Contents lists available at ScienceDirect

ELSEVIER

Inorganic Chemistry Communications

journal homepage: www.elsevier.com/locate/inoche

Synthesis, structure, and photoluminescent property of a trinuclear Cd^{II} complex based on semi-rigid bis(imidazole-4,5-dicarboxylate) ligand

Gang Yuan^{a,*}, Kui-Zhan Shao^b, Xiang-Rong Hao^a, Ya-Ru Pan^a, Zhong-Min Su^{b,*}

^a Faculty of Chemistry, Tonghua Normal College, Tonghua 134002, China

^b Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

ARTICLE INFO

Article history: Received 3 September 2013 Accepted 5 January 2014 Available online 11 January 2014

Keywords: Hydrothermal reaction Cd^{II} complex Bis(imidazole-4,5-dicarboxylate) ligand SBUs Topology

ABSTRACT

A new 3D complex, $\{[Cd_3(HL)_2(H_2L)(H_2O)_4] \cdot 2H_2O\}_n$ (1) $(H_4L = 1,1'-(1,4-phenylenebis(methylene))bis(1H$ imidazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analyses,IR, TG, and X-ray single-crystal diffraction. Complex 1 is the first framework based on Cd^{II} ion and semi-rigid*bis* $-IDC ligand. The (6,6)-net architecture of 1 is built from <math>H_2L^{2-}$ ligands linking 1D chain-like $[Cd_3(HL)_2]_n$ SBUs, which formed by HL^{3-} anions bridging two kinds of metal centers. In addition, complex 1 was demonstrated to display strong blue-violet fluorescence emission in the solid state at room temperature. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

The design and synthesis of coordination polymers (CPs), often referred to as metal-organic frameworks (MOFs), have been extensively studied not only stemming from their appealing structural and topological novelty but also owing to their tremendous potential applications in microelectronics, fluorescence, nonlinear optics, magnetism, porous materials and heterogeneous catalysis [1-4]. It is well known that the self-assembly of CPs is highly influenced by the structural character of the ligands, coordination trend of the metal ions, and other factors such as the temperature, templates, counterions, pH value of the solution, and solvent system [5,6]. Among them, tactical synthesis or selection of the organic ligand and controlling reaction condition are key factors for achieving expected CPs [7]. The syntheses of new N-heterocyclic carboxylic acid ligands are a long-standing fascination of chemists, and so far, many pyridine-based, imidazolebased, pyrazine-based and triazole-based carboxylic acids have been reported, but the study of their analog and derivative ligands is still underdeveloped [8,9].

In recent years, imidazole-4,5-dicarboxylic acid (H₃IDC) and its 2-position substituted analog ligands have attracted upsurging research interest owing to the excellent performance on the construction of nanostructures and MOFs [10]. However, the derivate ligands of H₃IDC with two IDC groups remain largely unexplored. Prompted by this interesting finding, we design and synthesis a new H₃IDC derivative ligand, namely 1,1'-(1,4-phenylenebis(methylene))bis(1H-imidazole-4,5-dicarboxylic acid) (H₄L), by using 1,4-dibenzyl group linking two identical H₃IDC molecules [11]. We are interested in the use of H₄L as organic linker in combination with Cd^{II} ion adopting d¹⁰ configuration

E-mail address: zmsu@nenu.edu.cn (Z.-M. Su).

to construct new CPs based on the following considerations: (i) H₄L and its anions possess multiple potential coordination sites from two IDC groups and can be partially or fully deprotonated at different pH values, therefore, providing various acid-base type coordination modes; (ii) the oxygen-rich and nitrogen-rich backbone of H₄L may help in constructing supramolecular networks via hydrogen bonds and π - π aromatic interactions; and (iii) H₄L has bigger size and two IDC groups can freely twist around the -CH₂- spacers to meet the requirements of the coordination geometries in the assembly process. In this work, we reported the synthesis and characterization of a new trinuclear d¹⁰ metal polymer, {[Cd₃(HL)₂(H₂L)(H₂O)₄]·2H₂O]_n, which exhibits 3D 6-connected framework assembly of *bis*-deprotonated ligands linking 1D chain-like SBUs by the employment of H₄L.

Crystalline products of **1** was hydrothermally synthesized by reacting $Cd(NO_3)_2 \cdot 4H_2O(0.1 \text{ mmol})$, $H_4L(0.05 \text{ mmol})$, dimethylamine hydrochloride (0.2 mmol) and $H_2O(10 \text{ mL})$ at 150 °C [12], and characterized by elemental analysis, IR and single crystal X-ray diffraction, and the phase purity of the bulk sample was identified by powder X-ray diffraction (PXRD) (Fig. S1).

The single crystal X-ray analysis [13] indicates that complex **1** crystallizes in the triclinic system space group P - 1 and the asymmetrical unit of **1** contains two crystallography independent Cd^{II} ions, one HL³⁻ ligand, a half of H₂L²⁻ ligand, two coordination water molecules and a lattice water molecule. As shown in Fig. 1a, Cd1 ion lies at an inversion center and is six-coordinated by two nitrogen atoms (Cd1–N5, 2.273(4) Å; Cd1–N5A, 2.273(4) Å) and two oxygen atoms (Cd1–O9, 2.408(4) Å; Cd1–O9A, 2.408(4) Å) from two separate H₂L²⁻ anions, and two oxygen atoms (Cd1–O4, 2.272(4) Å; Cd1–O4A, 2.272(4) Å) from two isolated HL³⁻ anions in a slightly distorted octahedral environment. Different from Cd1,

1387-7003/\$ – see front matter. Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.inoche.2014.01.004

^{*} Corresponding authors. Tel.: +86 431 85099108.

Fig. 1. (a) View of the coordination environment of Cd^{II} ions in **1** with thermal ellipsoids drawn at the 50% probability level. All hydrogen atoms are omitted for clarity. Symmetry codes: A, -x, -y, -z; B, -x + 1, -y + 1, -z; C, -x + 1, -y, -z; D, -x + 2, -y, -z + 1. (b) The 1D chain formed by HL³⁻ bridging two different metal centers. (c) View of four 1D chain-like SBUs connected by the H₂L²⁻ anion.

Cd2 adopts a pentagonal bipyramid coordination geometry and surrounded by two nitrogen atoms (Cd2–N1, 2.278(4) Å; Cd2–N4D, 2.297(4) Å) and two oxygen atoms (Cd2–O1, 2.491(4) Å; Cd2–O8D, 2.461(4) Å) from two individual HL^{3−} ligands, and one oxygen atom (Cd2–O9C, 2.408(4) Å) from one H₂L^{2−} ligand as well as two terminal water molecules (Cd2–O1W, 2.293(4) Å; Cd2–O2W, 2.633(5) Å). In complex **1**, the H₄L ligands were deprotonated into HL^{3−} and H₂L^{2−} fashions in the presence of dimethylamine, respectively, and they exhibit two different types of coordination modes, as depicted in Scheme 1. One acts as a tridentate connector adopting μ_3 -kN,O: kN', O': kO" coordination mode linking three Cd^{II} ions (Scheme 1a) in *bis*-N,O-chelating and O-monodentate fashions, in which the dihedral angle between two imidazole rings and the benzene ring are 75.86° and 76.30°. The other serves as tetradentate ligand bridging four Cd^{II}

Scheme 1. Coordination modes of the HL^{3-} and H_2L^{2-} ligands in complex 1.

centers and displays a μ_4 -kN,O: kN',O': kO' coordination mode via *bis*-N,O-chelating and *bis*-O-monodentate fashions with the dihedral angle of 83.10° between the aromatic rings. It is worth noting that all carboxylate groups and the attaching aromatic rings are almost coplanar in two different coordination modes.

Interestingly, two adjacent Cd2 metal centers were interconnected by two HL³⁻ ligands with the *cis-gauche* conformation leading to the formation of a Cd₂(HL)₂ ring, in which the Cd2^{...}Cd2 separation is 9.650 Å. The neighboring Cd₂(HL)₂ rings link with each other by sharing the Cd1 nodes giving rise to a one-dimensional (1D) infinite [Cd₃(HL)₂]_n chain with the shortest Cd1^{...}Cd1 distance of 21.169 Å (Fig. 1b). Each 1D [Cd₃(HL)₂]_n chain can be considered as a secondary building unit (SBU). The four identical chain-like [Cd₃(HL)₂]_n SBUs are further connected by the H₂L²⁻ anion with *trans* conformation (Fig. 1c) resulting to a threedimensional (3D) co-valent framework (Fig. 2). Although a large number of complexes based on the new designed N-heterocyclic carboxylic acid ligands have been reported. To the best of our knowledge, such complex constructed from semi-rigid H₃IDC derivative ligand bearing *bis*-IDC groups have not been observed in coordination polymers.

To further understand the structure of **1**, topological analysis by reducing multidimensional structure to simple node-and-linker net was performed. Three Cd^{II} ions were μ_2 -bridged by two caboxylate oxygen atoms from two H₂L²⁻ ligands to form a trinuclear cluster. Each trinuclear cluster is surrounded by six trinuclear clusters and can be considered as a six-connected node (Fig. 3a). On the basis of the simplification above, complex **1** possesses a classical non-interpenetrating 6-connected a-Po net with the Schläfli symbol of (4¹² · 6³) based on the trinuclear cadmium nodes, which is assigned to the pcu net (Fig. 3b).

The thermal stability of **1** has been examined by using thermogravimetric (TG) analyzer from 40 to 1000 °C under flowing nitrogen at a heating rate of 10 °C/min. From the TG curve (Fig. S2), **1** shows a three-step weight loss. The first weight loss of 2.05% (cal. 2.14%) is assigned to the liberation of two lattice water molecules which occurred in the range of approximate 40–70 °C. The second weight loss of 4.12% (cal. 4.28%) between 100 and 150 °C is ascribed to the

Fig. 2. Polyhedral view of the 3D framework of complex 1.

loss of four coordination water molecules. The last loss of 70.03% (cal. 70.66%) occurs from 315 to 810 °C, which corresponds to the complete decomposition of the samples. After the decomposition, the final product may be CdO.

The photoluminescent properties of the free H₄L ligand and Cd^{II} complex **1** in the solid state were investigated at room temperature and relevant emission spectra are shown in Fig. 4. The free H₄L ligand shows an emission band centered at 435 nm upon excitation at 364 nm, which can be assigned to the $\pi \rightarrow \pi *$ transitions [14]. In contrast to the free ligand, complex **1** has an emission at 432 nm under the same conditions and merely blue-shifted by ~2 nm. This emission is assignable as an intraligand transition of the H₄L ligand. Since the heteroatoms of the heterocyclic aromatic ligand will have decreased π and $\pi *$ orbital energies (the HOMO and LOMO, as well as orbitals with energies close to these, may not be significantly contributed by the Cd metal atoms, so that LMCT can be excluded from consideration) [15]. The features of the highest occupied (HOMO) and the lowest unoccupied (LUMO) frontier orbitals are shown in Fig. S3. Obviously, the electron densities of the singlet state of HOMO and LUMO reside the ligands

a b

Fig. 3. (a) View of 6-connected node in 1. (b) A schematic representation of a-Po network of 1.

In conclusion, an interesting 3D Cd^{II} complex, $\{[Cd_3(HL)_2(H_2L)(H_2O)_4] \cdot 2H_2O\}_n$, has been successfully synthesized and structurally characterized, which is constructed by two different configuration ligands linking metal centers. In this work, we explore the coordination characteristics of *bis*-IDC system ligand for the first time. Moreover, complex **1** displays blue–violet fluorescent property indicating that the polymer may have potential applications in optical materials. Further work on this ligand and its metal complexes is still explored in our laboratory.

Fig. 4. The solid-state photoluminescent spectra of the free $\rm H_4L$ and complex 1 at room temperature.

Acknowledgments

This work was financially supported by the National Science Foundation of China (No. 20701006), the Foundation for Excellent Youth of Jilin, China (No. 20070103), PhD Station Foundation of Ministry of Education for New Teachers (No. 20070200014/ 20070200015), and Science and Technology Research Foundation of Education Bureau of JiLin Province in the National "12th 5-year Plan", China (No. 2014559).

Appendix A. Supplementary material

Crystallographic data for the structural analysis have been deposited to the Cambridge Crystallographic Data Centre, CCDC No. 687253 for complex **1**. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Supplementary data to this article can be found online at http://dx.doi. org/10.1016/j.inoche.2014.01.004.

References

- (a) M. O'Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets, Acc. Chem. Res. 41 (2008) 1782–1789;
 - (b) G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev. 37 (2008) 191–214;
 - (c) D.J. Tranchemontagne, J.L. Mendoza-Cortés, M. O'Keeffe, O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal–organic frameworks, Chem. Soc. Rev. 38 (2009) 1257–1283;
 - (d) J. Rocha, L.D. Carlos, F.A. Almeida Paz, D. Ananias, Multifunctional luminescent lanthanides-based metal-organic frameworks, Chem. Soc. Rev. 40 (2011) 926–940;
 - (e) F.M. Hinterholzinger, A. Ranft, J.M. Feckl, B. Ruhle, T. Bein, B.V. Lotsch, One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem. 22 (2012) 10356–10362.
- [2] (a) X.-L. Wang, C. Qin, E.-B. Wang, L. Xu, Z.-M. Su, C.-W. Hu, Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts, Angew. Chem. Int. Ed. 43 (2004) 5036–5040;
 - (b) Z.M. Wang, K.L. Hu, S. Gao, H. Kobayashi, Formate-based magnetic metalorganic frameworks templated by protonated amines, Adv. Mater. 22 (2010) 1526–1533;
 - (c) L.-F. Ma, X.-Q. Li, L.-Y. Wang, H.-W. Hou, Syntheses and characterization of nickel(II) and cobalt(II) coordination polymers based on 5-bromoisophthalate anion and bis(imidazole) ligands, CrystEngComm 13 (2011) 4625–4634.
- [3] (a) R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture, Science 319 (2008) 939–943;
 - (b) D.E. Freedman, D.M. Jenkins, A.T. Lavarone, J.R. Long, A redox-switchable single-molecule magnet incorporating [Re(CN)₇]³, J. Am. Chem. Soc. 130 (2008) 2884–2885;
 - (c) R. Matsuda, T. Tsujino, H. Sato, Y. Kubota, K. Morishige, M. Takata, S. Kitagawa, Temperature responsive channel uniformity impacts on highly guest-selective adsorption in a porous coordination polymer, Chem. Sci. 1 (2010) 315–321.
- [4] (a) G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Guest-dependent spin crossover in a nanoporous molecular framework material, Science 298 (2002) 1762–1765;
 - (b) M. Monfort, I. Resino, J. Ribas, H. Stoeckli-Evans, A metamagnetic twodimensional molecular material with nickel(II) and azide, Angew. Chem. Int. Ed. 39 (2000) 191–193;
 - (c) M. Latroche, S. Surblé, C. Serre, C. Mellot-Draznieks, P.L. Llewellyn, J.H. Lee, J.S. Chang, S.H. Jhung, G. Férey, Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101, Angew. Chem. Int. Ed. 45 (2006) 8227–8231;
 - (d) S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis, J. Am. Chem. Soc. 129 (2007) 2607–2614;
 - (e) H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8, J. Am. Chem. Soc. 129 (2007) 5314–5315;
 - (f) G. Li, W. Yu, Y. Cui, A homochiral nanotubular crystalline framework of metallomacrocycles for enantioselective recognition and separation, J. Am. Chem. Soc. 130 (2008) 4582–4583.
- [5] (a) T.K. Maji, R. Matsuda, S. Kitagawa, A flexible interpenetrating coordination framework with a bimodal porous functionality, Nat. Mater. 6 (2007) 142–148;
 - (b) J. Qiao, K. Shi, Q.-M. Wang, Giant silver alkynyl cage with sixty silver(1) ions clustering around polyoxometalate templates, Angew. Chem. Int. Ed. 49 (2010) 1765–1767;

- (c) G. Li, Z. Lei, Q.-M. Wang, Luminescent molecular Ag-S nanocluster [Ag₆₂S₁₃(SBut)₃₂](BF₄)₄, J. Am. Chem. Soc. 132 (2010) 17678–17679;
- (d) D. Zhao, D.J. Timmons, D. Yuan, H.C. Zhou, Tuning the topology and functionality of metal—organic frameworks by ligand design, Acc. Chem. Res. 44 (2011) 123–133.
- [6] (a) C.F. Zhuang, J. Zhang, Q. Wang, Z.H. Chu, D. Fenske, C.Y. Su, Temperaturedependent guest-driven single-crystal-to-single-crystal ligand exchange in a two-fold interpenetrated Cd^{II} grid network, Chem. Eur. J. 15 (2009) 7578–7585;
 - (b) B. Li, R.-J. Wei, J. Tao, R.-B. Huang, L.-S. Zheng, Z.-P. Zheng, Solvent-induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers, J. Am. Chem. Soc. 132 (2010) 1558–1566;
 - (c) C.-P. Li, M. Du, Role of solvents in coordination supramolecular systems, Chem. Commun. 47 (2011) 5958–5972;
 - (d) S.S. Chen, M. Chen, S. Takamizawa, M.S. Chen, Z. Su, W.Y. Sun, Temperature dependent selective gas sorption of the microporous metal-imidazolate framework [Cu(L)] [H₂L = 1,4-di(1H-imidazol-4-yl)benzene], Chem. Commun. 47 (2011) 752–754.
- [7] D. Sun, L-L. Han, S. Yuan, Y.-K. Deng, M.-Z. Xu, D.-F. Sun, Four new Cd(II) coordination polymers with mixed multidentate N-donors and biphenyl-based polycarboxylate ligands: syntheses, structures, and photoluminescent properties, Cryst. Growth Des. 13 (2013) 377–385.
- [8] (a) X.-L. Wang, C. Qin, E.-B. Wang, Y.-G. Li, N. Hao, C.-W. Hu, L. Xu, Syntheses, structures, and photoluminescence of a novel class of d¹⁰ metal complexes constructed from pyridine-3,4-dicarboxylic acid with different coordination architectures, Inorg. Chem. 43 (2004) 1850–1856;
 - (b) F. Luo, D.-X. Hu, L. Xue, Y.-X. Che, J.-M. Zheng, Pillared 3d–4f frameworks with rare 3d architecture showing the coexistence of ferromagnetic and antiferromagnetic interactions between gadolinium ions, Cryst. Growth Des. 7 (2007) 851–853;
 - (c) F.-Q. Wang, W.-H. Mu, X.-J. Zheng, L.-C. Li, D.-C. Fang, L.-P. Jin, Hydrothermal reaction of Cu(II)/pyrazine-2,3,5-tricarboxylic acid and characterization of the copper(II) complexes, Inorg. Chem. 47 (2008) 5225–5233;
 - (d) J.-H. Yang, S.-L. Zheng, X.-M. Chen, Syntheses, structures, and photoluminescent properties of three silver (I) cluster-based coordination polymers with heteroaryldicarboxylate, Cryst. Growth Des. 4 (2004) 831–836.
- [9] (a) S. Wang, L.-R. Zhang, G.-H. Li, Q.-S. Huo, Y.-L. Liu, Assembly of two 3-D metal-organic frameworks from Cd(II) and 4,5-imidazoledicarboxylic acid or 2-ethyl-4,5-imidazoledicarboxylic acid, CrystEngComm 10 (2008) 1662–1666;
 - (b) Y.L. Liu, V. Kravtsov, R.D. Walsh, P. Poddar, H. Srikanthc, M. Eddaoudi, Directed assembly of metal-organic cubes from deliberately predesigned molecular building blocks, Chem. Commun. (2004) 2806–2807;
 - (c) G. Yuan, K.-Z. Shao, X.-L. Wang, Y.-Q. Lan, D.-Y. Du, Z.-M. Su, A series of novel chiral lanthanide coordination polymers with channels constructed from 16Ln-based cage-like building units, CrystEngComm 12 (2010) 1147–1152;
 - (d) Y.-F. Yue, J. Liang, E.-Q. Gao, C.-J. Fang, Z.-G. Yan, C.-H. Yan, Supramolecular engineering of a 2D Kagomé lattice: synthesis, structures, and magnetic properties, Inorg. Chem. 47 (2008) 6115–6117.
- [10] (a) X. Li, B.-L. Wu, R.-Y. Wang, H.-Y. Zhang, C.-Y. Niu, Y.-Y Niu, H.-W. Hou, Hierarchical assembly of extended coordination networks constructed by novel metallacalix[4]arenes building blocks, Inorg. Chem. 49 (2010) 2600–2613;
 - (b) C.-J. Wang, T. Wang, W. Zhang, H.-J. Lu, G. Li, Two unprecedented transition-metal-organic frameworks showing one dimensional-hexagonal channel open network and two-dimensional sheet structures, Cryst. Growth Des. 12 (2012) 1091–1094;
 - (c) X.M. Jing, H. Meng, G.H. Li, Y. Yu, Q.S. Huo, M. Eddaoudi, Y.L. Liu, Construction of three metal–organic frameworks based on multifunctional T-shaped tripodal ligands, H₃PyImDC, Cryst. Growth Des. 10 (2010) 3489–3495;
 - (d) R.-R. Zeng, Q.-G. Zhai, S.-N. Li, Y.-C. Jiang, M.-C. Hu, An unusual (3,6)-connected microporous metal–organic framework based on tetrahedral Zn₄ clusters with selective adsorption of CO₂, CrystEngComm 13 (2011) 4823–4826;
 - (e) W.-Y. Wang, X.-L. Niu, Y.-C. Gao, Y.-Y. Zhu, G. Li, H.-J. Lu, M.-S. Tang, One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylate, Cryst. Growth Des. 10 (2010) 4050–4059.
- [11] Synthesis of 1,1'-(1,4-phenylenebis(methylene))bis(1H-imidazole-4,5-dicarboxylic acid) (H₄L). A mixture of 1H-imidazole-4,5-dicarbonitrile (3.54 g, 30 mmol) and NaOH(1.32 g, 33 mmol) in DMF (30 mL) was stirred at 70 °C for 2 h, and the 1,4-bis(chloromethyl)benzene (2.62 g, 15 mmol) was added. The mixture was cooled to room temperature after being stirred at 70 °C for 2 h and poured into 200 mL of ice water. A white solid formed immediately, which was isolated by filtration. The above white solid was added into 40 mL of NaOH solution (20%), and the reaction mixture was refluxed for 4 h at 120 °C. The obtained clear solution was cooled to room temperature and acidified (pH = 2) with dilute HCl solution. The obtained white solid product H₄L was filtered and washed with water until free from acid. Yield: 65%.
- [12] Synthesis of complex 1: A mixture of Cd(NO₃)₂·4H₂O (30 mg, 0.1 mmol), H₄L (20 mg, 0.05 mmol), Dimethylamine hydrochloride (16 mg, 0.2 mmol) and deionized water (10 ml) in a 23 mL Teflon reactor, and then was heated at 150 °C for 72 h; colorless block crystals were obtained. Elemental Anal. Calc. (%) for it: C, 38.60; H, 2.75; and N, 10.00. Found: C, 38.65; H, 2.73; and N, 10.06%.
- [13] Crystal data for complex 1, Mr = 1680.10, triclinic, P-1, a = 9.227(4) Å, b = 13.564(5) Å, c = 13.866(6) Å, $\alpha = 112.464(5)^\circ$, $\beta = 99.523(6)^\circ$, $\gamma = 100.855(5)^\circ$, V = 1520.2(11) Å³, Z = 1, $R_1 = 0.0439$ ($I > 2\delta(I)$). Intensity data were collected on a Bruker SMART APEXII CCD diffractometer using Mo Kα radiation ($\lambda = 0.71073$ Å) at room temperature. The structure was solved

by the direct method and refined by the full matrix least-squares method on F^2 using the SHELXTL crystallog raphic software package.

- [14] (a) Z.-G. Guo, R. Cao, X.-J. Li, D.-Q. Yuan, W.-H. Bi, X.-D. Zhu, Y.-F. Li, A series of cadmium(II) coordination polymers synthesized at different pH values, Eur. J. Inorg. Chem. (2007) 742–748;
 - (b) X.M. Jing, H. Meng, G.H. Li, Y. Yu, Q.S. Huo, M. Eddaoudi, Y.L. Liu, Construction of three metal–organic frameworks based on multifunctional t-shaped tripodal ligands, H₃PyImDC, Cryst. Growth Des. 10 (2010) 3489–3495;
 - (c) H.-L. Wang, K. Wang, D.-F. Sun, Z.-H. Ni, J.-Z. Jiang, Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from asymmetric semi-rigid V-shaped multicarboxylate ligands, CrystEngComm 13 (2011) 279–286.
- [15] (a) S.-L. Zheng, J.-H. Yang, X.-L. Yu, X.-M. Chen, W.-T. Wong, Syntheses, structures, photoluminescence and theoretical studies of d¹⁰ metal complexes of 2,2'-dihydroxy-[1,1']binaphthalenyl-3,3'-dicarboxylate, Inorg. Chem. 43 (2004) 830–838;
 - (b) J.-R. Li, Y. Tao, Q. Yu, X.-H. Bu, A pcu-type metal-organic framework with spindle [Zn₇(OH)₈]⁶⁺ cluster as secondary building units, Chem. Commun. (2007) 1527–1529.
- [16] Theoretical calculations: All calculations in this work were carried out with the Gaussian03 program. The parameters of the molecular structure for calculation were all from the experimental data of the complex. On the basis of this geometry, density functional theory (DFT) calculations using the B3LYP hybrid functional and the LANL2DZ basis set were performed.