
Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and SAR of heterocyclic carboxylic acid isosteres based on 2-biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity

Mark Hadden^{a,*}, Allan Goodman^a, Cheng Guo^a, Peter R. Guzzo^a, Alan J. Henderson^a, Kevin Pattamana^a, Megan Ruenz^a, Bruce J. Sargent^a, Brian Swenson^a, Larry Yet^a, Jian Liu^b, Shuwen He^b, Iyassu K. Sebhat^b, Linus S. Lin^b, Constantin Tamvakopoulos^e, Qianping Peng^e, Yanqing Kan^c, Oksana Palyha^c, Theresa M. Kelly^c, Xiao-Ming Guan^c, Joseph M. Metzger^d, Marc L. Reitman^c, Ravi P. Nargund^b

^a AMRI, 26 Corporate Circle, Albany, NY 12212, USA

^b Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NI 07065, USA

^c Department of Metabolic Disorders, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

^d Department of Pharmacology, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

^e Department of Drug Metabolism, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA

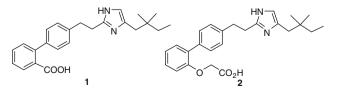
ARTICLE INFO

Article history: Received 7 January 2010 Revised 3 March 2010 Accepted 5 March 2010 Available online 12 March 2010

Keywords: BRS-3 Obesity Acid isosteres

ABSTRACT

SAR around non-peptidic potent bombesin receptor subtype-3 (BRS-3) agonist lead 2 is presented. Attempts to replace the carboxylic acid with heterocyclic isosteres to improve oral bioavailability and brain penetration are described.


© 2010 Elsevier Ltd. All rights reserved.

According to the CDC's Behavioral Risk Factor Surveillance System, over the past 20 years there has been a dramatic increase in obesity in young adults in the United States, with only one state having an obesity prevalence of less than 20%.^{1.2} This high rate of occurrence combined with obesity being a risk factor in a wide range of diseases³ such as type 2 diabetes, cardiovascular diseases and cancer make it an important indication for pharmaceutical intervention. Moreover, currently marketed drugs such as sibutramine⁴ and orilstat⁵ have unsatisfactory efficacy and undesirable side effects that limit their prescription amongst the general population.

Bombesin receptor subtype-3 (BRS-3 or BB3), is an orphan Gprotein coupled receptor (GPCR) with high sequence identity to BB1 and BB2 (\sim 50%) and is located primarily in the hypothalamus and testes.⁶ Preclinical validation of BRS-3's role in energy homeostasis has been demonstrated with genetically altered mice lacking the BRS-3 receptor, causing induction of obesity, hypertension and diabetes.⁷ Through a combination of high-throughput screening and SAR development, a potent small molecule BRS-3 agonist 1^8 was discovered (Fig. 1).

The carboxylic acid was mapped around the biphenyl ring (structures not shown); however, all of these compounds lost potency compared to **1**. Interestingly, extending the acid moiety away from the ring maintained good potency in compound **2** (Table 1).

Further SAR studies were pursued to improve oral bioavailability and brain penetration whilst retaining binding and functional agonism at the human BRS-3 receptor. Replacement of the carboxylic acid group in compound **1** with traditional acid isosteres such as tetrazole **1a** and phenol **1b** provided good binding and func-

^{*} Corresponding author. Tel.: +1 518 512 2835; fax: +1 518 512 2079. *E-mail address:* mark.hadden@amriglobal.com (M. Hadden).

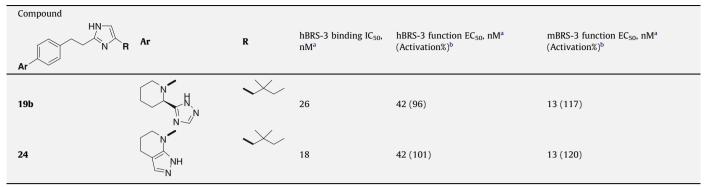
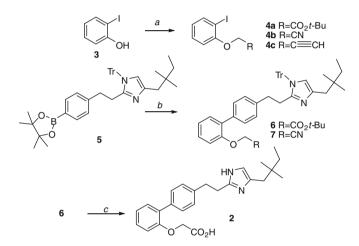

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.03.028

Table 1

The potency of BRS-3 agonists in human and mice BRS-3 receptors

Compound HN Ar	Ar	R	hBRS-3 binding IC ₅₀ , nM ^a	hBRS-3 function EC ₅₀ , nM ^a (Activation%) ^b	mBRS-3 function EC ₅₀ , nM ^a (Activation%) ^b
1	ССООН	\sim	11	25 (101)	9.6 (94)
1a		\checkmark	15	56 (112)	16 (85)
1b	ОН	\sim	31	133 (97)	34 (113)
1c	S O H	\checkmark	287	1767 (94)	ND ^c
2	CO2H	\checkmark	103	54 (97)	ND ^c
10a		\checkmark	6.1	41 (114)	5.8 (120)
10b		\sim	22	172 (113)	ND ^c
10c		\checkmark	27	78 (98)	4.6 (115)
10d	CF3	~~	127	129 (89)	12 (122)
10e		\checkmark	31	336 (107)	ND ^c
11	₩ N N N N N	\checkmark	5.3	30 (111)	2.9 (109)
12	H.N.N.	\checkmark	83	399 (97)	ND ^c
14a	See Scheme 3	\checkmark	10	29 (98)	11 (118)
14b	See Scheme 3	\checkmark	20	56 (96)	27 (119)
17	OH	\checkmark	5.3	24 (100)	12 (111)
19a	H N-N N-N	\checkmark	6.2	15 (100)	16 (119)

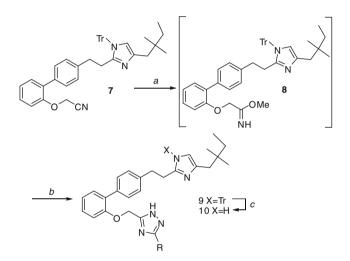

Table 1 (continued)

^a The reported data are the average of at least three repeated experiments.

^b The percentages of activation are the maxim activation of tested compounds relative to that of [D-Tyr⁶, β-Ala¹¹, Phe¹³, Nle¹⁴]-Bombesin (6–14).

^c Not determined.

Scheme 1. Reagents and conditions: (a) $BrCH_2CO_2t$ -Bu or $BrCH_2CN$ or propargyl bromide, K_2CO_3 , acetone, 91% (**4a**), 68% (**4b**), 99% (**4c**); (b) **4a** or **4b**, $PdCl_2(dppf)$, Na_2CO_3 , H_2O , DMF, 80 °C, 16 h, 59% (**6**), 72% (**7**); (c) TFA, CH_2Cl_2 , 91%.

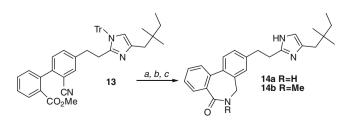

tional responses at the human receptor and these results further encouraged us to prepare a range of heterocyclic isosteres based on compounds **1** and **2**.

A convergent synthesis was adopted using key intermediate, boronate ester **5**⁹ (Scheme 1). Alkylation of 2-iodophenol provided the precursors **4a–c**. Suzuki coupling of **4a** and **4b** with **5** yielded intermediates **6** and **7**. Double deprotection of **6** under acidic conditions provided **2**.

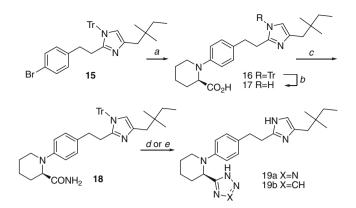
Electrophilic nitrile **7** was easily transformed into the corresponding methylimidate **8** via reaction with alkoxide anion in methanol.¹⁰ Reaction of this intermediate with an appropriately substituted hydrazine, followed by removal of the trityl group with TFA, provided rapid access to a range of heterocycles **10** (Scheme 2).

Alternatively, tetrazole **11** could be prepared via 1,3-dipolar cycloaddition of nitrile **7** with sodium azide and ammonium chloride in DMF.¹¹ 1,2,3-Triazole **12** was prepared via addition of benzylazide to **4c** using Click chemistry¹² followed by Suzuki coupling with **5** and double deprotection (syntheses not shown).

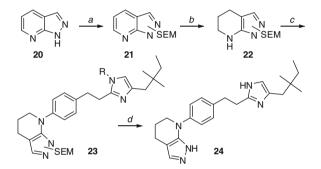
Of the range of heterocycles prepared, triazolothione **10a** and tetrazole **11** showed some of the best activity ($hEC_{50} = 41$, 30 nM, respectively), indicating that isosteric replacement of the carboxylic acid in **2** ($hEC_{50} = 54$ nM) was feasible. But unfortunately these analogs failed to provide significant brain levels following intravenous administration (Table 2). It was hoped that switching to the less acidic aminotriazole **10c** ($pK_a = 12.13$)¹³ would help improve brain penetration compared with **10a** ($pK_a = 8.92$) and **11**



Scheme 2. Reagents and conditions: (a) KOt-Bu, MeOH, 65 °C, 15 min, 100%; (b) NH₂NHC(S)NH₂, 39% (R = SH, **9a**); NH₂NHC(O)H, 71%, (R = H, **9b**); NH₂NHC(NH)NH₂, 19%, (R = NH₂, **9c**); NH₂NH₂, TFAA, pyridine, 59%, (R = CF₃, **9d**); NH₂NHCO₂Et, 69%, (R = OH, **9e**); (c) TFA, CH₂Cl₂.


Table 2	
Total plasma and brain levels ^a of BRS-3 agonists 1 h following IV of	lose in rats

Compd.	Dose (mg/kg)	Plasma (µM)	Brain (µM)	B/P ratio
10a	1	4.96	0.03	0.006
10c	1	0.86	0.01	0.016
11	2	1.25	0.01	0.010
14a	1	0.31	0.02	0.068
17	1	0.21	0.01	0.04


^a Data are averages of three repeated experiments.

Scheme 3. Reagents and conditions: (a) NaBH₄, CoCl₂·6H₂O MeOH, 0 °C to 65 °C, 58%; (c) TFA, CH₂Cl₂, 78% (**14a**); (a) NaBH₄, CoCl₂·6H₂O MeOH, 0 °C to 65 °C, 47%; (b) NaH, Mel, DMF, 71%; (c) TFA, CH₂Cl₂, 88% (**14b**).

Scheme 4. Reagents and conditions: (a) Cul, K₂CO₃, (*R*)-pipecolinic acid, DMSO, 90 °C, 55%; (b) TFA, CH₂Cl₂; (c) NH₃, EDC, HOBt, CH₂Cl₂, 66%; (d) (i) pyridine, TFAA, dioxane, 50%; (ii) NaN₃, NH₄Cl, DMF, 100 °C, 8% (**19a**); (e) (i) Me₂NCH(OEt)₂, reflux; (ii) ACOH, hydrazine, 90 °C, 24% (**19b**).

Scheme 5. Reagents and conditions: (a) NaH, SEM-Cl, DMF, 64%; (b) Pd/C, H₂, EtOH, 68%; (c) **15**, Pd(OAc)₂, KOt-Bu, dicyclohexylbiphenylphosphine, toluene, 150 °C, microwaves, 32%; (d) TFA, H₂O, 60 °C, 59%.

($pK_a = 4.58$). Although functional activity was maintained ($hEC_{50} = 78 \text{ nM}, 98\%$) no in increase B/P ratio was seen.

In an effort to reduce rotatable bonds to help improve brain penetration verses unconstrained analogs, constrained lactams **14a** and **14b** were synthesized (Scheme 3). Good agonist functional potency was observed with **14a** (hEC₅₀ = 29 nM, 98%). Surprisingly compound **14b**, in which the H-bond donor was replaced with a methyl group, also showed good activity (hEC₅₀ = 56 nM, 96%). However no improvement in brain concentration was observed with these analogs.

In an attempt to use an active transport mechanism such as an amino acid transporter¹⁴ to improve brain penetration, amino acid **17** was prepared via a copper mediated¹⁵ coupling of bromide **15** with (R)-pipecolic acid¹⁶ (Scheme 4). This compound exhibited

equally good potency at both the mouse and the human receptor but failed to substantially increase brain levels. Heterocyclic analogs of compound **17** (tetrazole **19a** and triazole **19b**) showed good potency demonstrating the acid moiety in this series could also be replaced by isosteres, but these compounds were not pursued further due to low bioavailability in rat (F = 4.9% and 4.8%, respectively). Constraining the heterocyclic system to form pyrazolopiperidine analog **24** (Scheme 5) maintained good binding and functional potency and also significantly improved oral bioavailability to 29%. Unfortunately this did not translate into improved brain penetration. Further SAR studies which led to BRS-3 agonists with improved CNS penetrating properties are reported in the previous Letter.⁹

In summary, SAR studies were carried out around acids **1** and **2**. Replacement of the acid moiety with a range of isosteres maintained good in vitro potency. Despite improvements made in bioavailability, significant increases in brain levels were not realized.

References and notes

- 1. CDC Morbidity and Mortality Weekly Report 2006, 55, 985.
- Mokdad, A. H.; Bowman, B. A.; Ford, E. S.; Vinicor, F.; Marks, J. S.; Koplan, J. P. J. Am. Med. Assoc. 2001, 282, 1519.
- Mokdad, A. H.; Ford, E. S.; Bowman, B. A.; Dietz, W. H.; Vinicor, F.; Bales, V. S.; Marks, J. S. J. Am. Med. Assoc. 2003, 289, 76.
- 4. Luque, C. A.; Rey, J. A.; Fernandez, A. Formulary 1997, 32, 1025.
- 5. McNeely, W.; Benfield, P. Drugs 1998, 56, 241.
- Liu, J.; Lao, Z. J.; Zhang, J.; Schaeffer, M. T.; Jiang, M. M.; Guan, X. M.; Van der Ploeg, L. H.; Fong, T. M. *Biochemistry* 2002, 41, 8954.
- Ohki-Hamazaki, H.; Watase, K.; Yamamoto, K.; Ogura, H.; Yamano, M.; Yamada, K.; Maeno, H.; Imaki, J.; Kikuyama, S.; Wada, E.; Wada, K. Nature 1997, 390, 165.
- He, S.; Dobbelaar, P. H.; Liu, J.; Jian, T.; Sebhat, I. K.; Lin, L. S.; Goodman, A.; Guo, C.; Guzzo, P. R.; Hadden, M.; Henderson, A. J.; Ruenz, M.; Sargent, B. J.; Yet, L.; Kelly, T. M.; Palyha, O.; Kan, Y.; Pan, J.; Chen, H.; Marsh, D. J.; Shearman, L. P.; Strack, A. M.; Metzger, J. M.; Feighner, S. D.; Tan, C.; Howard, A. D.; Tamvakopoulos, C.; Peng, Q.; Guan, X.; Reitman, M. L.; Patchett, A. A.; Wyvratt, M. J.; Nargund, N. P. *Bioorg. Med. Chem. Lett.* **2009**. 'Discovery of substituted biphenyl imidazoles as potent, bioavailable bombesin receptor substype-3 agonists' accompanying manuscript.
- Liu, J.; He, S. H.; Jian, T.; Dobbelaar, P.; Sebhat, I. K.; Lin, L. S.; Goodman, A.; Guo, C.; Guzzo, P. R.; Hadden, M.; Henderson, A. J.; Ruenz, M.; Pattamana, K.; Sargent, B. J.; Swenson, B.; Yet, L.; Tamvakopoulos, C.; Kelly, T. M.; Peng, Q.; Kan, Y.; Pan, J.; Palyha, O.; Marsh, D. J.; Shearman, L. P.; Strack, A. M.; Metzger, J. M.; Howard, A. D.; Guan, X.; Reitman, M. L.; Wyvratt, M. J.; Nargund, N. P. *Bioorg. Med. Chem. Lett.* **2009**. 'Synthesis and SAR of derivatives based on 2biarylethylimidazole as bombesin receptor subtype-3 (BRS-3) agonists for the treatment of obesity' accompanying manuscript.
- 10. Poonian, M. S.; Nowowsiat, E. F. J. Org. Chem. 1980, 45, 203.
- Tilley, J. W.; Danho, W.; Lovey, K.; Wagner, R.; Swistok, J.; Makofske, R.; Michalewsky, J.; Triscari, J.; Nelson, D.; Weatherford, S. J. Med. Chem. 1991, 34, 1125.
- Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
- 13. pK_a 's were calculated online using the Marvin calculator from Chemaxon.
- 14. Dobson, P. D.; Kell, D. B. Nat. Rev. Drug Discovery 2008, 7, 205.
- 15. Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164.
- Pipecolic acid has been shown to be actively transported into mouse brain; Kim, J. S.; Giacobini, E. Dev. Brain Res. 1985, 22, 181.