. Chem., 2009, 48, 11067.
576	31	(a) S. W. Lee, H. J. Kim, Y. K. Lee, K. Park, J. H. Son and Y. U. Kwon, Inorg.
577		Chim. Acta, 2003, 353, 151; (b) E. Y. Choi, K. Park, C. M. Yang, H. Kim, J. H.

556

557

578		Son, S. W. Lee, Y. H. Lee, D. Min and Y. U. Kwon, ChemEur. J., 2004, 10,
579		5535; (c) S. A. Hilderbrand and S. J. Lippard, Inorg. Chem., 2004, 43, 5294; (d)
580		H. Chun, H. Jung and J. Seo, Inorg. Chem., 2009, 48, 2043; (e) Q. X. Yao, J. L.
581		Sun, K. Li, J. Su, M. V. Peskov and X. Z. You, <i>Dalton Trans.</i> , 2012, 41 , 3953.
582	32	(a) L. Han, Y. Zhao, W. N. Zhao, X. Li and Y. X. Liang, Cryst. Growth Des., 2009,
583		9, 660; (b) P. Pachfule, C. Dey, T. Panda and R. Banarjee, CrystEngComm, 2010,
584		12, 1600; (c) C. C. Ji, L. Qin, Y. Z. Li, Z. J. Guo and H. G. Zheng, Cryst. Growth
585		<i>Des.</i> , 2011, 11 , 480.
586	33	(a) Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu,
587		S. D. Huang and R. G. Xiong, J. Am. Chem. Soc., 2006, 128, 6554; (b) H. Zhang,
588		D. E. Zelmon, G. E. Price and B. K. Teo, Inorg. Chem., 2000, 39, 1868; (c) Y. S.
589		Chang, H. Xu, S. P. Xie, J. P. Li, X. L. Xue and H. W. Hou, Inorg. Chem.
590		Commun., 2010, 13 , 959.
591	34	(a) D. W. Fu, Y. M. Song, G. X. Wang, Q. Ye, R. G. Xiong, T. Akutagawa, T.
592		Nakamura, P. W. H. Chan and S. D. Huang, J. Am. Chem. Soc., 2007, 129, 5346;
593		(b) T. Okubo, R. Kawajiri, T. Mitani and T. Shimoda, J. Am. Chem. Soc., 2005,
594		127, 17598; (c) T. Sivakurnar, H. Y. Chang, J. Baek and P. S. Halasyamani, Chem.
595		Mater., 2007, 19, 4710; (d) D. L. de Murillas, R. Pinol, M. B. Ros, J. L. Serrano,
596		T. Sierra and M. R. de la Fuente, J. Mater. Chem., 2004, 14, 1117.
597	35	(a) L. Song, S. W. Du, J.D. Lin, H. Zhou, T. Li, Cryst. Growth Des., 2007, 7,
598		2268; (b) X. Q. Liang, J. T. Jia, T. Wu, D. P. Li, L. Liu, Tsolmon and G. S. Zhu,

CrystEngComm Accepted Manuscript

- 599 CrystEngComm, 2010, 12, 3499; (c) Z. Su, M. S. Chen, J. Fan, M. Chen, S. S.
- 600 Chen, L. Luo and W. Y. Sun, *CrystEngComm*, 2010, **12**, 2040.
- 601 36 (a) F. Luo, Y. X. Che and J. M. Zheng, Cryst. Growth Des., 2009, 9, 1066; (b) Y.
- 602 Wang, F. H. Zhao, A. H. Shi, Y. X. Che and J. M. Zheng, Inorg. Chem. Commun.,
- 603 2012, **20**, 23; (c) Y. Y. Liu, J. F. Ma, J. Yang and Z. M. Su, *Inorg. Chem.*, 2007, **46**,
- 604 3027; (*d*) L. F. Ma, L. Y. Wang, Y. Y. Wang, S. R. Batten and J. G. Wang, *Inorg.*
- 605 Chem., 2009, 48, 915; (e) M. X. Yao, M. H. Zeng, H. H. Zou, Y. L. Zhou and H.
- 606 Liang, *Dalton Trans.*, 2008, 2428.
- 607 37 O. Sengupta, B. Gole, S. Mukherjee and P. S. Mukherjee, *Dalton Trans.*, 2010, 39,
- 608 7451.
- 609 38 K. R. Mitchell-Koch and A. Matzger, J. Pharm. Sci., 2008, 97, 2121.

610

6	1	1
---	---	---

612 Table 1 X-ray crystallographic data for complexes 1 - 3

Complex	1	2	3
Formula	$\mathrm{C}_{32}\mathrm{H}_{22}\mathrm{N}_{4}\mathrm{O}_{6}\mathrm{SCo}$	$C_{43}H_{29}N_6O_{11}SCo_2$	$C_{26}H_{17}F_6N_2O_5Co$
Formula weight	649.53	955.64	610.35
Temperature (K)	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	Сс	C2/c	P2/c
<i>a</i> (Å)	22.707(3)	49.698(4)	14.909(3)
<i>b</i> (Å)	10.2165(11)	7.2513(6)	7.1963(15)
<i>c</i> (Å)	15.1394(16)	21.8865(19)	24.592(5)
α (°)	90	90	90
β (°)	124.5430(10)	93.5130(10)	104.312(2)
γ (°)	90	90	90
$V(\text{\AA}^3)$	2892.9(5)	7872.6(12)	2556.5(9)
Ζ	4	8	4
D_{calc} (Mg/m ³)	1.491	1.613	1.586
$\mu (\mathrm{mm}^{-1})$	0.719	0.969	0.756
<i>F</i> (000)	1332	3896	1232
θ range (°)	2.27-25.50	2.41-25.50	2.47-26.00
Reflections collected	10927	30070	19735
Independent reflections (R_{int})	5274 (0.0184)	7325 (0.0598)	5025 (0.0138)
Data/restraints/parameters	5274 / 2 / 397	7325 / 14 / 576	5025 / 2 / 359
Goodness-of-fit	1.022	1.039	1.025
<i>R</i> indices $[I > 2\sigma(I)]^{a,b}$	$R_1 = 0.0283$	$R_1 = 0.0510$	$R_1 = 0.0468$
	$wR_2 = 0.0723$	$wR_2 = 0.1237$	$wR_2 = 0.1152$
<i>R</i> indices (all data)	$R_1 = 0.0299$	$R_1 = 0.0772$	$R_1 = 0.0570$
	$wR_2 = 0.0735$	$wR_2 = 0.1390$	$wR_2 = 0.1165$

CrystEngComm Accepted Manuscript

613

^{*a*} $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|.$ ^{*b*} $wR_2 = |\Sigma w(|F_o|^2 - |F_c|^2) | / \Sigma |w(F_o)^2|^{1/2}$ 614

616

-

617 **Table 2** Selected bond lengths (Å) and angles (°) for complexes $1-3^a$

Co(SDBA)(BIMB) (1)			
Co(1)-O(1)	1.9538(19)	Co(1)-O(3)#1	1.975(2)
Co(1)-N(4)#2	2.046(2)	Co(1)-N(1)	2.052(2)
O(1)-Co(1)-O(3)#1	112.59(10)	O(1)-Co(1)-N(1)	103.26(9)
O(1)-Co(1)-N(4)#2	123.64(9)	O(3)#1-Co(1)-N(1)	96.42(9)
O(3)#1-Co(1)-N(4)#2	112.85(9)	N(4)#2-Co(1)-N(1)	102.97(9)
Co ₂ (SA)(BIMB) _{1.5} (H ₂ O) (2	2)		
Co(1)-O(4)#3	2.057(3)	Co(2)-O(6)#4	2.041(3)
Co(1)-N(5)	2.076(4)	Co(2)-N(4)#5	2.064(4)
Co(1)-O(1)	2.092(3)	Co(2)-O(5)#6	2.063(3)
Co(1)-O(1W)	2.115(3)	Co(2)-O(8)	2.144(3)
Co(1)-N(1)	2.152(3)	Co(2)-O(7)	2.188(3)
Co(1)-O(2)	2.238(3)	Co(2)-O(7)#4	2.343(3)
O(4)#3-Co(1)-N(5)	90.51(13)	O(6)#4-Co(2)-N(4)#5	98.52(13)
O(4)#3-Co(1)-O(1)	101.80(12)	O(6)#4-Co(2)-O(5)#6	94.57(11)
N(5)-Co(1)-O(1)	167.51(14)	N(4)#5-Co(2)-O(5)#6	102.54(14)
O(4)#3-Co(1)-O(1W)	85.53(14)	O(6)#4-Co(2)-O(8)	155.52(11)
N(5)-Co(1)-O(1W)	89.99(16)	N(4)#5-Co(2)-O(8)	105.72(13)
O(1)-Co(1)-O(1W)	88.86(14)	O(5)#6-Co(2)-O(8)	83.62(11)
O(4)#3-Co(1)-N(1)	93.35(12)	O(6)#4-Co(2)-O(7)	94.58(10)
N(5)-Co(1)-N(1)	91.13(14)	N(4)#5-Co(2)-O(7)	161.04(13)
O(1)-Co(1)-N(1)	90.28(13)	O(5)#6-Co(2)-O(7)	89.96(12)
O(1W)-Co(1)-N(1)	178.42(16)	O(8)-Co(2)-O(7)	61.08(10)
O(4)#3-Co(1)-O(2)	158.40(12)	O(6)#4-Co(2)-O(7)#4	84.46(10)
N(5)-Co(1)-O(2)	107.17(13)	N(4)#5-Co(2)-O(7)#4	93.22(12)
O(1)-Co(1)-O(2)	60.36(11)	O(5)#6-Co(2)-O(7)#4	164.17(11)
O(1W)-Co(1)-O(2)	82.25(13)	O(8)-Co(2)-O(7)#4	90.73(10)
N(1)-Co(1)-O(2)	98.48(12)	O(7)-Co(2)-O(7)#4	74.40(12)
Co(FBA)(BIMB) _{0.5} ·H ₂ O (3	6)		
Co(1)-O(3)#7	2.012(2)	Co(1)-N(1)	2.058(3)

View Article Online

Co(1)-O(1)	2.013(2)	Co(1)-O(2)#9	2.122(3)
Co(1)-O(4)#8	2.045(2)		
O(3)#7-Co(1)-O(1)	93.47(10)	O(4)#8-Co(1)-N(1)	92.40(10)
O(3)#7-Co(1)-O(4)#8	160.82(10)	O(3)#7-Co(1)-O(2)#9	86.96(10)
O(1)-Co(1)-O(4)#8	86.65(10)	O(1)-Co(1)-O(2)#9	160.50(10)
O(3)#7-Co(1)-N(1)	105.85(11)	O(4)#8-Co(1)-O(2)#9	86.66(11)
O(1)-Co(1)-N(1)	106.91(10)	N(1)-Co(1)-O(2)#9	91.66(11)

^{*a*} Symmetry transformations used to generate equivalent atoms: #1 x+1/2, y-1/2, z+1;

619 #2 x+1/2, -y+1/2, z-1/2; #3 x, y-1, z; #4 -x, -y+3, -z+1; #5 -x, y+3, -z+3/2; #6 x, y+1,

620 z; #7 x, -y+2, z+1/2; #8 -x+1, y+1, -z+1/2; #9 -x+1, -y+3, -z+1.

621

CrystEngComm Accepted Manuscript

View Article Online

622 Captions for Scheme and Figu	ires:
----------------------------------	-------

623

624 **Scheme 1** Two coordination fashions of BIMB: *trans*-configuration (top) and 625 *cis*-configuration (bottom).

Fig. 1 (a) Coordination environment of Co(II) ions in 1 with the ellipsoids drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: A x+1/2, y-1/2, z+1; B x+1/2, -y+1/2, z-1/2. (b) A zigzag chain directed by Co(II) ions and SDBA dianions. (c) The 3D micropous metal-organic framework. (d) Schematic diagram of CdSO₄ topology. (e) View of 3-fold interpenetrating net. (f) Schematic diagram of polycatenane motif in 1.

Fig. 2 (a) Coordination environment of Co(II) ions in 2 with the ellipsoids drawn at 632 the 30% probability level; hydrogen atoms and water molecule were omitted for 633 634 clarity. Symmetry codes: A x, y-1, z; B -x, -y+3, -z+1; C -x, y+3, -z+3/2; D x, y+1, z; E 1/2-x, -1/2-y, 2-z. (b) 1D chain constructed from SA⁴⁻ ligands and Co(II) ions. (c) The 635 complicated 3D structure of 2. (d) A schematic representation of the trinodal 636 4-connected network structure of 2: cvan spheres represent Col nodes, purple spheres 637 represent dinuclear Co₂ nodes, yellow spheres represent SA⁴⁻ nodes, and BIMB 638 639 bridges are shown as green bonds.

Fig. 3 (a) Coordination environment of Co(II) ions in 3 with the ellipsoids drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: A x, -y+2, z+1/2; B -x+1, y+1, -z+1/2; C -x+1, -y+3, -z+1; D 2-x, 1-y, 1-z. (b) Dinuclear Co₂ paddlewheel building unit observed for 3. (c) Paddlewheel clusters in 3 linked by FBA²⁻ ligands to form a helical (4,4)-net with large rhombic pores. (d) The

- 645 2-fold parallel 2D \rightarrow 2D interpenetration resulting in 1D double helical channels in **3**.
- 646 (e) The 3D pillar-layered framework in 3 (viewed along the *b* axis). (f) Schematic
- representation of the 2-fold interpenetrating network in **3**.
- 648 Fig. 4 Electric hysteresis loops of complex 1 under different voltages at room
- 649 temperature.
- 650 **Fig. 5** Temperature dependence of $\chi_M T$ and χ_M for complexes 1-3.

651

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

View Article Online

663

664

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Page 36 of 44

665 666

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

667 668

669 Figure 1.

670

View Article Online

CrystEngComm Accepted Manuscript

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

View Article Online

Downloaded by Dalhousie University on 02 December 2012 Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G View Article Online

691

689 690

692

693 Figure 3.

695

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

702

Figure 5. 703

View Article Online

Graphical Abstract:

Published on 30 November 2012 on http://pubs.rsc.org | doi:10.1039/C2CE26606G

Downloaded by Dalhousie University on 02 December 2012

Three cobalt(II) coordination polymers, based on V-shaped aromatic polycarboxylates and rigid bis(imidazole) ligand, are obtained, indicating that mixed-ligands are applied to expand the structural diversity.

