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Abstract
In this work, we present a simple, environmentally friendly and economical route for the preparation of a novel copper-Schiff-
base organometallic complex on  Fe3O4 nanoparticles  (Fe3O4@Schiff-base-Cu) using an inexpensive and simple method 
and available materials. This magnetic nanocatalyst was comprehensively characterized using Fourier transform infrared 
spectroscopy (FT-IR), X-Ray Diffractometer (XRD), inductively coupled plasma atomic emission spectroscopy (ICP), energy-
dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray mapping, thermogravimetric analysis 
(TGA) and vibrating sample magnetometer (VSM) analysis. In the second stage, the catalytic activity of this catalyst was 
studied in the synthesis of polyhydroquinoline derivatives via Hantzsch reaction in water as a green solvent. In this sense, 
simple preparation of the catalyst from the commercially available materials, high catalytic activity, simple operation, short 
reaction times, high yields and use of green solvent can be regarded as some advantages of this protocol. In addition, it is 
worth mentioning that this nanocatalyst was easily recovered using external magnet and reused for several times without 
significant loss of its catalytic efficiency. Finally, the leaching, heterogeneity and stability of  Fe3O4@Schiff-base-Cu were 
studied by hot filtration test and ICP technique.

Graphic Abstract
A green and novel  Fe3O4@Schiff-base-Cu catalyst sucssesfully was prepared and characterized. This catalyst can be used 
for the Synthesis of polyhydroquinolines in water as the green solvent. This catalyst could be recovered easily and reused 
many times without important decrease in efficiency.
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1 Introduction

polyhydroquinoline derivatives have a wide range of bio-
logical activities such as bronchodilator, antiatheroscle-
rotic, antitumor and antidiabetic and vasodilator proper-
ties [1–6] i.e. polyhydroquinoline derivatives which can be 
considered as a significant class of the well-known  Ca2+ 
channel blockers establish the skeletons of drug molecules 
utilized in the treatment of hypertension and cardiovascu-
lar diseases [7, 8]. Therefore, the synthesis of polyhydro-
quinoline derivatives can be viewed as an area of remark-
able attention in organic chemistry. The use of copper 
catalysts for this transformation is still interesting from an 
industrial perspective because of the fact that copper is less 
toxic and inexpensive than other transition metals [9–16]. 
Homogenous Cu complexes which are among the most 
representative Cu catalysts are coordinated with differ-
ent organic ligands and provide excellent yields [17–21]. 
However, the homogenous Cu complexes suffer from sig-
nificant drawbacks; including, the difficulty of separation 
and recovery of Cu complexes from the reaction system, 
high costs and the potential environmental pollution [20, 
22–24]. In order to circumvent these issues and regarding 
the rapid advancement of nanotechnology, heterogeneous 
copper catalysts have been proposed by supporting Cu 
nanoparticles on the surface of the insoluble hosts [25–29]. 
Recently, the nanomaterials have widely attracted much 
attention due to the fact that they are applied as a pre-
cursor of inorganic–organic hybrid materials [24, 30–35]. 
Moreover, they have excellent applications in catalytic 
reactions, adsorption materials, optical and environmen-
tal problems, food processing, medical industry, energy 
production and they have also been used in various fields 
of chemistry, physics, engineering and science [36–41]. 
Besides, magnetic  Fe3O4 nanoparticle has attracted great 
attention due to its intrinsic magnetic property, facile syn-
thesis and being environment-friendly with high surface 
area, low cost and good chemical stability [42–45]. Among 
the various methods for the synthesis of  Fe3O4 MNPs, 
the coprecipitation method has several advantages such as 
production in a one-pot process, green conditions, and low 
time of synthesis [46–49]. The Schiff bases are essential 
class of organic ligands, and their metal complexes have 
been extensively exploited in a wide variety of organic 
reactions especially in the multicomponent reactions 
[50, 51]. In this sense, they can become possible alterna-
tives to other ligands [41] owing to the advantages such 
as their cost-effectiveness, availability, ease of synthesis, 
and chemical and thermal stability [50–56]. Researchers 
have developed these ligands and their metal complexes, 
which afforded more effective and easier oxidative addi-
tion. Schiff bases are common ligands in coordination 

chemistry, due to their unique properties of forming stable 
complexes [57, 58]. During the last two decades, schiff 
base ligands have been leading the world of catalysis in 
an unprecedented manner [59–62]. Schiff base-transition 
metal complexes have been extensively used as catalysts 
for various organic reactions such as cross- coupling reac-
tions, multicomponent reactions, degradations, substitu-
tion reaction, elimination reaction, addition reaction, radi-
cal reactions and oxidation–reduction reactions [50, 55, 
63–70]. Thus, for the researchers, schiff base ligands have 
become of vital interest to understand the fundamental 
reasons behind their catalytic behavior [71–78]. Rational 
catalysts design, by proper functionalization of schiff base 
ligands to explore their utility in a host of catalytically 
relevant syntheses of interest to contemporary organic 
transformations, is thus central to industrial and academic 
research [77, 79]. Various synthetic methodologies have 
been developed using heterogenized organometallic schiff 
base catalysis [80–91]. However, in this report, copper 
complex supported on surface-modified  Fe3O4 nanoparti-
cles  (Fe3O4@Schiff-base-Cu) is introduced as a new and 
efficient reusable catalyst for the synthesis of polyhydro-
quinoline derivatives.

The results of this study differ from the previously 
reported literatures due to the less number of catalyst synthe-
sis steps. Also, the final complex can be synthesized using 
a stable interaction between the amine and ether groups of 
the prepared Schiff base ligand and the Cu atom. In addi-
tion, the presence of both of these electron-donor functional 
groups in the prepared Schiff base structure, which can form 
a stable complex with Cu, can also reduce the leaching of 
Cu into the reaction media. Moreover, water was used as a 
green solvent under aerobic reaction conditions. Besides, 
the catalyst could be easily separated by applying a simple 
magnet and could also be reused in several consecutive runs 
without appreciable change in its catalytic activity. Notewor-
thy, features of this catalyst are high conversion yields (less 
reactive substrates) and good selectivity.

2  Experimental

2.1  Preparation of  Fe3O4@Schiff‑Base‑Cu Catalyst

The  Fe3O4 magnetic nanoparticles were prepared by the 
coprecipitation technique as it was previously reported 
[92]. For the synthesis of the supported  Fe3O4@Schiff-Base-
Cu complex, 1 g of the prepared  Fe3O4 nanoparticles was 
dispersed in 50 mL ethanol/water (1:1) by sonication for 
15 min. and, then, 1.5 mL 3-aminopropyltrimethoxysilane 
(APTMS) was added to the reaction mixture. The reaction 
mixture was stirred under the  N2 atmosphere at 40 °C for 
24 h. Then, the obtained  Fe3O4@APTMS MNPs product 
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was separated by magnetic decantation, washed with eth-
anol and, then, dried at 90 °C in an oven for 4 h. After-
wards, the Schiff-Base ligand supported on heterogeneous 
 Fe3O4 was obtained by the reaction of O-bisMe-furaldehyde 
(5,5′-Oxybis(5-methylene-2-furaldehyde)) (2.5 mmol) with 
the amine groups on the surface of  Fe3O4@APTMS (1 g) in 
ethanol (20 mL) overnight and under nitrogen atmosphere 
and reflux conditions. The target  Fe3O4@Schiff-base was 
obtained by magnetic separation, washed with ethanol, and 
dried at 80 °C in an oven for 4 h. Finally, In order to pre-
pare  Fe3O4@Schiff-Base-Cu organometallic complex, the 
obtained  Fe3O4@Schiff-base (0.1 g) was dispersed in 30 mL 
ethanol by sonication for 30 min and, then, Cu(NO3)2·3H2O 
(0.5 g) was added to the reaction mixture. The reaction mix-
ture was stirred at 80 °C for 24 h. Then, the final product 
 (Fe3O4@Schiff-Base-Cu) was separated using an external 
magnet, washed with water and ethanol and dried at 80 °C 
in an oven for 4 h.

2.2  General Procedure for the Synthesis of Polyhyd‑
roquinolines

A mixture of aldehyde (1 mmol), dimedon (1 mmol), ethy-
lacetoacetate (1 mmol) and ammonium acetate (1.3 mmol) 
was dissolved in 3 mL water in the presence of  Fe3O4@
Schiff-Base-Cu catalyst (0.25 mol% of Cu) and stirred at 
reflux conditions. The progress of the reaction was mon-
itored by TLC. After the completion of the reaction, the 
catalyst was separated by a magnet and washed with etha-
nol. Then, the solvent was evaporated and, finally, all the 
products were recrystallized in ethanol.

2.3  Selected Spectral Data

2.3.1  Ethyl 4 ‑(4 ‑ch lor oph eny l)‑ 2,7 ,7‑ tri met hyl ‑5‑ oxo ‑1, 4,5 
,6, 7,8 ‑he xah ydr oqu inoline‑3‑carboxylate (Table 2 
Entry 1)

1H NMR (400 MHz, DMSO-d6) δ = 9.12 (s, 1H, NH) 7.25 
(d, J = 8.0 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 4.83 (s, 1H), 
3.99 (q, J = 7.2 Hz, 2H), 2.43 (d, J = 17.2 Hz, 1H), 2.25–2.28 
(m, 4H), 2.19 (d, J = 16.0 Hz, 1H), 1.99 (d, J = 16.0 Hz, 1H), 
1.13 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.83 (s, 3H). 13C NMR 
(50 MHz, DMSO-d6) δ = 194.1, 166.5, 149.5, 146.5, 145.3, 
130.2, 129.2, 127.6, 109.6, 103.0, 59.0, 50.1, 35.6, 32.1, 
29.0, 26.4, 18.3, 4.1.

2.3.2  Ethyl 4‑(4‑methoxyphenyl)‑2,7,7‑trimethyl‑5‑oxo‑1,4, 
5,6,7,8‑hexahydroquinoline‑3‑carboxylate (Table 2 
Entry 3)

1H NMR (400 MHz, DMSO-d6) δ = 9.00 (s, 1H, NH), 7.05 (d, 
J = 8.4 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 4.78 (s, 1H), 3.99 (q, 

J = 7.2 Hz, 2H), 3.67 (s, 3H,  OCH3), 2.43 (d, J = 16.8 Hz, 1H), 
2.29 (m, 4H), 2.17 (d, J = 16.0 Hz, 1H), 1.98 (d, J = 16.0 Hz, 
1H), 1.15 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.85 (s, 3H). 13C 
NMR (100 MHz, DMSO-d6) δ = 194.2, 166.9, 157.3, 149.2, 
144.6, 140.0, 128.4, 113.1, 110.1, 103.9, 59.0, 54.8, 50.3, 34.9, 
32.1, 29.1, 26.5, 18.2, 14.2.

2.3.3  Ethyl 4‑(3,4‑dimethoxyphenyl)‑2,7,7‑trimethyl‑5‑ 
oxo‑1,4,5,6,7,8‑hexahydroquinoline‑3‑carboxylate 
(Table 2 Entry 4)

1H NMR (400  MHz, DMSO-d6) δ = 9.02 (s, 1H, NH), 
6.77–6.74 (m, 2H), 6.63 (dd, J = 2.0 & 8.4 Hz 1H), 4.79 (s, 
1H), 4.02 (q, J = 7.2 Hz, 2H), 3.66 (s, 3H,  OCH3), 3.65 (s, 
3H,  OCH3), 2.44 (d, J = 17.2 Hz, 1H), 2.30–2.26 (m, 4H), 
2.19 (d, J = 16.4 Hz, 1H), 2.00 (d, J = 16.4 Hz, 1H), 1.17 
(t, J = 7.2 Hz, 3H), 1.01 (s, 3H), 0.88 (s, 3H). 13C NMR 
(50 MHz, DMSO-d6) δ = 194.2, 166.8, 149.3, 147.9, 146.9, 
144.5, 140.4, 119.2, 111.7, 111.4, 110.0, 103.8, 59.0, 55.4, 
55.3, 50.3, 35.1, 32.1, 29.2, 26.4, 18.2, 14.2.

2.3.4  Ethyl 2,7,7‑trimethyl‑5‑oxo‑4‑(4‑(trifluoromethyl) 
phenyl)‑1,4,5,6,7,8‑hexahydroquinoline‑3‑carboxy‑
late (Table 2 Entry 5)

1H NMR (400 MHz, DMSO-d6) δ = 9.17 (s, 1H, NH), 7.57 
(d, J = 7.6 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.93 (s, 1H), 
3.99 (q, J = 7.2 Hz, 2H), 2.45 (d, J = 16.4 Hz, 1H), 2.32 (m, 
4H), 2.19 (d, J = 16.4 Hz, 1H), 2.00 (d, J = 16.0 Hz, 1H), 
1.13 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.83 (s, 3H). 13C NMR 
(50 MHz, DMSO-d6) δ = 194.1, 166.6, 151.8, 149.8, 145.7, 
128.2, 124.7, 124.6, 109.3, 102.8, 59.1, 50.1, 36.3, 32.1, 
29.0, 26.5, 18.3, 14.1.

2.3.5  Ethyl 4‑(4‑cyanophenyl)‑2,7,7‑trimethyl‑5‑oxo‑1,4, 
5,6,7,8‑hexahydroquinoline‑3‑carboxylate (Table 2 
Entry 6)

1H NMR (400 MHz, DMSO-d6) δ = 9.19 (s, 1H, NH), 7.68 
(d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.90 (s, 1H), 
3.98 (q, J = 7.2 Hz, 2H), 2.44 (d, J = 17.2 Hz, 1H), 2.30–2.26 
(m, 4H), 2.19 (d, J = 16.4 Hz, 1H), 1.99 (d, J = 16.4 Hz, 1H), 
1.12 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.81 (s, 3H).13C NMR 
(50 MHz, DMSO-d6) δ = 194.1, 166.3, 152.8, 149.9, 146.0, 
131.8, 128.5, 119.0, 109.1, 108.5, 102.4, 59.1, 50.1, 36.7, 
32.1, 29.0, 26.4, 18.3, 14.1.

2.3.6  Ethyl 4‑(3,4‑dihydroxyphenyl)‑2,7,7‑trimethyl‑5‑oxo‑ 
1,4,5,6,7,8‑hexahydroquinoline‑3‑carboxylate 
(Table 2 Entry 10)

1H NMR (400 MHz, DMSO-d6) δ = 8.94 (s, 1H, NH), 8.56 
(s, 1H, OH), 8.45 (s, 1H, OH), 6.57 (d, J = 2.0 Hz, 1H), 6.51 
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(d, J = 8.0 Hz, 1H), 6.39 (dd, J = 2.0 and 8.4 Hz, 1H), 4.68 
(s, 1H), 4.00 (q, J = 7.2 Hz, 2H), 2.40 (d, J = 17.2 Hz, 1H), 
2.27 (m, 4H), 2.16 (d, J = 16.0 Hz, 1H), 1.99 (d, J = 16.0 Hz, 
1H), 1.16 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.87 (s, 3H). 13C 
NMR (100 MHz, DMSO-d6) δ = 194.3, 167.1, 149.0, 144.6, 
144.1, 143.1, 138.6, 118.1, 115.2, 114.8, 110.3, 104.1, 59.0, 
50.4, 34.9, 32.1, 29.2, 26.6, 18.0, 14.2.

2.3.7  Ethyl 2,7,7‑trimethyl‑4‑(4‑nitrophenyl)‑5‑oxo‑1,4,5,6,
7,8‑hexahydroquinoline‑3‑carboxylate (Table 2 Entry 
14)

1H NMR (400 MHz, DMSO-d6) δ = 9.23 (s, 1H, NH), 8.10 
(d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 4.96 (s, 1H), 
3.98 (q, J = 7.2 Hz, 2H), 2.45 (d, J = 16.4 Hz, 1H), 2.27–2.31 
(m, 4H), 2.20 (d, J = 16.0 Hz, 1H), 1.99 (d, J = 16.0 Hz, 1H), 
1.12 (t, J = 7.2 Hz, 3H), 1.00 (s, 3H), 0.82 (s, 3H), 13C NMR 
(50 MHz, DMSO-d6) δ = 194.1, 166.3, 154.9, 150.0, 146.0, 
145.6, 128.7, 123.0, 109.0, 102.3, 59.2, 50.0, 36.6, 32.1, 
29.0, 26.4, 18.3, 14.0.

2.3.8  Ethyl 2,7,7‑trimethyl‑4‑(3‑nitrophenyl)‑5‑oxo‑1,4,5,6,
7,8‑hexahydroquinoline‑3‑carboxylate (Table 2 Entry 
15)

1H NMR (400  MHz, DMSO-d6) δ = 9.24 (s, 1H, NH), 
7.98 (m, 2H), 7.62–7.50 (m, 2H), 4.96 (s, 1H), 3.98 (q, 
J = 7.2 Hz, 2H), 2.48 (d, J = 17.2 Hz, 1H), 2.38 (m, 4H), 
2.21 (d, J = 16.0 Hz, 1H), 2.00 (d, J = 16.4 Hz, 1H), 1.13 

(t, J = 7.2 Hz, 3H), 1.01 (s, 3H), 0.83 (s, 3H). 13C NMR 
(50 MHz, DMSO-d6) δ = 194.2, 166.3, 150.3, 149.6, 147.3, 
146.0, 134.2, 129.3, 121.9, 120.8, 109.2, 102.6, 59.2, 50.0, 
36.4, 32.2, 29.0, 26.3, 18.3, 14.0,

2.3.9  Ethyl 4‑(5‑hydroxy‑2‑nitrophenyl)‑2,7,7‑trime‑
thyl‑5‑oxo‑1,4,5,6,7,8‑hexahydroquinoline ‑3‑car‑
boxylate (Table 2 Entry 16)

1H NMR (400 MHz, DMSO-d6) δ = 10.37 (s, 1H, OH), 9.06 
(s, 1H, NH), 7.69 (d, J = 8.8 Hz, 1H), 6.75 (d, J = 2.4 Hz, 
1H), 6.62 (dd, J = 2.4 & 8.8 Hz, 1H), 5.77 (s, 1H), 3.94 
(q, J = 7.2 Hz, 2H), 2.42 (d, J = 16.8 Hz, 1H), 2.29 (s, 3H), 
2.25 (d, J = 16.8 Hz, 1H), 2.13 (d, J = 15.6 Hz, 1H), 1.92 (d, 
J = 15.6 Hz, 1H), 1.00 (t, J = 7.2 Hz, 3H), 0.98 (s, 3H), 0.79 
(s, 3H). 13C NMR (100 MHz, DMSO-d6) δ = 193.9, 166.7, 
161.5, 149.4, 145.8, 145.4, 140.1, 126.3, 166.5, 113.3, 
100.3, 103.5, 59.0, 50.1, 32.0, 31.7, 28.8, 26.3, 18.2, 13.8.

3  Results and Discussion

3.1  Catalyst Preparation

The presented work tries to describe a novel Cu-Schiff-base 
immobilized on  Fe3O4 as a reusable magnetic nanocatalyst. 
Initially, the modified  Fe3O4 nanoparticles with 3-aminoro-
propyltriethoxysilane  (Fe3O4@APTMS MNPs) have been 
prepared according to the reported procedure [93]. Then, the 

Scheme 1  Stepwise preparation 
of  Fe3O4@Schiff-Base-Cu
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Schiff-base ligand was synthesized via the substitution reac-
tion of  NH2 with O-bisMe-furaldehyde. Finally, the catalyst 
was synthesized by the reaction of  Fe3O4@Schiff-Base with 
Cu(NO3)2·3H2O (Scheme 1). This catalyst has been charac-
terized by FT-IR, XRD, EDS, ICP, SEM, X-ray mapping 
TGA and VSM techniques.

3.2  Catalyst Characterizations

The as-prepared  Fe3O4@Schiff-base-Cu catalyst was also 
characterized by FT-IR, XRD, EDS, VSM, ICP, TGA, SEM, 
and X-ray mapping techniques.

The FT-IR spectra for the  Fe3O4 MNPs (a),  Fe3O4 @
AMPTMS MNPs (b),  Fe3O4@Schiff-Base (c) and  Fe3O4@
Schiff-base-Cu (d) are shown in Fig. 1. The strong absorp-
tion at 590 and 628 cm−1 in spectrums was attributed to 
the presence of Fe–O stretching vibration [94]. In addi-
tion, the peak appearing at 1624 cm−1 was attributed to 
the bending vibration of OH band or the stretching vibra-
tional mode of the adsorbed water layer [95]. Moreover, 
the broad band at around 3392 cm−1 is attributed to the 
asymmetric and symmetric stretching vibrations of –OH 
band of the  Fe3O4 nanoparticles surface [96]. In the curve 
of  Fe3O4@APTMS MNPs (b), two peaks at 2853 and 
2925 cm−1 can be attributed to the C–H stretching vibra-
tions of  NH2-propyl group [93, 97, 98]. Besides, the peak 
at 892 cm−1 can be attributed to the Fe–O–Si stretching 
vibration. Moreover, a strong IR peak which appeared at 
1648 cm − 1 corresponded to the strong bending vibration 
of the amide I group and showed the successful immobi-
lization of the anchored  NH2-propyl group on the  Fe3O4 
Support [93, 97]. Absorption peaks at 1012 and 1560 cm−1 
(C–N stretching vibration) in  Fe3O4@Schiff-base pro-
vide evidences confirming the formation of the desired 
ligand [66, 99, 100]. The shift on the absorption peak at 

approximately 1624 cm−1 (C=N stretching vibration) in the 
 Fe3O4@Schiff-base-Cu spectra is due to the complexion of 
Cu ions with  Fe3O4@Schiff-base [101].

The X-ray diffraction analysis (XRD) pattern of  Fe3O4@
Schiff-base-Cu is shown in Fig. 2, in which the peak posi-
tions of 2θ at 35.27, 41.52, 50.56, 63.24, 67.49, 74.47, corre-
spond to the (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 
0) reflections, respectively, as they are in agreement with the 
standard XRD pattern of  Fe3O4 nanoparticles [102]. More 
importantly, the phase of  Fe3O4 support is not destroyed 
during the immobilization of Schiff-base-Cu organometal-
lic complex on iron oxide layers. In addition, the Crystal-
line size of  Fe3O4@Schiff-Base-Cu MNPs was estimated, 
using the Scherrer equation from XRD pattern data, to be 
20.15 ± 1 nm.

The elemental composition of the  Fe3O4@Schiff-base-Cu 
organometallic complex was determined using EDX analysis 
(Fig. 3). The presence of Fe, O, Si, C, N, and Cu in EDX 
pattern provides evidences confirming the formation of the 
organometallic complex. In addition, the exact amount of 

Fig. 1  FT-IR spectra for the  Fe3O4 MNPs (a),  Fe3O4 @APTMS 
MNPs (b),  Fe3O4@Schiff-Base (c) and  Fe3O4@Schiff-base-Cu (d)

Fig. 2  XRD pattern of the  Fe3O4@Schiff-Base-Cu

Fig. 3  EDS spectrum of the  Fe3O4@Schiff-Base-Cu
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Cu, which was immobilized on  Fe3O4@Schiff-base, was 
obtained by ICP-OSE as 0.92 × 10−3 mol g−1.

Figure 4 illustrates the morphology of  Fe3O4 MNPs (a), 
 Fe3O4 @APTMS MNPs (b)  Fe3O4@Schiff-base (c) and 
 Fe3O4@Schiff-base-Cu complex (d), and recovers  Fe3O4@
Schiff-base-Cu complex (e) as probed by the scanning elec-
tron microscopy (SEM) technique. As shown in Fig. 4, the 
SEM image of  Fe3O4@Schiff-Base-Cu complex shows 
spherical morphology for most particles.

The size and morphology of  Fe3O4@Schiff-base-Cu com-
plex were investigated using TEM. As shown in Fig. 5, the 
magnetic cores of the nanoparticles were uniform in both 
size and shape. Moreover, the particle size was measured to 
be about 15–25 nm and, consequently, the spherical mor-
phology was confirmed. The results of TEM is in agreement 
with SEM and XRD results.

The X-ray mapping of  Fe3O4@Schiff-base-Cu nanocata-
lyst is shown in Fig. 6. The good dispersion of Cu on the 
surface of the catalyst was confirmed using the elemental 
map images.

Figure 7 illustrates the TGA diagram of  Fe3O4@Schiff-
base-Cu complex. The small weight loss between 5% below 
200 °C was exhibited and attributed to the evaporation of the 
physically adsorbed solvents and surface hydroxyl groups 
[94]. Besides, the next weight loss about 15% occurred 
between 200 and 600 °C which are related to the decompo-
sition of the functional groups chemisorbed onto the surface 
of the catalyst support [103]. The obtained results confirmed 
the formation of the desired organometallic complex on the 
 Fe3O4 Support.

Magnetic measurement of the catalyst was analysed by 
a vibrating sample magnetometer (VSM) at room tempera-
ture. Figure 8 exhibits the magnetization curves of  Fe3O4 
and  Fe3O4@Schiff-Base-Cu. The value of the saturation 
magnetic moment of the  Fe3O4@Schiff-base-Cu complex 
(Blue diagram) is 51.3 emu/g as compared to the saturation 
magnetization of  Fe3O4 which was found to be 78 emu/g. 
This decrease in the saturation magnetization of  Fe3O4@
Schiff-Base-Cu complex is due to the successful grafting of 

Fig. 4  SEM images of the  Fe3O4 MNPs (a),  Fe3O4@APTMS MNPs (b),  Fe3O4@Schiff-Base (c) and  Fe3O4@Schiff-base-Cu (d) and recovers 
 Fe3O4@Schiff-base-Cu complex (e)
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Fig. 5  TEM images of  Fe3O4@Schiff-base-Cu nanocatalyst

Fig. 6  X-ray mapping images of the  Fe3O4@Schiff-Base-Cu
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Schiff-Base-Cu complex on the surface of  Fe3O4 nanopar-
ticles (Red diagram).

All together, these analyses are indicative of the suc-
cessful immobilization of Cu (0) complex onto the  Fe3O4@
Schiff-base.

3.3  Catalytic Studies

After the successful characterization of the prepared nano-
material, the catalytic activities in the synthesis of polyhyd-
roquinoline derivatives were evaluated.

In order to optimize the reaction conditions, the com-
bination of p-Clbenzaldehyde (1 mmol), ethyl acetoacetate 
(1  mmol), dimedone (1  mmol) and ammonium acetate 
(1.2 mmol) was chosen as the model reaction to evaluate 
the optimized catalytic activity. Moreover, the effect of vari-
ous experimental parameters; including, the effect of dif-
frent amounts of catalyst, diffrent solvents and the effect 
of various temperatures on the selected model substrate 
were screened to achieve high catalytic efficiency and yield. 
The results are summarized in Table 1. The influence of 
the catalyst loading on the reaction efficiency was studied 
with different amounts of the catalyst.The comparison of 
the results related to the effect of various amounts of the 
catalyst revealed that the highest activity was observed in 
the presence of 0.25 mol % of the catalyst on the basis of 
Cu (Table 1, Entry 6). As can be seen from Table 1, entry 
1, the reaction was not completed in the absence of the 
catalyst even after 2 days. Then, the effects of solvent and 
reaction temperature were evaluated on the model reaction. 
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Fig. 7  TGA diagram of  Fe3O4@Schiff-base-Cu complex

Fig. 8  VSM spectrum of  Fe3O4(Red) and @Schiff-Base-Cu (Blue)

Table 1  Optimization for the synthesis of polyhydroquinolines

a Reaction conditions: 4-chlorobenzaldehyde (1.0  mmol), dime-
done (1 mmol), ethyl acetoacetate (1 mmol), and ammonium acetate 
(1.2 mmol), Catalyst and solvent (2 mL)
b Isolated yield

Entrya Cat.
(mol%)

Solvent Temp.(°C) Time.
(min)

Yieldb(%)

1 – H2O Reflux 2 day NR
2 0.05 H2O Reflux 15 43
3 0.10 H2O Reflux 15 69
4 0.15 H2O Reflux 15 83
5 0.20 H2O Reflux 15 91
6 0.25 H2O Reflux 15 100
7 0.25 Ethanol Reflux 15 65
8 0.25 PEG-400 100 15 83
9 0.25 DMSO 100 15 52
10 0.25 Dioxane Reflux 15 70
11 0.25 DMF 100 15 81
12 0.25 Solvent 

free
100 15 73

13 0.25 H2O 90 15 89
14 0.25 H2O 80 15 83
15 0.25 H2O 60 15 76
16 0.25 H2O 40 15 64
17 0.25 H2O 25 15 39
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Table 2  Synthesis of 
polyhydroquinoline derivative

Entrya Aldehyde Time (min) Yield (%)b TOF  (s−1) M.P

Measured Reported

1 15 100 5,760,000 244–246 243–245 [104]

2 25 96 3,318,290 192–194 252–255 [105]

3 20 98 4,234,023 256–258 251–252 [106]

4 35 92 2,271,215 216–218 216–218 [107]

5 25 91 3,145,463 188–190 188–190 [107]

6 20 95 4,104,410 140–143 140–142 [107]

7 20 99 4,320,000 202–204 203–205 [104]

8 30 93 2,678,400 230–232 231–234 [108]
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Table 2  (continued) Entrya Aldehyde Time (min) Yield (%)b TOF  (s−1) M.P

Measured Reported

9 35 95 2,345,276 223–225 225–227 [104]

10 20 92 3,974,797 216–218 216–218 [107]

11 20 97 4,190,819 247–249 249–251 [104]

12 15 91 5,241,600 232–235 231–233 [104]

13 20 95 4,104,410 178–180 180–182 [104]

14 35 94 2,320,589 241–243 241–243 [104]

15 15 92 5,299,200 176–177 176–177 [107]
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a Reaction conditions: aromatic aldehyde (1.0 mmol), dimedone (1 mmol), ethyl acetoacetate (1 mmol), and 
ammonium acetate (1.2 mmol), Catalyst (0.25 mol %) and  H2O (3 mL)
b Isolated yield

Table 2  (continued) Entrya Aldehyde Time (min) Yield (%)b TOF  (s−1) M.P

Measured Reported

16 15 90 5,184,000 167–169 167–169 [107]

17 40 94 2,030,603 261–263 261–263 [104]

18 35 93 2,295,902 241–243 240–242 [104]

Considering the reaction time and the product yield,  H2O at 
reflux conditions proved to be the best choice for the solvent 
and tempereature, respectively. After an extensive screening 
of the reaction parameters, as shown in Table 1, the best 
yield of polyhydroquinoline product was obtained specifi-
cally when the reaction was performed using 0.25 mol% of 
 Fe3O4@Schiff-Base-Cu in  H2O at 100 °C (Table 1, Entry 6).

Then, the catalytic effectiveness of the prepared  Fe3O4@
Schiff-Base-Cu catalyst was investigated in the synthesis of 
polyhydroquinoline derivatives via the reaction of different 
aromatic aldehydes. The results are listed in (Table 2). As 
shown in Table 2, various aromatic aldehydes bearing differ-
ent electron-withdrawing group or electron-donating groups, 
such as  OCH3,  NO2,  NMe2  CH3,  CF3, SMe, CN, OH, F, Cl, 
and Br, produced excellent reaction yields in the presence of 
 Fe3O4@Schiff-Base-Cu catalyst (Scheme 2).

A plausible mechanism for the multicomponent synthe-
sis of polyhydroquinolines on the basis of previous reports 
[109] has been depicted in Scheme 3. Based on this mecha-
nism, the role of  Fe3O4@Schiff-Base-Cu MNPS as a Lewis 
acid catalyst comes in the Knoevenagel condensation of 
aldehydes with active methylene compounds (dimedone or 
ethyl acetoacetate) to produce an α,β-unsaturated compound. 
In the next step,  Fe3O4@Schiff-Base-Cu MNPS catalyzed 
the Michael addition of intermediates to obtain the polyhy-
droquinoline (Scheme 3).

3.4  Recyclability of the Catalyst

Reproducibility of catalysts provides an important advan-
tage in industrial applications because it reduces produc-
tion costs. Therefore, the recovery and reproducibility of 
 Fe3O4@Schiff-Base-Cu catalyst were explored in the model 
reaction. After the completion of the experiment, the reac-
tion system was cooled to room temperature and the catalyst 
was magnetically separated from the solution, washed with 
acetone, air-dried and, finally, reused for the next round of 
the reactions. As shown in Fig. 9, the recycling process was 
repeated for five cycles with a slight decrease in the activity 
of the catalyst.

Also, in order to examine stability of the catalyst after 
recycling, the recycled catalyst has been characterized by 
XRD, SEM, VSM and FT-IR techniques. These charac-
terizations confirmed that the recovered catalyst is in good 
agreement with the fresh catalyst. These characterizations 
are strong evidences for high stability of  Fe3O4@Schiff-
base-Cu organometallic complex after recycling.

The SEM image of the recycled catalyst is shown in 
Fig. 4 (e) in which the morphology of the recovered cata-
lyst is similar to the particle form of the fresh catalyst. 
Moreover, Fig. 10 shows the XRD pattern of the recov-
ered catalyst and, also, the curve intensity which indicates 
the structural stability of the catalyst after 11 consecutive 
cycles.
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Scheme 3  Proposed mechanism for the synthesis of polyhydroquino-
lines in the presence of  Fe3O4@Schiff-Base-Cu catalyst

Fig. 9  Reusability of  Fe3O4@
Schiff-Base-Cu

Fig. 10  XRD pattern of the recycled  Fe3O4@Schiff-Base-Cu
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The Fig. 11 shows the FT-IR spectrum of the recycled 
 Fe3O4@Schiff-base-Cu that points out that the catalyst is 
stable during the organic reactions.

Figure 12 exhibits the magnetization curve of the recy-
cled catalyst. The magnetization curves of the recycled 
 Fe3O4@SiO2-Glycerol-Cu(II) points out that the catalyst 
is stable during the organic reactions after 11 cycles.

3.5  Leaching Study

In order to consider the leaching of Cu into the reaction 
media, ICP-AES analysis was performed. In this sense, 
the copper content in the reaction media and in the model 
reaction was found to be 0.18%. The results show that the 
leaching of Cu during the reaction process is negligible 
and the catalyst is heterogeneous.

3.6  Comparison

In order to investigate the efficiency of this new procedure 
in comparison to the reported procedures in the litera-
ture, the results for the synthesis of polyhydroquinolines 
using p-Clbenzaldehyde, as the representative example, 
were compared to the best of the well-known data from 
the literature outlined in the Table 3. As it is evident from 
Tables 3, the synthesized  Fe3O4@Schiff-Base-Cu nano-
catalyst showed better results than other methods.

4  Conclusion

In conclusion, the  Fe3O4@Schiff-Base-Cu catalyst was 
synthesized and successfully applied for the synthesis of 
polyhydroquinoline derivatives in water as a green reaction 
media. The prepared magnetic nanocatalyst was character-
ized by FT-IR, XRD, EDS, ICP, SEM, X-ray mapping, 
TGA, and VSM analysis techniques. In addition, all reac-
tions were carried out in green conditions. Additionally, 
the  Fe3O4@Schiff-Base-Cu is more economic and envi-
ronmentally friendly because of its low Cu leaching. This 
method offers several advantages; including, price, higher 
catalytic efficiency with lower copper content, heterogene-
ous nature, wide substrate scope, green conditions, high 
yield, short reaction time, simple work-up procedure, ease 
of separation, and recyclability of the magnetic catalyst.

Fig. 11  FT-IR spectra of the recycled  Fe3O4@Schiff-Base-Cu

Fig. 12  VSM spectrum of recycled  Fe3O4@SiO2-Glycerol-Cu(II)
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