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Abstract 

Using 31P nuclear magnetic resonance (NMR) spectroscopy, we monitor the competition between 
tri-n-butylphosphine (Bu3P) and various amine and phosphine ligands for the surface of chloride 
terminated CdSe nanocrystals. Distinct 31P NMR signals for free and bound phosphine ligands 
allow the surface ligand coverage to be measured in phosphine solution. Ligands with a small steric 
profile achieve higher surface coverages (Bu3P = 0.5 nm-2, Me2P-n-octyl = 2.0 nm-2, NH2Bu = > 3 
nm-2) and have greater relative binding affinity for the nanocrystal (binding affinity: Me3P > Me2P–
n-octyl ~ Me2P–n-octadecyl > Et3P > Bu3P). Among phosphines, only Bu3P and Me2P–n-octyl 
support a colloidal dispersion, allowing a relative surface binding affinity (Krel) to be estimated in 
that case (Krel = 3.1). The affinity of the amine ligands is measured by the extent to which they 
displace Bu3P from the nanocrystals (Krel: H2NBu ~ N-n-butylimidazole > 4-ethylpyridine > Bu3P 
~ HNBu2 > Me2NBu > Bu3N). The affinity for the CdSe surface is greatest among soft, basic donors 
and also depends on the number of each ligand that bind. Sterically unencumbered ligands such as 
imidazole, pyridine, and n-alkylamines can therefore outcompete stronger donors such as 
alkylphosphines. The influence of repulsive interactions between ligands on the binding affinity is 
a consequence of the high atom density of binary semiconductor surfaces. The observed behavior 
is distinct from the self assembly of straight chain surfactants on gold and silver where the ligands 
are commensurate with the underlying lattice and attractive interactions between aliphatic chains 
strengthen the binding.  
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Introduction 

The photoluminescence quantum yield and chemical stability of II-VI semiconductor 

nanocrystals depends critically on the binding affinity of their surface ligands.1 A deeper 

understanding of surface coordination chemistry would aid the design of ligands that effectively 

stabilize nanocrystals in cellular environments and solid state lighting applications, while 

maximizing their photoluminescence quantum yield (PLQY). However, it is challenging to directly 

monitor ligand binding to surfaces in solution.  

Photoluminescence spectroscopy has been used to study the binding of amines and phosphines 

to CdSe nanocrystals2-10 and bulk CdSe11-13 surfaces, where ligand binding can raise (or lower) the 

PLQY. For example, changes to the PLQY of a single crystal placed in an atmosphere of gaseous 

amine can be analyzed using the Langmuir model.11-13 Binding constants extracted (H3N < H2NMe 

< HNMe2 > NMe3) in this manner parallel the gas phase proton affinity of the amine (with the 

exception of NMe3). A similar strategy was used to analyze ligand binding to colloidal CdSe 

nanocrystals in solution.14 In both cases, the PLQY is assumed to be proportional to the fractional 

surface coverage, which ignores several complications including changes to the recombination 

mechanism,9 side reactions involving acidic impurities15 or displacement of atoms from the crystal 

surface.16 The method used to analyze single crystals also convolves the ligand donor strength and 

surface coverage and none measure changes to the number of accessible surface sites caused by 

lateral steric interactions between ligands. It is therefore unclear how to explain binding affinities 

that do not follow the ligand donor strength (e.g. HNMe2 > NMe3), or the relatively weak affinity 

of N,N,N’,N’-tetramethylethylenediamine16 and bis(diphenylphosphine)ethane13, both of which are 

strong donors and have the potential ability to chelate the surface.  

Nuclear magnetic resonance (NMR) spectroscopy can distinguish ligands bound to the 

nanocrystal surface from those freely diffusing in solution. Surface bound ligands display broad 
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spectral linewidths and are typically downfield of the signals from “free” ligands. Particularly for 

anionic ligands like alkylphosphonates and carboxylates, ligand exchange and binding can be 

assessed quantitatively.17-19 However, NMR spectroscopy has been less useful for studying the 

exchange of neutral two electron donor ligands, e.g. n-alkylamines (L-type ligands)20-22 because 

they undergo rapid self-exchange that causes coalescence of signals from the free and bound 

forms.23-24  

We recently reported the synthesis of CdSe nanocrystals with both tri-n-butylphosphine (Bu3P) 

and tri-n-butylphosphonium chloride ([Bu3P–H+][Cl-]) ligands (CdSe–CdCl2/Bu3P/[Bu3P–

H]+[Cl]-). These chloride terminated nanocrystals could be prepared from carboxylate terminated 

CdSe nanocrystals (CdSe–Cd(O2CR)2) and chlorotrimethylsilane (Me3SiCl).25 At room 

temperature the exchange of the phosphine ligands is slow and distinct 31P NMR signals for bound 

and free Bu3P are observed. Moreover, displacement of the phosphine ligands could be monitored 

with 31P NMR spectroscopy in situ. This controlled ligand exchange reactivity presents the 

opportunity to directly study the stereoelectronic factors that control the surface binding affinity of 

L-type ligands.  

 

Results  

To simplify our study, we first eliminate the oleic acid impurity that produces [Bu3P–H+][Cl-] 

by pretreatment of the nanocrystals with Me2Cd according to a previously described method 

(Scheme 1).15 After removing the solvent and any unreacted Me2Cd, the carboxylate ligands were 

cleaved using Me3SiCl and Bu3P according to our previous study.26 Unlike CdSe–

CdCl2/Bu3P/[Bu3P–H]+[Cl]-, which precipitates from pentane solution, CdSe–CdCl2/Bu3P is 

soluble in pentane and precipitates from methyl acetate or acetonitrile. A 31P NMR spectrum 

verifies that the isolated nanocrystals are free from [Bu3P–H]+[Cl]- (δ = 11 ppm), and UV-Visible 
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absorption spectroscopy shows that the nanocrystal retain the characteristic absorption spectrum of 

colloidal CdSe nanocrystals without significant changes to the nanocrystal size or size distribution 

(Figure S1).  

 

Scheme 1. Synthesis of CdSe-CdCl2/Bu3P free of [Bu3PH+][Cl-]. 

To estimate the relative binding affinity of several L-type ligands, we monitored their ability to 

displace Bu3P from CdSe–CdCl2/Bu3P (Figures S2 – S12, Table S4). For example, as n-

octylamine is added (0 – 10 equiv./PBu3), surface bound Bu3P (δ = -11 ppm) is liberated producing 

the sharp signal of the “free” phosphine (δ = -31 ppm) (Figure 1).27 A broadened and shifted 31P 

NMR signal is observed when 1 – 2.5 equiv. of amine are added, suggesting that free Bu3P 

undergoes dynamic exchange with a fraction of the surface bound ligands under these conditions. 

The displacement of surface bound phosphines does not influence the nanocrystal size or size 

distribution, as described previously. 25 

The relative surface binding affinities of the amines could be ranked by comparing the amount 

of Bu3P displaced in the presence of tri-n-alkyl, di-n-alkyl, and n-alkylamines (1 or 50 equiv. / 

Bu3P). One equiv. of n-butylamine more effectively displaces Bu3P than does di-n-butylamine 

which is more effective than tri-n-butylamine. Amines with methyl substituents displace more 

Bu3P than amines with long chain substituents (e.g. affinity of Me2NBu > Bu3N). These substituent 

effects do not follow the gas phase proton affinities nor the pKa of the conjugate acids (pKa(R3N–

H+)), which are within 1 pKa unit in water.28 Instead they can be explained by the relative steric 

bulk of the incoming ligand, with the bulkiest ligands being the weakest competitors.  

O2CR

CdO2CR

1) CdMe2, 12 hrs.
2) Me3SiCl, PBu3, 24 hrs.

PBu3

CdCl2

Cd SeCdSe
O2CR = oleate

H–O2CR + Me3Si–O2CR 

+ Me3Si–Me
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Figure 1. (A) Ligand exchange equilibrium between CdSe-CdCl2/Bu3P and free Bu3P. (B) A 
series of 31P NMR spectra of CdSe-CdCl2/Bu3P and increasing equivalents of added n-octylamine 
in benzene-d6. Prior to addition of n-octylamine, the 31P NMR spectrum shows resonances for 
Bu3P bound to the CdSe nanocrystal (δ = -13 ppm) and phosphine complexes of CdCl2 (δ = -9 
ppm) that are associated with the nanocrystal (see ref 25). Free Bu3P appears at δ = -32 ppm. We 
assign the broadened resonance that shifts down field from free Bu3P to a population of ligands in 
rapid dynamic exchange with the surface. 

 

Similar effects were observed upon titration with tri-n-alkyphosphines, although in this case the 

surface coverage of both the incoming and outgoing ligands could be extracted from the 31P NMR 

spectrum. In the presence of 1 equiv. of triethylphosphine (Et3P, δ = -19 ppm), Bu3P is displaced 

from the surface and the broad signal from bound phosphines shifts downfield by 5 – 10 ppm 

(Figure 2). Although the signals of bound Bu3P and Et3P overlap, their surface coverages may be 

determined from the amount of Bu3P and Et3P that remain free. Interestingly, in the presence of 

Et3P (1 equiv.), the total number of bound phosphines increases from 30 ± 5 Bu3P/nanocrystal to 
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36 ± 8 R3P/nanocrystal (23 ± 5 Et3P and 13 ± 3 Bu3P). At higher concentrations of Et3P more Bu3P 

is displaced, however the nanocrystals begin to precipitate from the solution. Similar results are 

obtained with trimethylphosphine (Me3P): in the presence of 1 equiv. of Me3P a higher total 

phosphine coverage is achieved (45 ± 8 phosphines per nanocrystal). On the other hand, the 

coverage does not increase when Bu3P is added, implying that the smaller phosphines can access a 

greater number of surface sites. We conclude that the smaller phosphines have a greater affinity 

for the nanocrystal. 

 

Figure 2. 31P NMR spectra of CdSe–CdCl2/Bu3P (0.5 mM nanocrystals, 14.8 mM Bu3P, black, 
bottom) with triethylphosphine (δ = -19 ppm) at 1:1 equivalents (blue) and 50:1 equivalents (red). 
The new broad resonance at δ = -6 ppm is Et3P bound to the nanocrystal. 

 

We then explored the binding of P,P-dimethyl-n-octylphosphine (Me2P-n-octyl) with the 

hypothesis that this ligand would provide a stable colloidal dispersion and allow us to measure the 

coverage of a pure Me2P-n-octyl ligand shell. Indeed, stable dispersions of Me2P-n-octyl bound 

nanocrystals (CdSe–CdCl2/Me2P-n-octyl) could be synthesized by completely displacing Bu3P 

ligands from CdSe–CdCl2/Bu3P or upon reaction of CdSe–Cd(O2CR)2, with Me2P-n-octyl and 

Me3SiCl (see Supporting Information, Figure S13). By either method, the Me2P-n-octyl surface 

coverage is 2.0 – 2.2 nm-2 (90 ± 15 Me2P-n-octyl per nanocrystal, d = 3.8 nm, see Supporting 

Information), ~4x greater than the coverage of Bu3P ligands. From the saturation coverages of Bu3P 
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and Me2P-n-octyl, a competitive binding model could be used to measure the relative affinity (see 

Supporting Information).29 The ratio of binding constants (Krel = K1/K2) for the incoming (L1) and 

outgoing (L2) ligand can be calculated from the molar concentration of the free ligands ([Li]) and 

their fractional coverage (𝜃i) in a solution of both competing ligands according to Equation 1.  

𝐾#$% =
'(
')
= *(	[-)]

*)	[-(]
             (1) 

The 𝜃i of Me2P-n-octyl and Bu3P is calculated by dividing the coverage of each phosphine in the 

mixture by the saturation coverage of the pure ligand shell. From this analysis Me2P-n-octyl has a 

surface binding affinity ~3x greater than Bu3P. Because Ki is normalized by the number of binding 

sites accessible to each ligand, the difference in affinity reflects the binding characteristics on a per 

ligand basis. Thus, the 3x greater affinity of Me2P-n-octyl may be attributed to a weaker repulsive 

interaction of its substituents with neighboring phosphines or the nanocrystal surface. On the other 

hand, Eq. 1 assumes that a single binding constant applies at all coverages. If the acidity of the 

nanocrystal decreases as the number of surface bound ligands grows the binding affinity will 

decrease. This effect can influence the magnitude of intermediate coverages obtained in equimolar 

solutions of Me2P-n-octyl and Bu3P will increase the affinity of Me2P-n-octyl and reduce the 

affinity of Bu3P relative to their affinity at saturation. More detailed investigations of the binding 

energy as a function of the coverage and ligand structure are required to assess these issues. 

A wide range of ligands were surveyed using the approaches described above. The relative 

affinity of the tri-n-alkylphosphines is Me3P > Me2P-n-octyl > Et3P > Bu3P while the affinity of 

the amine ligands is H2NBu > Bu3P ~ HNBu2 > Me2NBu > NBu3. Previous studies that used the 

photoluminescence intensity from single crystals12, 30 and colloidal nanocrystals14 to monitor ligand 

binding report similar trends in the affinity of mono-, di-, and trisubstituted n-alkylamines despite 

the fact that they do not deconvolute variations in the ligand coverage from the relative binding 
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affinities. In addition to the ligands described above, a variety of bulky and/or electron deficient 

ligands displace little or no Bu3P from the nanocrystals even at high concentration, including 

triethylphosphite, triphenylphosphine, diphenylphosphine, tetradecanol, furan, thiophene, 

tetrahydrofuran, diethylether, n-pentylisocyanide, and di-n-butylsulfide. 

To assess the effect of ligand basicity and structure on the displacement reactivity, the pKa of 

the conjugate acid and the Tolmann cone angle of each ligand are plotted in Figure 3.31-32 Ligands 

that effectively compete with Bu3P for the nanocrystal surface are highlighted. Both a small cone 

angle and a high ligand basicity are key to a high affinity for the surface. Sterically unencumbered 

ligands with low basicity, such as n-pentylisocyanide (pKa(R–NºC–H+) = 0.86, H2O, R = 

cyclohexyl)33 are weak competitors. However, a weak basicity is partly overcome if the donor atom 

is soft, as in the case of tetrahydrothiophene (pKa(Et2S–H+) = -6.7, H2O)34, which displaces Bu3P 

at high concentration. The special affinity of soft ligands helps explain the poor binding of the hard 

Bu3N ligand (pKa(Et3N–H+) = 10.7, H2O)34, which is a stronger Brønsted base than its isostructural 

phosphine (pKa(Bu3P–H+) = 8.4, H2O)32. Bu3N also has a greater cone angle than Bu3P, owing to 

the shorter M–N bond and the larger C–E–C angle, which increases its steric profile. Thus, soft, 

basic ligands with a small steric profile bind with the greatest affinity. 
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Figure 3. (left) pKa versus Tolmann cone angles for amines and phosphines in the ligand binding 
series. The green area contains strong binders. (right, top) Relative binding affinities of all 
molecules studied, with molecules of greatest affinity on the right. Molecules in brown do not 
support stable colloidal dispersion on their own. (right, bottom) Molecules that do not displace 
significant quantities of Bu3P at high concentration.  In all cases, R = n-alkyl. 
 

Pyridine and tri-n-octylphosphine oxide (TOPO) have been reported to stabilize nanoparticle 

dispersions, although recent studies argue otherwise.35-38 To shed light on the issue we studied the 

displacement of Bu3P from CdSe–CdCl2/Bu3P in pyridine and TOPO solution. Despite its 

moderate basicity, pyridine (pKa(pyridine–H+) = 5.2, H2O)39 effectively displaces the much more 

basic and soft Bu3P donor ligand. In the presence of 1 equiv. of pyridine, the nanocrystals begin to 

precipitate. However, 1 equiv. of 4-ethylpyridine displaces 30% of the Bu3P and maintains a stable 

dispersion. Higher concentrations of 4-ethylpyridine also induce precipitation. Similar results are 

observed with 1-n-butylimidazole, which outcompetes Bu3P for the nanocrystal surface and 

displaces a greater quantity of Bu3P than does pyridine, consistent with its greater basicity 

(pKa(imidazole–H+) = 7.0, H2O) and small steric profile. TOPO, on the other hand, does not 

displace Bu3P, even at high concentrations (0.3 M). Moreover, the reaction of CdSe-Cd(O2CR)2 

with Me3SiCl in pyridine or TOPO solution caused precipitation of the nanocrystals. We conclude 

that pyridine and 1-butylimidazole bind the nanocrystal surface effectively but do not stabilize a 

colloidal dispersion, even in a neat solution of the ligand. On the other hand, TOPO does not 

compete with Bu3P, nor does it stabilize a colloidal dispersion.  

The relatively high affinity of the pyridine and imidazole ligands, and the influence of steric 

properties on the coverage of alkylphosphines and amines suggests that the competitive binding 

equilibrium is determined by the number of each competitor that binds as well as the relative 

surface–ligand bond dissociation energy (BDE(S–L)). The surface coverages vary widely 

depending on the steric properties of the ligand. The coverage of phosphines increases 4-fold on 
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exchanging Bu3P for Me2P-n-octyl (0.5 nm-2 vs. 2 nm-2). These coverages are somewhat insensitive 

to the solution concentration and appear near the maximum coverages for these ligands. n-

Alkylamines, on the other hand, display concentration dependent binding - poor colloidal stability 

is observed as the amine concentration is lowered - and their rapid degenerate exchange prevents 

the coverage from being directly measured in situ using 1H NMR spectroscopy. A lower bound for 

their saturation coverage can be estimated by precipitating the nanocrysatls from concentrated 

amine solution, drying them under vacuum, and measuring the amine content of the isolated 

product (see Supporting Information). A range of coverages determined this way suggest the 

saturation coverage of n-alkylamines is greater than > 3 nm-2. This is similar to typical coverages 

of n-alkylcarboxylates following careful purification (3 – 3.5 carboxylates/nm-2).15-16, 25 Thus, 

ligands with a smaller effective cross-sectional area can form a greater number of surface ligand 

bonds and, in principle, compensate for a weak surface–ligand interaction. This helps explain the 

affinity of relatively weak donors such as pyridine and n-pentylisocyanide. On the contrary, strong 

donors, such as trialkylamines and N-heterocylic carbenes (NHCs) (pKa(NHC–H+) ~ 23)40 may 

form a strong surface–ligand bond, but achieve low coverages when their substituents are bulky 

(e.g. mesityl). Nonetheless, NHCs form especially stable monolayers on gold surfaces that are 

resistant to displacement by sterically unencumbered thiols.41 In all cases, to understand the binding 

affinity one must assess both the saturation coverage as well as the BDE(S–L). 

The precipitation caused by displacing Bu3P with pyridine confirms a recent study of 

stoichiometric CdSe nanocrystals bound only by n-alkylamine ligands.15 That study suggested that 

previously reported dispersions stabilized by pyridine are aided by acidic impurities that contribute 

electrostatic stabilization.10, 42-48 The same study also reported that stoichiometric CdSe 

nanocrystals stabilized by Bu3P alone (CdSe–Bu3P) were unstable to aggregation, which is at odds 

with the stability of CdSe–CdCl2/Bu3P herein.15, 25 Interestingly, adding CdCl2 to partially 
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aggregated CdSe–Bu3P15 forms a clear, stable dispersion that is indistinguishable from the CdSe–

CdCl2/Bu3P used in this study (See Supporting Information). The mechanism by which CdCl2 

improves the colloidal stability is unclear and the subject of current investigations in our lab.  

Given the high binding affinities and increased surface coverages of sterically unencumbered 

ligands observed above, we sought to stabilize stoichiometric CdSe nanocrystals in the absence of 

CdCl2 using P,P-dimethyl-n-octadecylphosphine (Me2P-n-octadecyl). CdSe–Me2P-n-octadecyl 

was prepared from CdSe–NH2Bu15 via ligand exchange. Addition of Me2P-n-octadecyl to CdSe–

NH2Bu in C6D6 does not displace n-butylamine, as expected from the relative binding affinities 

measured above (Figure 3), until the primary amine is removed under vacuum with heat (See 

Supporting Information). Binding of the Me2P-n-octadecyl ligand can be monitored by the 

appearance of a broad 31P NMR resonance (δ = -38 ppm, Δδ = 15 – 20 ppm) that increases in 

intensity as the amine ligands are desorbed. Following complete removal of NH2Bu, stable 

colloidal dispersions are obtained. The Me2P-n-octadecyl coverage reaches 2 nm-2, similar to the 

coverage of phosphine ligands in CdSe–CdCl2/Me2P-n-octyl. We conclude that the higher ligand 

coverage and the long n-octadecyl chain provide greater colloidal stability to CdSe–Me2P-n-

octadecyl compared to CdSe–Bu3P.  

Interestingly, Me2P–n-octadecyl undergoes slow degenerate ligand exchange with CdSe–

Me2P-n-octadecyl on the NMR timescale. Even at temperatures as high as 390 K, the average 

Me2P–n-octadecyl exchange rate constant is lower than 10-3 s-1 (see Supporting Information). This 

suggests that phosphines form stronger surface ligand bonds than n-alkylamines, which undergo 

fast degenerate exchange on the 1H NMR timescale at room temperature.23-24 Similarly, phosphines 

are known to bind aqueous Cd2+ more tightly than isostructural amines.49-50 Thus, we tentatively 

conclude that tri-n-alkylphosphine ligands have a greater BDE(S–L) than primary n-alkylamine 

ligands, yet their affinity for the surface is lower because primary n-alkylamines achieve higher 
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surface coverages, as depicted in the table of contents graphic. To properly assess their relative 

BDE(S–L), it will be important to measure the relative binding of these ligands at the same surface 

coverage, and ideally at multiple coverages for the reasons related to the surface coverage 

dependent affinity discussed above. 

In all cases described herein, the surface ligand coverages are significantly lower than the aerial 

density of atoms on the CdSe surface (5.4 – 6.2 nm-2) and the packing density of crystalline alkane 

chains (4.9 nm-2). These low coverages suggest that repulsive interactions between ligands can 

block adjacent binding sites and many binding sites will remain uncoordinated. While surface 

coverages higher than the areal density of crystalline alkanes or binding sites on the crystal surface 

are sometimes reported, these values may reflect the formation of multilayers or the presence of 

free ligands, rather than the number of surface–ligand bonds.51 On the other hand, the highly curved 

surfaces of very small nanocrystals can accommodate a greater number of surface ligands. For 

example, pyramidal CdSe clusters with 1.7 – 2.5 nm edge lengths have 1.5 – 2x increased volume 

available for their ligands compared to a flat facet and one benzoate or n-butylamine ligand can 

bind every available coordination site.52 These high ligand coverages are thought to stabilize their 

so called “magic” sizes. However, as the particle size increases and the curvature drops, the packing 

of ligands must fall below that of crystalline n-alkanes (4.9 nm-2). Thus, the high atom density of 

surfaces causes steric interactions between ligands that reduces their packing on the nanocrystal 

surface and lowers their surface binding affinity.  

Self-assembled monolayers (SAMs) pack with aerial densities (4 – 4.6 nm-2) just below those 

of crystalline alkanes.53-56 On the Au(111) surface, thiolate SAMs assume high symmetry, 

crystalline structures that are commensurate with the underlying lattice, but much less densely 

packed (4.6 nm-2) than the surface atoms (12 atoms nm-2). Van der Waals interactions between 

chains within the SAM strengthen the binding and increase as the chain length grows.57-58 However, 
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the Si(111) surface has an aerial density of atop sites (7.8 nm-2) that is greater than the maximum 

packing density of alkane chains. Each surface atom on Si(111) presents a single dangling bond 

that can be terminated by a Si–H or Si–Me bond, however larger functional groups, such as ethyl, 

do not form a complete monolayer.59 Moreover, theoretical and experimental work has shown that 

the rotation of methyl groups on Si(111) is hindered by steric interactions with neighboring 

methyls.60 In both cases interactions between neighboring ligands dictate the coverage and 

structure of these surface layers.  

On the surfaces of II-VI and III-V nanocrystals, the areal densities of surface atoms are equal to 

or lower than Si(111), but still greater than the crystalline alkanes in most cases. Even straight 

chain ligands such as NH2Bu will not bind every available site as the surfaces grow beyond a few 

nanometers. In addition, amine and phosphine ligands typically form a single dative bond while 

the [100] surface presents two dangling bonds per surface atom. Thus, the surfaces of colloidal 

nanocrystals will contain many vacant coordination sites if organic ligands are the exclusive 

surface binding agent. Nanocrystals stabilized solely by sterically bulky ligands (e.g. Bu3P), can, 

therefore, be expected to contain even greater numbers of vacant coordination sties. As a result, 

there is a significant driving force to displace large bulky ligands and increase the number of 

surface ligand bonds. Thus, the steric size of the ligand strongly influences its ligand binding 

affinity. 

 

Conclusion  

The stereoelectronic properties of amines and phosphines were surveyed using competitive 

binding experiments. Soft, electron rich donor ligands bind the surface most tightly making 

phosphines a better ligand than their isostructural amines. However, the surface coverage of ligands 

is very sensitive to their steric bulk with coverages varying by 6x or more depending on the ligand 
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structure. The large difference in the number of surface–ligand bonds has a significant impact on 

the competitive binding equilibrium, such that analyzing donor strength of the ligand alone is not 

sufficient to determine which ligands have a high binding affinity. Hence a strong Lewis base may 

therefore be readily displaced from the surface by weaker Lewis base with a smaller steric profile. 

The displacement of Bu3P by pyridine, a much harder and weaker Lewis base, is a good example 

of this reactivity. The impact of steric bulk on the coverage and competitive binding is expected 

for all the binary semiconductor crystals whose surface atoms are more densely packed than 

crystalline alkane chains, particularly as the nanocrystal grows larger than a few nm. 
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Methods 

General Considerations. All manipulations were performed using standard Schlenk techniques or 
within a nitrogen atmosphere glovebox unless otherwise indicated. Pentane, toluene, methyl 
acetate, diethyl ether and tetrahydrofuran were purchased anhydrous from Sigma Aldrich and 
shaken over activated alumina, filtered, and stored over 4 Å molecular sieves in an inert atmosphere 
glovebox at least 24 h prior to use. Diphenylphosphine (99%), N,N,′N,′N-tetramethylethylene-1,2-
diamine (TMEDA) (98%), triethylphosphite (99%), tri-n-octylphosphine (97%), triethylphosphine 
(99%), and tri-n-butylphosphine (99%) were purchased from Strem and used without further 
purification. CdMe2 was purchased from Strem and vacuum distilled prior to use. CAUTION: 
Dimethylcadmium is extremely toxic and because of its volatility and air-sensitivity should only be 
handled by a highly trained and skilled scientist. N,N-Dimethylbutylamine (98%), furan (99%), 
thiophene (98%), n-butylamine (98%), di-n-butylamine (98%), trimethylphosphine (99%), , n-
pentylisocyanide, di-n-butylsulifide (98%), trichloromethylsilane (98%), tri-n-butylamine (99%), 
n-octylamine (99%), benzene-d6 (99.9%) and pyridine (99.5%) were purchased from Sigma 
Aldrich and dried over CaH2, distilled, and stored in a nitrogen glovebox. Toluene-d8 was 
purchased from Cambridge Isotopes and dried over CaH2, distilled, and stored in a nitrogen 
glovebox. Tri-n-octylphosphine oxide (99%) was purchased from Sigma Aldrich and recrystallized 
from acetonitrile as reported previously.(34)   

CdSe–Cd(O2CR)2. Carboxylate terminated CdSe nanocrystals (CdSe–Cd(O2CR)2) are 
synthesized and treated with Me2Cd to remove acidic impurities as previously described.61  

CdSe–CdCl2/Bu3P. All manipulations are conducted on a Schlenk line at room temperature. In a 
typical synthesis, a benzene-d6 stock solution of CdSe–Cd(O2CR)2 (1.0 ml, 0.5 – 2.0 mmolar 
carboxylate, [CdSe] = 1.6 – 6.5 mmolar, [nanocrystal] = 4 – 16 µmolar) was transferred to a 50 ml 
Schlenk tube with a magnetic stir bar. The solution was diluted to a total volume of 5 ml with 
toluene to which Bu3P (0.506 g, 0.624 ml, 2.5 mmol) was added. Me3Si–Cl (6.0 – 24 mmol, 12 
equiv.) was added and the solution stirred for 24 hours. After this time, the volatiles were removed 
under vacuum and the red solid dissolved in pentane (5 ml) and a methyl acetate was added to 
precipitate the nanocrystals, which were separated by centrifugation (7000 RPM for 5 minutes). 
This process was repeated twice more, after which the red powder was dried overnight under 
vacuum. The nanocrystals were dispersed in benzene-d6 to a CdSe concentration of 0.5 – 1.0 M, as 
described previously.16 

Competitive Displacement of Bu3P from CdSe–CdCl2/Bu3P. Benzene-d6 stock solutions of 
various competitor ligands are prepared in a nitrogen filled glove box by diluting the ligand (0.9 
mmole) with benzene-d6 (1 ml). Using a 25 µl syringe, 10 µl of this stock solution (9 µmoles of 
ligand) is added to a benzene-d6 solution of CdSe-CdCl2/Bu3P (600 µl, 15 mM in Bu3P, 0.6 mM 
in nanocrystal) in a J-young NMR tube to form an equimolar solution of the added ligand and Bu3P. 
31P{1H} and 1H NMR spectra are acquired within 1 hour (31P{1H}: 2 sec delay with 0.1 sec 
acquisition, 800 scans; 1H: 30 sec delay with 5 sec acquisition, 16 scans). The J-young tube is then 
transferred to a nitrogen filled glove box where the appropriate mass of neat ligand is added to 
bring the total concentration of ligand to 0.75 M (50 equiv.). The J-young tube is then sealed and 
31P{1H} and 1H NMR spectra are acquired as described above. In some cases the procedure is 
reapeated to bring the concentration of competitor ligand to 1.5 M (100 equiv.).  
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P,P-Dimethyl-n-octylphosphine. P,P-dimethyl-n-octylphosphine was prepared on 19.7 mmole 
scale from n-octylmagnesium bromide and chlorodimethylphosphine as previously described.62 
31P{1H} NMR (C6D6, 162 MHz):  δ = -55 ppm, (chloroform-d, 162 MHz): d = -51 ppm. 1H NMR 
(chloroform-d, 400 MHz): d = 0.89 (d, 6H, -CH3), 0.91 (t, 3H, -CH3) 1.2-1.6 (b, 12H, -CH2), 1.59 
(m, 2H, β-CH2), 1.98 (m, 2H, -PCH2). 31P{1H} NMR (s). 

Synthesis of CdSe–CdCl2/Me2P–n-octyl. All manipulations were conducted on a Schlenk line at 
room temperature. In a typical synthesis, a benzene-d6 stock solution of CdSe–Cd(O2CR)2 (1.0 
ml, 0.5–2.0 mmol ligand) with a known carboxylate concentration was transferred to a 50 ml 
Schlenk tube with a magnetic stir bar. The solution was diluted to a total volume of 5 ml with 
toluene to which Me2P-n-octyl (0.438 g, 2.5 mmol) was added. Me3Si–Cl (0.651 – 2.607 g, 6.0 – 
24 mmol, 12 equiv.) was added and the solution stirred for 24 hours. After this time, the volatiles 
were distilled off under vacuum and the red solid dissolved in toluene (5 ml) and methyl acetate 
was added to precipitate the nanocrystals, which were separated by centrifugation (7000 RPM for 
5 minutes). This process was repeated twice more, after which the red powder was dried overnight 
under vacuum. The nanocrystals were diluted in toluene-d8 to [nanocrystal] = 0.5 – 1.0 mM and 
analyzed 31P{1H} and 1H NMR spectroscopies.  

Supporting Information 

Variable temperature NMR spectroscopy of CdSe–CdCl2/Me2P–n-octyl, the synthesis of CdSe–
CdCl2/PBu3 from CdSe–NH2Bu, the synthesis of Me2P–n-octadecylphosphine and the synthesis 
of CdSe–Me2P–n-octadecylphosphine are described in the supporting information.   
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