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We have reported here the catalytic activity of a unique Cu–salen type complex in N-arylation of anilines
with arylboronic acids in water. The protocol is found to be applicable for a wide range of electronically
diversified arylboronic acids and anilines with excellent yields of the isolated product. Further the scope
of this protocol has been extended to the synthesis of various N-aryl imidazoles in iso-propanol.
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The N-containing organic moiety possesses indispensable
importance in the modern field of synthetic organic chemistry.1

Among them diarylamines and N-arylimidazoles draw consider-
able attention owing to their wide applications in different medic-
inal and natural products.2 In addition, imidazoles are also utilized
for the preparation of N-heterocyclic carbenes3 and ionic liquids.4

Consequently their synthetic methods have been reviewed from
time to time.5 Traditional strategy of accessing these moieties
was either by the aromatic nucleophilic substitution reaction (SN-

Ar) of nitrogen nucleophiles with activating aryl halides or the
classical Ullmann6 coupling using stoichiometric amounts of Cu
salt at higher temperatures.7 Besides these procedures, Buchwald
and Hartwig established the wide applicability of Pd-source in
the C–N coupling reactions.8 Subsequent research efforts in the
past decades have resulted in significant improvements in the
copper and palladium catalyzed C–N bond formation reactions.
Most of the catalytic systems developed for these transformations
composed of copper or palladium derivatives associated with
appropriate ligands in conventional organic or biphasic media.9

Another copper mediated protocol for the C–N bond formation
reaction was developed by Chan and Lam using arylboronic acid
as coupling partner.10 Arylboronic acids are well-known organo-
metallic species which find wide applicability in contemporary
organic synthesis because of their stability, structural diversity,
and lower toxicity. However requirement of 1–2 equiv of
Cu(OAc)2, large excess of arylboronic acid and long reaction
times12 are the few limitations associated with this cross coupling
method. Further work on the Chan–Lam coupling reaction resulted
in its catalytic version13 along with its application to couple with
other nucleophilic derivatives such as amide,14 oxime,15 sulfoxi-
mines,16 thiols,17 etc. Moreover, there are some reports available
where the copper mediated Chan–Lam cross coupling was carried
out in the presence of additives such as TEMPO, molecular oxygen,
pyridine-N-oxide etc.18 From the green chemistry points of view,
the use of water as an environmentally benign and economically
favorable alternative to organic solvents in organic synthesis has
received tremendous interest.19 In this respect, the development
of catalyst in pure water seems particularly suitable for the
Chan–Lam reaction due to the excellent stability of arylboronic
acids in aqueous media. Moreover the ability to dissolve bases in
water for activating arylboronic acid has made water an interesting
candidate for these types of reactions. To the best of our knowledge
precedent of the Cu-catalyzed Chan–Lam coupling reaction in
water is very limited.20 In this communication we wish to report
the use of quadridentate Cu–Schiff base complex C1–C3 (Fig. 1)
in Chan–Lam cross-coupling reactions of (i) arylboronic acids with
anilines in water; (ii) arylboronic acids with imidazoles in iso-pro-
panol at room temperature (Scheme 1).

We began our experiment with the hope of finding an efficient
Cu-source which could catalyze the reaction between aniline and
arylboronic acid in water. For that purpose different Cu-sources
were investigated with aniline (0.5 mmol) and phenyl boronic acid
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Figure 1. Screened ligands and complex.
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Scheme 1. Chan–Lam coupling reaction.
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(1 mmol) as model substrates. The results obtained are summa-
rized in Table 1.

Initially we probed some common Cu(II)-salt such as
Cu(OAc)2�H2O, CuSO4�5H2O, CuCl2�2H2O for the N-arylation reac-
tion which gave only 15–36% of diphenylamine (Table 1, entries
1–3). However Cu(I) salts were found to be completely inactive
for this coupling reaction and gave only trace amounts of coupling
products (Table 1, entries 4 & 5). It has been well documented in
the literature that various Cu(II)–Schiff base complexes, particu-
larly Cu(II)–salen type complexes were very effective for different
organic transformations in organic solvents.21 However only sulfo-
nated Cu(II)–salen type complexes were found to be effective in
water.20,22 Among the various types of salens, N,N0-bis(salicylid-
ene)arylmethanediamines are very simple, easily accessible, and
Table 1
Optimization of reaction conditions in watera

(HO)2BNH2 +

H
NCu-source (mol%),

K2CO3 (3 equiv), H2O (3 mL),
rt, air

Entry Cu-source (mol %) Time (h) Yieldb (%)

1 Cu(OAc)2�H2O (20) 24 30
2 CuSO4�5H2O (20) 24 15
3 CuCl2�2H2O (20) 24 36
4 CuCl (20) 24 Trace
5 CuI (20) 24 Trace
6 C-1 (20) 18 75
7 C-2 (20) 21 65
8 C-3 (20) 20 73
9 — 24 —
10 C-1 (10) 24 65
11 C-1 (25) 20 72
12c C-1 (20) 15 91
13d C-1 (20) 22 61
14e Cu(OAc)2�H2O (20) + L-1 (20) 24 55
15f C-1 (20) 15 Trace
16g C-1 (20) 14 93

a Reaction conditions: aniline (0.5 mmol), phenyl boronic acid (1 mmol), K2CO3

(1.5 mmol), water (3 mL), ca. 28 �C in air unless otherwise noted.
b Isolated yields.
c 0.75 mmol of phenyl boronic acid was used.
d 0.6 mmol of phenyl boronic acid was used.
e In situ Cu(OAc)2�H2O and Schiff base ligand (L-1) were used.
f Nitrogen atmosphere was used.
g Oxygen atmosphere was used.
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form water soluble Cu(II) complexes (Fig. 1).23–25 During our
experiment we found that the Cu(II) complex (C-1) of the salen
ligand (L-1) showed significantly improved isolated yields of
diphenylamine under the reaction conditions (Table 1, entry 6).
On the other hand, the Cu(II) complex (C-2), of the salen ligand
(L-2) with an electron withdrawing group was found compara-
tively less effective and exhibited lower conversion (Table 1, entry
7). However the Cu(II) complex (C-3) of the salen ligand (L-3) with
the electron donating group afforded 73% of the cross coupling
product (Table 1, entry 8). As expected it was noticed that the reac-
tion did not proceed in the absence of Cu-source (Table 1, entry 9).
To optimize the amounts of catalyst we performed some test reac-
tions using various amounts of the complex (C-1). The isolated
yield decreased to 65% with 10 mol % of catalyst loading (Table 1,
entry 10). When the catalyst loading was increased to 25 mol %
no significant improvement in the yield of diphenylamine was ob-
served (Table 1, entry 11). We also optimized the minimum
amount of phenyl boronic acid required for the effective coupling.
In most of the reported Chan–Lam type arylation, 2–3 equiv of phe-
nyl boronic acid was used.26,18c But in our methodology 1.5 equiv
of phenyl boronic acid was found to be sufficient for an effective
cross coupling between aniline and phenyl boronic acid (Table 1,
entry 12). However, the yield was dramatically decreased when
1.2 equiv of phenyl boronic acid was used (Table 1, entry 13). A
controlled experiment with Cu(OAc)2�H2O and salen ligand (L-1,
20 mol %) resulted in only 55% of the yield (Table 1, entry 14). It
has been observed that the use of the pre-formed complexes C1–
C3 as a catalyst gave higher yields of the desired product compared
to that of the in situ catalyst (Table 1, entries 12 vs 14). Although
the reason for these differences in activities is not clear, one possi-
ble explanation could be the slow rate of formation of the in situ
complex.

Interestingly, the reaction did not proceed under nitrogen
atmosphere (Table 1, entry 15). However excellent yields of diphe-
nylamine were obtained under oxygen atmosphere (Table 1, entry
16), which indicates the requirement of air/oxygen as oxidant for
this transformation under the present reaction conditions. But
due to operational simplicity we have decided to investigate the
reaction parameter under aerial conditions. All these observations
are consistent with the earlier report made by Evans and co-work-
ers.10c,18b On the other hand, bases also play a significant role in the
reactions of arylboronic acids, because bases are used to activate
the arylboronic acids during the course of reactions. A typical
experiment without bases gave only 24% of the isolated product
(Table 2, entry 1). Considering its importance we then investigated
the effect of different inorganic and organic bases on the C–N cross
coupling reaction under the present reaction conditions using the
Cu(II) complex C-1 as catalyst. Among the different bases used, car-
bonate bases such as Na2CO3, Cs2CO3, NaHCO3 gave nearly compa-
rable yields (Table 2, entries 2–4) with superior results in case of
K2CO3 (Table 2, entry 5). Other bases Na3PO4�12H2O and NaOH
gave only trace amounts of the cross coupling product (Table 2, en-
tries 6 & 7). On the other hand organic base triethylamine afforded
very poor yields (Table 2, entry 8). Further screening with different
amounts of K2CO3 established that maximum yield was obtained
with three equivalents of K2CO3 (Table 2, entry 5). The reaction
did not complete with 2 equiv of the base (Table 2, entry 9). On
the other hand, use of four equivalents of K2CO3 resulted only in
56% of the desired product (Table 2, entry 10) along with the for-
mation of significant amounts of phenol as side product (detected
by GCMS).

The catalytic activity of this protocol under optimized reaction
conditions was evaluated with respect to electronically diverse
anilines and arylboronic acids.28 It is clear from Table 3 that cross
coupling of arylboronic acids with different aromatics gives better
to excellent yields of the cross coupling product. Both
13), http://dx.doi.org/10.1016/j.tetlet.2013.10.084
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Table 4
Optimization of reaction condition for N-arylation of imidazole by phenyl boronic
acida

N

N
H

(HO)2B
Cu-Source (C1-C3)

K2CO3 (2 equiv), Solvent (1.5 mL)
rt, air

N N

Entry Cu-source (mol %) Solvent (1.5 mL) Time (h) Yieldb (%)

1 C-1 (20) H2O 24 51
2 C-1 (20) i-PrOH 10 94
3 C-1 (10) i-PrOH 10 94
4 C-1 (5) i-PrOH 10 94
5 C-1 (3) i-PrOH 18 62
6 — i-PrOH 24 —
7 C-1 (5) EtOH 24 78
8 C-1 (5) MeOH 24 79
9 C-1 (5) i-PrOH–H2O 15 69
10 C-1 (5) CH3CN 24 41
11 C-1 (5) DMSO 24 Trace
12 C-1 (5) DCM 24 60
13 C-1 (5) Toluene 24 45
14 C-1 (5) DMF 24 21
15 C-1 (5) THF 24 30
16 C-1 (5) DMSO-H2O 24 18
17 C-1 (5) DMF-H2O 24 35
18 C-2 (5) i-PrOH 12 78
19 C-3 (5) i-PrOH 10 73
20c C-1 (5) i-PrOH 15 78
21d Cu(OAc)2�H2O + L1 i-PrOH 24 75
22e Cu(OAc)2�H2O i-PrOH 24 41

a Reaction conditions: imidazole (0.5 mmol), phenyl boronic acid (1 mmol),
K2CO3 (2 equiv), solvent (3 mL), ca. 28 �C in air unless otherwise noted.

b Yields are of isolated products.
c 1.5 equiv of phenyl boronic acid was used.
d 5 mol % of Cu(OAc)2�H2O and ligand L-1 were used.
e 5 mol % of Cu(OAc)2�H2O was used.

Table 2
Optimization of base for the coupling reaction of phenyl boronic acid and anilinea

(HO)2BNH2 +

H
NComplex (C-1) (20 mol%)

base, H2O (3 mL), rt, air

Entry Base Time (h) Yieldb (%)

1 — 36 24
2 Na2CO3 24 62
3 Cs2CO3 24 60
4 NaHCO3 24 47
5 K2CO3 15 91
6 Na3PO4�12H2O 24 13
7 NaOH 24 12
8 Et3N 24 30
9c K2CO3 30 50
10d K2CO3 15 56

a Reaction conditions: aniline (0.5 mmol), phenyl boronic acid (0.75 mmol), base
(1.5 mmol), C-1 complex (20 mol %), water (3 mL), ca. 28 �C in air unless
otherwise noted.

b Isolated yields.
c 2 equiv of base was used
d 4 equiv of base was used.
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electron-deficient and electron-rich aromatics coupled efficiently
under the condition resulting in good yields of diaryl amines
(Table 3, entries 2–5). Notably, meta-substituted aromatics also
produces significant amounts of the desired product (Table 3, entry
6). A series of electron-rich arylboronic acids were tested, bearing
good yields of the desired cross coupling product (Table 3, entries
8–12). However, the presence of electron withdrawing groups at
the para-position of arylboronic acid decreased the reaction rate
and rendered modest yields of diarylamine (Table 3, entries
13–15). It was noticed that the majority of the catalytic systems
developed for C–N cross coupling reactions were not selective as
they successively combine with –OH functionality to give the
C–O coupling product along with C–N coupling. We were pleased
to find that our catalytic system was selective for –NH functional-
ity in the presence of –OH group as 3-hydroxy aniline gave only the
C–N cross coupling product (Table 3, entry 7).

Our next endeavor was to extend the scope of this protocol for
the N-arylation of imidazoles. But unfortunately we were able to
isolate only 51% the N-phenyl imidazole with complex C-1 in water
Table 3
Reaction of different arylboronic acids with anilinesa

NH2
R1

+ (HO)2B
R2

C-1 (20 mol%), K2CO3 (3 equiv)

H2O (3 mL), rt, air

H
N

R2R1

Entry R1 R2 Time (h) Yieldb (%)

1 H H 15 91
2 4-OCH3 H 16 94
3 4-CH3 H 12 95
4 4-Cl H 24 74
5 4-COOH H 24 81
6 3-CH3 H 22 85
7 3-OH H 24 75
8 H 4-OCH3 16 82
9 H 3-CH3 19 75
10 H 4-t-Butyl 18 76
11 4-OCH3 4-OCH3 21 84
12 4-CH3 4-OCH3 20 80
13 H 4-F 24 71
14 H 4-Cl 24 79
15 4-CH3 4-F 24 76

a Reaction conditions: aryl amine (0.5 mmol), arylboronic acid (0.75 mmol),
water (3 mL), ca. 28 �C in air unless otherwise noted.

b Yields are given for isolated products.
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(Table 4, entry 1). So we planned to investigate the different reac-
tion parameters for this transformation. Thus N-arylation of imid-
azole (0.5 mmol) with phenyl boronic acid (1 mmol) was studied
as a model reaction to identify a suitable solvent in the presence
of K2CO3 (1 mmol) at room temperature. After a series of experi-
ments we found that 5 mol % of complex (C-1) shows maximum
activity affording 94% of N-phenyl imidazole in iso-propanol
(Table 4, entries 2–6).

However, a lower yield was detected with 1:1 aqueous iso-pro-
panol solvent (Table 4 entry 9). Surprisingly, other organic solvents
such as CH3CN, DMSO, DCM, toluene, DMF, and THF provided very
Table 5
Optimization of base for N-arylation of imodazolesa

N

N
H

(HO)2B
Cu-Complex C-1 (5 mol%)

base, i-PrOH (1.5 mL)
rt, air

N N

Entry Base Time (h) Yieldb (%)

1 — 24 12
2 K2CO3 10 94
3 Na2CO3 15 85
4 Cs2CO3 12 87
5 NaHCO3 24 45
6 NaOH 24 30
7 Na3PO4�12H2O 24 71
8 Et3N 24 63
9c K2CO3 24 74
10d K2CO3 10 94

a Reaction conditions: imidazole (0.5 mmol), phenyl boronic acid (1 mmol), C-1
(5 mol %), base (2 equiv), iso-propanol (1.5 mL), ca. 28 �C unless otherwise noted.

b Yields are of isolated products.
c 1.5 equiv of K2CO3 was used.
d 3 equiv of K2CO3 was used.

13), http://dx.doi.org/10.1016/j.tetlet.2013.10.084
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Table 6
Reaction scope with different arylboronic acid and aryl imidazolea

N

N
H

(HO)2B
Cu-Complex C-1 (5 mol%)

K2CO3 (2 equiv), i-PrOH (1.5 mL)
rt, air

N N
R2

R1

R1
R2

N
N

N
N

N
N

OCH3 N
N

N
N

OCH3
N N OCH3

N N Cl
N N F N N

N N

N
N N

N
N

N N
N

OCH3 Cl F

6a, 94%, 10 hr 6b, 88%, 18 hr 6c, 87%, 12 hr 6d, 81%, 13 hr

6e, 75%, 24 hr 6f, 79%, 21 hr 6g, 81%, 24 hr 6h, 84%, 19 hr

6i, 86%, 18 hr
6j, 88%, 24 hr 6k, 85%, 17 hr

6l, 76%, 24 hr
6m, 74%, 24 hr 6n,b 63%, 24 hr

a Reaction conditions: aryl imidazole (0.5 mmol), arylboronic acid (1 mmol), K2CO3 (1 mmol), C-1 (5 mol %), i-PrOH (1.5 mL), ca. 28 �C unless otherwise noted. All the yields
are of isolated product.
b Reaction did not complete after 24 h.
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low yields of N-phenyl imidazole (Table 4, entries 10–17). We also
examined the effectiveness of other two copper complexes C-2 and
C-3 for the N-arylation of imidazoles. However poor yields of the
product were detected compared to C-1 (Table 4, entries 4 vs 18
&19).

During the process of optimization we also tested the amount of
arylboronic acid. Maximum yield was obtained with two equiva-
lents of phenyl boronic acid (Table 4 entries 19 & 20). No signifi-
cant yield of isolated N-aryl imidazole was observed in the
in situ application of Cu(OAc)2�H2O and salen ligand L-1 (Table 4,
entry 21).

In order to study the effect of different bases for this cross cou-
pling reaction we have examined the reaction between imidazole
(0.5 mmol) and phenyl boronic acid (1 mmol) in iso-propanol
(1.5 mL) at room temperature. A wide range of inorganic and or-
ganic bases were tested. The maximum reaction efficiency was ob-
served with two equivalents of K2CO3 (Table 5, entries 2 vs 1 and
3–10).

Next, the scope of this protocol with respect to substituted aryl-
boronic acids and imidazoles was examined with 5 mol % of Cu–
complex C-1, K2CO3 as base in iso-propanol at room temperature.29

The results obtained are summarized in Table 6. Arylboronic acids
having electron donating and electron withdrawing groups at the
para-position furnished excellent yields of the isolated N-arylated
product (Table 6, entries 6a–6e). The substitution in the imidazole
ring has a slight effect in the efficiencies. For example, 2-methyl
and 4-methyl imidazoles take longer reaction times (Table 6, en-
tries 6f–6i). In addition, the protocol was also suitable for the N-
arylation of benzimidazole (Table 6, entries 6j–6n).

In conclusion, we have developed a mild and efficient protocol
for the Chan–Lam cross coupling reaction of anilines with arylbo-
ronic acid in water under aerobic conditions. In addition, the pro-
tocol can be utilized for the N-arylation of imidazoles in iso-
propanol. Both the methods have versatile synthetic utility. Mild
reaction conditions, use of non toxic solvent, and broad substrate
Please cite this article in press as: Gogoi, A.; et al. Tetrahedron Lett. (20
scope make this protocol an attractive alternative for the existing
Chan–Lam cross coupling reaction.
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