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Dramatically Accelerated Addition Under
Solvent-Free Conditions: An Efficient Synthesis
of (E)-1,2,4-Triazole-Substituted Alkenes from

Baylis–Hillman Acetates

Weihui Zhong, Yongzhi Zhao, Baoming Guo, Peng Wu, and

Weike Su
College of Pharmaceutical Sciences, Zhejiang University of Technology,

Zhejiang Key Laboratory of Pharmaceutical Engineering, Hangzhou, China

Abstract: The addition of 1,2,4-triazole to Baylis–Hillman acetates mediated
by Et3N was dramatically accelerated under solvent-free conditions to afford
(E)-1,2,4-triazole-substituted alkenes 3 with excellent yields.

Keywords: Acceleration, Baylis–Hillman acetates, solvent-free conditions,
(E)-1,2,4-triazole-substituted alkenes

Since the first report of the Baylis–Hillman reaction in 1972,[1] it has been
widely used as a powerful carbon–carbon bond-forming method in
organic synthesis.[2] During the past decade, Baylis–Hillman adducts
were proven to be useful precursors for the synthesis of a variety of useful
compounds with biological activities.[3,4]

The synthesis of triazole derivatives has recently gained promi-
nence[5] because of their interesting biological properties[6] such as antial-
lergic, antibacterial, antifungal, analgesic, anti-inflammatory,
antitubercular, anti-HIV, and cytokinin activities. There are several
reports on the synthesis of triazole derivatives from Baylis–Hillman
adducts: (1) Gong et al. reported the reaction of Baylis–Hillman acetate
and 1,2,4-triazole in the presence of 1,4-diazebicyclo[2.2.2]octane
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(DABCO) at room temperature for 5 days, and a mixture of products
was obtained with moderate yield,[4d] (2) Chandrasekhar et al. developed
a novel access to substituted triazoles through three-component coupling
of alkynes, Baylis–Hillman adducts, and sodium azide.[7] (3) Sreedhar
et al. claimed 1,4-disubsituted 1,2,3-triazoles can be prepared via nucleo-
philic substitution and 1,3-dipolar cycloaddition.[8] Here we describe an
efficient synthesis of (E)-1,2,4-triazole-substituted alkenes via the
addition of 1,2,4-triazole to Baylis–Hillman acetates mediated by differ-
ent bases under solvent or solvent-free conditions.

Primary experiments were performed under solvent conditions using
Baylis–Hillman acetate adduct 1a as a model compound (Scheme 1).
When this reaction was carried out in ethanol in the presence of
K2CO3, only (E)-1,2,4-triazole-substituted alkene 3a was isolated,
whereas its isomer 4a was not detected either at room temperature
or under reflux. The structure of product 3a was characterized by
1H NMR, 13C NMR, and mass spectra.[4d]

To obtain the optimized condition, the kinds of bases and solvents
were screened, and the results were summarized in Table 1. It was found
that ethanol is an efficient solvent for this addition, whereas water is a
poor medium even under refluxing conditions. Both Et3N and K2CO3

can selectively provide (E)-1,2,4-triazole-substituted alkenes 3a, but
Et3N can provide a higher yield than that of K2CO3 (entries 1, 6). With-
out any bases, the addition was very slow because of the formation of
side product AcOH, and only a trace product was detected by thin-layer
chromatography (TLC) (entry 10), so we chose Et3N to promote this
addition reaction.

On the other hand, we also investigated the nucleophilic substitution
promoted by DABCO. It was found that a mixture of 3a and 4a could be
obtained, and their ratios were largely influenced by reaction temperature
and time. In the presence of DABCO, compound 4a is the main product
at room temperature within a short time (entry 11), whereas 3a was a
major product when elevating the reaction temperature or prolonging

Scheme 1.
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the reaction time (entries 12, 13). This result showed that 4a is thermo-
dynamically unstable and thus the isomerization from 4a to 3a would
be favored on standing or under reflux.

Recently, considerable attention has been paid to solvent-free
reactions, which are not only of interest from an environmental point
of view, but in many cases also offer considerable synthetic advantages
in terms of yield, selectivity, and simplicity of the reaction procedure.
To the best of our knowledge, the SN20 substitution of Baylis–Hillman
acetates under solvent-free conditions has not been exploited. When
2 mmol of Baylis–Hillman acetate 1a, 2.2 mmol of 1,2,4-triazole, and
2.2 mmol of Et3N were stirred at room temperature for 15 min, TLC
indicated that the Baylis–Hillman acetate 1a was consumed, and the
SN20 product 3a was isolated with 85% yield (Scheme 2). The possible
explanation is that the high concentration favored this addition, and
the addition rate can be dramatically accelerated under solvent-free
conditions.

Encouraged by this excellent result, we started to explore the reaction
scope with various Baylis–Hillman acetates 1b–n. The results are
summarized in Table 2.

Table 1. The influence of the reaction condition on the product yieldsa

Entry Bases Solvents T (�C) Time Product (yield, %)b

1 K2CO3 EtOH rt 3 h 3a (28)
2 K2CO3 EtOH 80 3 h 3a (72)
3 K2CO3 MeOH 60 5 h 3a (60)
4 K2CO3 THF=H2O(2=1) 60 5 h 3a (61)
5 K2CO3 H2O 100 3 h 3a (—)c

6 K2CO3 H2O rt 4 days 3a (26)d

7 Et3N EtOH 80 3 h 3a (75)
8 Et3N MeOH 60 5 h 3a (63)
9 Et3N THF-H2O(2=1) 60 5 h 3a (65)

10 — EtOH 80 3 h 3a (trace)
11 DABCO EtOH rt 5 3a=4a¼ 1=5 (24)e

12 DABCO EtOH rt 48 3a=4a¼ 3=2 (60)e

13 DABCO EtOH 80 5 3a=4a¼ 9=1 (70)e

a2.0 mmol of Baylis–Hillman acetates, 2.2 mmol of triazole, and 1.1 mmol of
K2CO3 or 2.2 mmol of Et3N were used.

bIsolated yields based on Baylis–Hillman acetates.
cComplex mixture was obtained.
dThe starting material was recovered.
eThe ratio of 3a and 4a was determined from the 1H NMR spectrum.

(E)-1,2,4-Triazole-Substituted Alkenes 3293
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According to Table 2, under solvent-free conditions, the Baylis–
Hillman acetates derived from aromatic aldehydes could produce the
corresponding products 3 with good to excellent yields, and no evident
substitute effect on aromatic rings was observed. However, when R1 is
the alkyl group (i-butyl), the addition is complex, and only 42% of the
corresponding product 3o can be isolated. (entry 15).

In summary, we have disclosed a fast, efficient, and ecofriendly
process for the synthesis of (E)-1,2,4-triazole-substituted alkenes 3 via
Et3N-mediated addition of 1,2,4-triazole to Baylis–Hillman acetates
under solvent-free conditions. The advantages of this method are

Tabel 2. Synthesis of (E)-1,2,4-triazole-substituted alkenes 3 mediated by Et3N
under solvent-free conditionsa

Entry R1 R2 Time (min) Product (yield, %)b

1 p-FC6H4 Me 15 3a (85)c

2 m-NO2C6H4 Me 15 3b (82)
3 C6H5 Me 15 3c (75)
4 o-ClC6H4 Me 15 3d (78)
5 2-F-6-ClC6H3 Me 14 3e (85)
6 2-furyl Me 15 3f (78)
7 4-methylthiazol-5-yl Me 15 3g (87)
8 C6H5 Et 15 3h (86)
9 m-NO2C6H4 Et 12 3i (85)

10 p-FC6H4 Et 15 3j (85)
11 o-ClC6H4 Et 15 3k (82)
12 2-F-6-ClC6H3 Et 15 3l (83)
13 2-furyl Et 15 3m (89)
14 4-methylthiazol-5-yl Et 15 3n (90)
15 i-Bu Me 60 3o (42)

a2.0 mmol of Baylis–Hillman acetates, 2.2 mmol of triazole, and 2.2 mmol of
Et3N were used.

bIsolated yields based on Baylis–Hillman acetates.
cThe addition was very slow in the absence of Et3N.

Scheme 2.
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simple operation, short reaction time, good to excellent yields, and high
regioselectivity. The further studies on the application of Baylis–Hillman
adduct acetates are now in progress in our laboratory.

EXPERIMENTAL

Melting points were recorded on a digital melting-point apparatus
WRS-1B and are uncorrected. Infrared spectra were recorded on Nicolet
Aviatar-370 infrared spectrophotometer. 1H NMR and 13C NMR spectra
were measured on a Varian Mercury plus-400 instrument using CDCl3 as
the solvent with tetramethylsilane (TMS) as an internal standard. Mass
spectra were obtained on a Thermo Finnigan LQC-advantage (ESI) and
Finnigan Truce DSQ (EI). Elemental analyses were carried out on a Vario
EL III instrument. High-resolution mass spectral (HRMS) analyses were
measured on an Apex (Bruker) mass III spectrometer using ESI (electro-
spray ionization) techniques. Baylis–Hillman adducts was prepared from
arylaldehyde derivatives with methyl acrylate or ethyl acrylate. All reagents
are commercially available and were used without further purification.

Typical Procedure for the Synthesis of 3a Under Solvent Conditions

Method A

1,2,4-Triazole (2.2 mmol) was added to a mixture of Baylis–Hillman acet-
ates 1a (2.0 mmol) and triethylamine (2.2 mmol) or K2CO3 (1.1 mmol) in
ethanol (10 mL). The reaction mixture was refluxed for the given time
(Table 1). After completion of the reaction (monitored by TLC), the
solvent was evaporated in vacco, and the crude product was purified
by column chromatography over silica gel (ethyl acetate–petroleum ether
3:2) to afford the corresponding 1,2,4-triazole derivatives 3a.

Method B

DABCO (2.2 mmol) was added to a solution of Baylis–Hillman acetates
1a (2.0 mmol) in ethanol (10 mL), and the mixture was stirred for 10 min
at room temperature. Then 1,2,4-triazole (2.2 mmol) was added, and the
mixture was stirred at room temperature for the given time (Table 1).
After completion of the reaction (monitored by TLC), the solvent
was evaporated in vacco, and the crude product was purified by column
chromatography over silica gel (ethyl acetate–petroleum ether 3:2) to
afford a mixture of 3a and 4a.

(E)-1,2,4-Triazole-Substituted Alkenes 3295
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General Procedure for the Synthesis of Product 3 Under
Solvent-Free Conditions

1,2,4-Trizole (2.2 mmol) was added to a mixture of Baylis–Hillman
acetates 1 (2.0 mmol) and Et3N (2.2 mmol), and the mixture was stirred
at room temperature for the given time (Table 2). After the completion
of the reaction (monitored by TLC), CH2Cl2 (20 mL) was added, and
the mixture was washed with brine and dried over sodium sulfate. After
concentrated in vacco, the residue was purified by silica-gel column
chromatography to afford the product 3.

Data

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(4-fluorophenyl)
acrylate (3a)

Colorless crystal, mp: 71.1–72.3 �C; IR (KBr) nmax: 3125, 2949, 1710 cm�1;
1H NMR (400 MHz, CDCl3): dH 8.27 (s, 1H), 8.01 (s, 1H), 7.97 (s, 1H),
7.78 (dd, 2H, J1¼ 8.8 Hz, J2¼ 6 Hz), 7.16 (dd, 2H, J1¼ J2¼ 8.8 Hz), 5.17
(s, 2H), 3.82 (s, 3H); 13C NMR (100 MHz, CDCl3) d 166.6, 163.3 (d,
1JC,F¼ 250.2 Hz), 151.5, 144.1, 144.0, 131.6, 131.5, 129.8, 124.8, 115.8,
115.7, 52.2, 45.8; MS m=z (%): 261 (Mþ, 45), 202 (100), 133 (80). Anal.
calcd. for C13H12FN3O2: C, 59.77; H, 4.63; N, 16.08. Found: C, 59.79; H,
4.51; N, 16.21.

Methyl 2-((4-Fluorophenyl)(1H-1,2,4-triazol-1-yl)methyl)acrylate (4a)

Oil; IR (KBr) nmax: 3120, 2949, 1720, 1654 cm�1; 1H NMR (400 MHz,
CDCl3): 8.03 (s, 1H), 8.01 (s, 1H), 7.30–7.27 (m, 2H), 7.10 (d, 1H,
J¼ 8.4 Hz), 7.08 (d, 1H, J¼ 8.4 Hz), 6.62 (s, 1H), 6.59 (s, 1H), 5.43 (s,
1H), 3.74 (s, 3H); 13C NMR (100 MHz, CDCl3) d 166.3, 162.4 (d,
1JC,F¼ 238.4 Hz), 151.7, 144.7, 138.1, 131.4, 129.6, 129.5, 128.8, 115.7,
115.5, 62.1, 51.9; MS m=z (%): 261 (Mþ, 28), 229 (100), 201 (47), 133
(85). HRMS (ESI) calcd. for C13H12FN3O2 (MþH)þ, 262.0994; found:
(MþH)þ, 262.0999.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(3-nitrophenyl)
acrylate (3b)

Light yellow crystal, mp 141.7–142.0 �C. IR (KBr) nmax: 3137, 2949,
1707 cm�1; 1H NMR (400 MHz, CDCl3): dH 8.64 (s, 1H), 8.27 (m, 3H),

3296 W. Zhong et al.
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8.06 (s, 1H), 7.99 (s, 1H), 7.69 (m, 1H), 5.17 (s, 2H), 4.29 (q, 2H,
J¼ 7.2 Hz), 1.34 (t, 3H, J¼ 7.2 Hz); 13C NMR (100 MHz, CDCl3) d:
165.5, 151.8, 148.4, 144.4, 141.9, 135.4, 135.1, 129.9, 128.1, 124.3,
124.1, 61.8, 45.5, 14.0; MS m=z (%): 288 (Mþ, 15), 229 (100), 161 (20),
115 (28). Anal. calcd. for C13H12N4O4: C, 54.17; H, 4.20; N, 19.44.
Found: C, 54.05; H, 4.27; N, 19.36.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-phenylacrylate (3c)

Yellow oil.[4d] IR (neat) nmax: 3117, 2952, 1712 cm�1. 1H NMR (400 MHz,
CDCl3): dH 8.26 (s, 1H), 8.07 (s, 1H), 7.98 (s, 1H), 7.72 (s, 1H), 7.70 (s,
1H) 7.46 (m, 3H), 5.20 (s, 2H), 3.81 (s, 3H); 13C NMR (100 MHz, CDCl3)
d: 166.5, 151.4, 145.0, 143.8, 133.4, 129.5, 129.2, 128.5, 124.8, 52.1, 45.7;
MS m=z (%): 244 (MþþH, 34), 175 (100), 143 (10), 115 (16). HRMS
(ESI) calcd. for C13H13N3O2: (MþH)þ, 244.1088; found: (MþH)þ,
244.1083.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(2-chlorophenyl)
acrylate (3d)

Colorless crystal, mp 99.8–100.9 �C; IR (KBr) nmax: 3133, 2941, 1725; 1H
NMR (400 MHz, CDCl3): dH 8.23 (s, 1H), 8.12 (s, 1H), 8.02 (m, 1H), 7.95
(s, 1H), 7.47 (m, 1H), 7.37 (m, 2H), 5.08 (s, 2H), 3.82 (s, 3H); 13C NMR
(100 MHz, CDCl3) d: 166.1, 151.6, 144.1, 141.9, 134.0, 132.2, 130.6,
130.5, 129.5, 127.0, 126.9, 52.4, 45.9; MS m=z (%): 278 (MþþH, 14),
242 (100). Anal. calcd. for C13H12ClN3O2: C, 56.22; H, 4.36; N, 15.13.
Found: C, 56.15; H, 4.47; N, 15.01.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(2-chloro-6-
fluorophenyl) acrylate (3e)

Yellow oil. IR (neat) nmax: 3142, 2958, 1723 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.11 (s, 1H), 7.83 (s, 1H), 7.68 (s, 1H), 7.63 (s, 1H), 6.90
(d, 1H, J¼ 3.6 Hz), 6.55 (m, 1H), 5.52 (s, 2H), 3.81 (s, 3H); 13C NMR
(100 MHz, CDCl3) d: 165.0, 158.5 (d, 1JC,F¼ 220.6 Hz),
150.8, 144.4, 133.8, 133.3, 131.8, 131.2, 125.6, 120.9, 114.9, 52.4,
46.0; MS m=z (%): 296 (MþþH, 12), 298 (5), 260 (100). HRMS
(ESI) calcd. for C13H11ClFN3O2: (MþH)þ, 295.0604; found:
(MþH)þ, 295.0606.

(E)-1,2,4-Triazole-Substituted Alkenes 3297
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(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(furan-2-yl)acrylate (3f)

Yellow oil. IR (neat) nmax: 3131, 2938, 1697 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.18 (s, 1H), 7.91 (s, 1H), 7.68 (s, 1H), 7.64 (s, 1H), 6.91
(d, 1H, J¼ 3.6 Hz), 6.56 (m, 1H), 5.54 (s, 2H), 3.81 (s, 3H); 13C NMR
(100 MHz, CDCl3) d: 167.1, 151.3, 149.9, 146.2, 143.2, 130.3, 120.0,
119.3, 112.6, 52.45, 46.12; MS m=z (%): 234 (MþþH, 100), 165 (46).
HRMS (ESI) calcd. for C11H11N3O3: (MþH)þ, 233.0880; found:
(MþH)þ, 233.0878.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(4-methylthiazol-5-yl)
acrylate (3g)

Colorless crystal, mp 137.0–138.3 �C; IR (KBr) nmax: 3100, 2953,
1705 cm�1; 1H NMR (400 MHz, CDCl3): dH 8.88 (s, 1H), 8.19 (s, 2H),
7.92 (s, 1H), 5.35 (s, 2H), 3.84 (s, 3H), 2.65 (s, 3H); 13C NMR (100 MHz,
MHz, CDCl3) d: 166.4, 158.8, 154.7, 151.8, 143.3, 133.9, 124.1, 122.2,
52.5, 45.7, 16.0; MS m=z (%): 264 (Mþ, 14), 195 (72), 136 (100). Anal.
calcd. for C11H12N4O2S: C, 49.99; H, 4.58; N, 21.20. Found: C, 49.86;
H, 4.47; N, 21.42.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-phenylacrylate (3h)

Yellow oil. IR (neat) nmax: 3117, 2978, 1704 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.25 (s, 1H), 8.06 (s, 1H), 7.97 (s, 1H), 7.70 (s, 1H), 7.71
(s, 1H), 7.43 (m, 3H), 5.19 (s, 2H), 4.26 (q, 2H, J¼ 7.2 Hz), 1.30 (t, 3H,
J¼ 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 166.2, 151.5, 145.0, 143.9,
133.6, 129.6, 129.3, 128.7, 125.3, 61.2, 45.9, 13.9; MS m=z (%): 258.0
(MþþH, 45), 188.9 (100). HRMS (ESI) calcd. for C14H15N3O2:
(MþH)þ, 258.1244; found: (MþH)þ, 258.1247.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-
(3-nitrophenyl)acrylate (3i)

Yellow crystal, mp 143.0–143.9 �C; IR (KBr) nmax: 3121, 2978, 1702 cm�1.
1H NMR (400 MHz, CDCl3): dH 8.64 (s, 1H), 8.27 (m, 3H), 8.06 (s, 1H),
7.99 (s, 1H), 7.68 (t, 1H, J¼ 7.6 Hz), 5.14 (s, 1H) 4.29 (q, 2H, J¼ 7.2 Hz),
1.34 (t, 3H, J¼ 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 164.8, 160.2,
157.7, 150.8, 143.2, 134.9, 134.4, 130.9, 125.5, 121.3, 114.4, 61.6, 46.8, 13.9;
MS m=z (%): 302 (Mþ, 15), 229 (100), 161 (50), 115 (20). Anal. calcd. for
C14H14N4O4: C, 55.63; H, 4.67; N, 18.53. Found: C, 55.59; H, 4.61; N, 18.65.
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(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(4-fluorophenyl)
acrylate (3j)

Colorless crystal, mp 101.2–101.9 �C; IR (KBr) nmax: 3137, 2974,
1693 cm�1. 1H NMR (400 MHz, CDCl3): d 8.27 (s, 1H), 8.01 (s, 1H),
7.97 (s, 1H), 7.78 (dd, 2H, J1¼ 5.2 Hz, J2¼ 8.8 Hz), 7.15 (dd, 2H,
J1¼ J2¼ 8.8 Hz), 5.17 (s, 2H), 4.26 (q, 2H, J¼ 7.2 Hz), 1.32 (t, 3H,
J¼ 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 166.2, 164.4 (d,
1JC,F¼ 250 Hz), 151.7, 144.2, 143.9, 131.7, 131.6, 129.2, 125.2, 116.1,
115.9, 61.5, 45.9 and 14.0; MS m=z (%): 276.1 (MþþH, 100). Anal.
calcd. for C14H14FN3O2: C, 61.08; H, 5.13; N, 15.26. Found: C, 60.99;
H, 5.26; N, 15.21.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(2-chlorophenyl)
acrylate (3k)

White solid, mp 81.3–83.0 �C; IR (KBr) nmax: 3145, 2978, 1703 cm�1;
1H NMR (400 MHz, CDCl3): dH 8.22 (s, 1H), 8.11 (s, 1H), 7.99 (m,
1H), 7.94 (s, 1H), 7.46 (m, 1H), 7.37 (m, 2H), 5.07 (s, 2H), 4.28 (d, 2H,
J¼ 7.2 Hz), 1.31 (t, 3H, J¼ 7.2 Hz). 13C NMR (100 MHz, CDCl3) d:
165.8, 151.8, 148.3, 141.9, 135.3, 134.3, 132.5, 130.7, 130.7, 129.7,
127.5, 61.6, 46.2, 14.1; MS m=z (%): 292.2 (MþþH, 82), 294.2 (25).
Anal. calcd. for C14H14ClN3O2: C, 57.64; H, 4.84; N, 14.40. Found: C,
57.68; H, 4.71; N, 14.52.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(2-chloro-6-fluorophenyl)
acrylate (3l)

Yellow oil, IR (neat) nmax: 3138, 2952, 1719 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.20 (s, 1H), 7.86 (s, 1H), 7.75 (s, 1H), 7.35 (m, 2H), 7.09
(m, 1H), 5.03 (s, 2H), 4.26 (q, 2H, J¼ 7.2 Hz), 1.27 (t, 3H,
J¼ 7.2 Hz). 13C NMR (100 MHz, CDCl3) d: 164.7, 159.9 (d,
1JC,F¼ 248.7 Hz), 150.8, 143.21, 134.9, 134.5, 130.9, 130.8, 125.5, 121.2
(d, 2JC,F¼ 189 Hz), 114.3 (d, 2JC,F¼ 227 Hz), 61.6, 46.8, 13.9; MS m=z
(%): 310 (MþþH, 100), 312 (31), 311 (17). HRMS (ESI) calcd. for
C14H13ClFN3O2: (MþH)þ, 310.0760; found: (MþH)þ, 310.0764.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(furan-2-yl)acrylate (3m)

Colorless crystal, mp 99.1–100.4 �C. IR (KBr) nmax: 3121, 2986,
1692 cm�1; 1H NMR (400 MHz, CDCl3): dH 8.18 (s, 1H), 7.92 (s, 1H),
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7.68 (s, 1H), 7.62 (s, 1H), 6.91 (d, 1H, J¼ 3.6 Hz), 6.56 (dd, 1H,
J1¼ 3.6 Hz, J2¼ 2 Hz), 5.53 (s, 2H), 4.26 (q, 2H, J¼ 7.2 Hz), 1.30 (t,
3H, J¼ 7.2 Hz); 13C NMR (100 MHz, CDCl3) d: 166.5, 151.5, 149.8,
146.0, 143.2, 129.9, 120.4, 118.9, 112.5, 61.3, 45.9, 14.0; MS m=z (%):
248 (MþþH, 100), 179 (34). Anal. calcd. for C12H13N3O3: C, 58.29;
H, 5.30; N, 16.99. Found: C, 58.41; H, 5.23; N, 17.10.

(E)-Ethyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-3-(4-methylthiazol-5-yl)
acrylate (3n)

Yellow oil. IR (neat) nmax: 3113, 2982, 1704 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.88 (s, 1H), 8.20 (m, 2H), 7.94 (s, 1H), 5.36 (s, 2H), 4.30
(q, 2H, J¼ 7.2 Hz), 2.65 (s, 3H), 1.33 (t, 3H, J¼ 7.2 Hz); 13C NMR
(100 MHz, CDCl3) d: 165.6, 158.3, 154.5, 151.3, 143.1, 133.9, 122.3,
61.3, 45.4, 15.7, 13.7; MS m=z (%): 278 (Mþ, 35), 136 (100). HRMS
(ESI) calcd. for C12H14N4O2S: (MþH)þ, 279.0917; found: (MþH)þ,
279.0913.

(E)-Methyl 2-((1H-1,2,4-Triazol-1-yl)methyl)-5-methylhex-2-enoate (3o)

Colorless oil. IR (neat) nmax: 3106, 2992, 1710 cm�1; 1H NMR (400 MHz,
CDCl3): dH 8.17 (s, 1H), 7.89 (s, 1H), 7.18 (t, 1H, J¼ 7.5 Hz), 5.06 (s,
2H), 3.76 (s, 3H), 2.38 (t, 2H, J¼ 7.5 Hz), 1.84 (m, 1H), 0.971 (d, 6H,
J¼ 7 Hz); 13C NMR (100 MHz, CDCl3) d: 166.5, 151.5, 149.2, 143.4,
126.3, 52.2, 44.8, 37.8, 28.2, 22.4, 22.4; MS m=z (%): 223 (Mþ, 5), 167
(100). HRMS (ESI) calcd. for C11H17N3O2: (MþH)þ, 224.1401; found:
(MþH)þ, 224.1404.
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