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Abstract: We report the computer-aided design, chemical synthesis, 1501
and biological evaluation of a novel family 6fopioid receptor (DOR) 1001
antagonists containing a 1,2,4-triazole core structure that are structurally 501
distinct from other known opioid receptor active ligands. Among those ol
0 antagonists sharing this core structuBeexhibited strong binding Control ~ DADL  Naloxone Cmpd2  Cmpd8
affinity (Ki = 50 nM) for the DOR and appreciable selectivity fr Figure 2. Up-regulation results of compoun@sand 8.
overu and« opioid receptorsd/u = 80; d/k > 200).

Opioid analgesics are the mainstay for treatment of moderate
to severe pain. Research on opioids and their receptors ha
remained active over the past decadehree opioid receptor
subtypes, designated as«, andgu, have_been identified in the series of high-affinity opioid receptor ligands including the
central nervous system (CNS) and p_erlpﬁéleynd are produqts d-antagonist naltrindolé& This pharmacophore model (Figure
of three distinct and extensively studied genes. Recent evidenc gray) comprised the basic nitrogen atom, the centroid of the
suggests that subtype-selective opioid receptor agonists an%’henol ing (A), and the centroid of the hydrophobic fing (B)
antagonists offer great potential as therapeutic agents devoidvirtual screeni'ng of an in-house database ~af 2 million '

of th? humerous adverse side eﬁ?CtS (?'g" respiratory de.press'qncommercially available small-molecule chemicals was conducted
physical dependence, and gastrointestinal effects) associated WIth

morphine® In particular, o-selective antagonists have been o identify structures matching this three-point pharmacophore.
' e Additional molecular models were devel for a distin ri
shown to modulate the development of toler&fand depen- dditional molecular models were developed for a distinct series

dence on: agonists such as morphiAéo offset the behavioral of DOR-selective agonistéand antagonist8 to demonstrate

ffects of dr fab h Sinad to elicit favorabl the structural requirement farselectivity. Promising chemical
ﬁnricuﬁ:mogﬂzt% r;arl:(jeersnu(;ioi;c:f?ec?; Or? t?\ecotr?erohzng entities were then subjected to filters using an expanded Lipinski
. . L ' rule of five!® hierarchical scheme. The substituted 1,2,4-triazoles
o-selective agonists have been shown to elicit the prototypical

analgesic effects of clinically available opioiti¥hey may also (Figure 1) emerged from this scheme as an interesting core

: ; . . ) . _structural framework for our DOR active agents. In selecting
prowde1 unigue benefits as cardloprotec.tlve and neuroprotectlve(,ippropri‘,i,[e substitution patterns for the 1,2,4-triazole ring to
agent$ and as treatments for depression anq an:iiétﬁ_. . confer ¢ binding affinity and selectivity, we exploited the
In view of their broad range of pharmacological applications, “message-address” concept?! associated with classical mor-

thedé-lselecﬁlve oglp ids tr;]ave attr.actefdhllntrc]a_rest II'T O;(J_r Iaborat?r?/ phine-like opioids. For instance, a sterically bulky group (e.g.,
and elsewhere. Given the paucity of high-quality X-ray crysta tert-butyl) was attached to the B aryl group to mimic the
stru_cture data for GPC.RS such as the opioid receptor, our CIm-:"‘address” in our 1,2,4-triazoles. Several di- and trisubstituted
design strategy has r_e_lled on ligand-based molecular .mOde“ngl,2,4-triazoles (Table 1) were selected for chemical synthesis
approaches. An additional component of our drug discovery and biological evaluation. Structural alignment of naltrindole

nd8in th nformation in its X-r r | str r
* To whom correspondence should be addressed. Phone: 732-235-3234.a d8in the conformation adopted 1 ay crystal structure

paradigm is the proprietary Shape Signatures computational tool
that provides unique capabilities for scaffold hopping in the
Search for new lead compountfs>

A three-point pharmacophore was extracted by overlaying a

Fax: 732-235-3475. E-mail: welshwj@umdnj.edu. reveals good overlqp betwef_en tteet-buty! group of8 and th_e
* University of Medicine and Dentistry of New Jersey and UMDNJ O “address” of naltrindole (Figure 2, Supporting Information).
Informatics Institute. _ Three separate reaction schemes were developed for the
York'?rﬁf(e%ggg.ress' Intra-Cellular Therapies, Inc., 3960 Broadway, New o ihasis of the 1,2,4-triazoles (Scheme 1) with thioamides as
Il University of Missour-St. Louis. key intermediates. In most cases, thioamides were synthesized
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Table 1. Structures and Opioid Receptor Binding Affinities for Substituted 1,2,4-Triazoles

% inhibition? Ki (nM)P selectivity ratio
compd R R> Rs o] u K o u K Olu olk
1 3-OCHs 3-tert-butyl H 31 11 5 >10000 >10000 >10000 na
2 3-OH 3tert-butyl H 91 78 66 230 850 1500 3.70 6.52
3 3-OCHs 4-tert-butyl H 8 9 8 >10000 >10000 >10000 na
4 3-OH 41ert-butyl H 54 16 16 ~10000 >10000 >10000 na
5 3-OH 3-phenyl H 84 84 42 140 1000 >10000 7.14 >71.4
6 3-OH 4-phenyl H 75 60 46 1500 >10000 >10000 >6.66 >6.66
7 3-OH 3,4-(CH=CH), H 68 48 27 2100 >10000 >10000 >4.76 >4.76
8 3-OH 4+ert-butyl N(CHg). 94 32 6 50 4000 >10000 80 >200
9 3-OCHs 4-tert-butyl N(CHg)2 28 50 3 >10000 >10000 >10000 na
10 3-OH 3tert-butyl N(CHg)2 76 19 6 1050 >10000 >10000 >9.5 >9.5
11 3-OH 3-phenyl N(CH), 86 23 8 150 >10000 >10000 >66.6  >66.6
12 3-OH 4-phenyl N(CH), 82 15 11 130 >10000 >10000 >76.9  >76.9
13 3-OH 3,4-(CH=CH), N(CHs)2 68 48 27 480 >10000 >10000 >20.8 >20.8
14 4-OH 41ert-butyl N(CHg)2 27 8 21 >10000 >10000 >10000 na
15 3-OH 4+ert-butyl N(CH,CHjy),NCHjz 18 5 12 >10000 >10000 >10000 na
16 3-OH 3+tert-butyl CH;N(CH3)2 65 27 10 2600 >10000 >10000 >3.86 >3.86
17 3-OH 41ert-butyl CH:N(CHj3)2 88 20 9 460 >10000 >10000 >21.6 >21.6
18 3-OH Atert-butyl (CHp)2N(CHa), 90 23 19 900 >10000 >10000 >11.1  >111

aCompounds, initially screened at 1M, are expressed as percentage inhibition of the reference compound which is normalized to 400%. (
[9-3H]bremazocine was used as the radiolabeled lighhahibitory effect to ()-[9-3H]bremazocine on membranes isolated from HEK 293 cells stably
transfected with moused(andu) or rat () opioid receptorsK; values are the average of two to three independent experiments.

Scheme 1.General Synthesis of Substituted 1,2,4-Triazbles
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aSee Table 1 for examples of R1, R2, and R3. (a) Viehe’s salts, DCM,
room temp, 5 h; (b) BBr3, DCM, room temp, 3 h; (c) trimethyl orthoformate,
HOACc/DMF, room temp, 3 h; (d) Eschenmoser’s salt, DMF,°8) 8 h;
(e) N,N-dimethylaminopropionic acid hydrochloride, DCC, toluene, room
temp; (f) reflux, 8 h.

with excess hydrazine at room temperature. Cyclization of
amidrazones with different reagents led to products with
methoxyl groups at the Rpositions.1—7 were obtained using
trimethyl orthoformate as the cyclization reagé&hivhile 8—15
involved cyclization of amidrazones with phosgeninium salts
(Viehe’s salts), which were easily synthesized from the corre-
sponding amined. Compoundsl6 and 17 were synthesized
from 1 and3, respectively, through reaction with Eschenmoser’s
salt?82° Compoundl8 was prepared directly by condensation
of amidrazone with N,N-dimethylaminopropionic acid hydro-
chloride in the presence of dicyclohexyldiimide (DCC) (Scheme
1). For most of the products, the final step of cleaving methoxyl
groups at R was completed easily by reaction with BBn
dichloromethane. Where hydrolysis of the methoxyl group was
incomplete using the above BBprocedure, excess NaSH was
added to achieve ether cleavage in acceptable yields.
Initially, 1—4 were synthesized to evaluate the feasibility of

Several of the subject compounds (e5.8, 11, 12) exhibited
selectivity for thed overu andk opioid receptors, which concurs
with our initial design strategy to confe¥ selectivity. The
inhibitory activity was much greater at all three opioid receptors
for compounds with R= OH (2 and4) compared with R=
OCH; (1 and 3). In fact, the latter compounds showed very
limited inhibitory activity for any of the opioid receptors even
at 10uM. Comparison of8 and 14 indicates that the binding
affinity for all three opioid receptor subtypes was virtually
abolished when the hydroxyl substituent ati® moved from

the meta to para position on the aromatic ring. Although this
single example precludes making generalizations, the strong
preference for the meta over para phenolic moiety is consistent
with the familiar SAR of morphine-like opioid¥-33

For 1-7, R, substitutions were preferred at the meta position
over the para position (e.di(0) = 230 nM for2 vs ~10 000
nM for 4). For compounds with Rsubstitutions, namel8—17,
the opposite trend was observed in cases exhibiting an ap-
preciable affinity difference (se@® vs 10). Compound8
(Ki(6) = 50 nM), with R, = p-tert-butyl and R = N(CHj),,
yielded the best results overall among this first generation of
triazole-based opioid receptor active agents in ternastmfiding
affinity and subtype selectivity. It is worth noting that introduc-
tion of groups more highly constrained théart-butyl at R
failed to increase binding affinity for thé receptor. For
example, the) binding affinity was poorer fodl, 12 and13
(Ki = 150, 130, and 480 nM, respectively) than ®I(K;
50 nM).

The functional activity of our substituted 1,2,4-triazoles on
the opioid receptors was determined by receptor up-regulation
assays. Incubation of thé opioid receptor with2 and 8
produced a sharp increase in receptor expression, suggesting
that the subject compounds adeopioid antagonists (Figure
2). Interestingly,8 exhibited >3-fold up-regulation of the)
opioid receptor in this assay. The pharmacological significance
of this observation is currently under investigation in our

our approach (Table 1). Radioligand binding assays revealedlaboratory.

that2 binds to all three opioid receptors wikh values of 230
(), 850 (), and 1500 £) nM, respectively. As anticipated, it
exhibited some subtype selectivity for th@veru andx opioid
receptors. Structural analogu&s-(L8) were synthesized in order
to increase the) binding affinity and selectivity (Table 1).

In fact, aN,N-dimethylamino group at Rdid produce a sharp
increase in binding affinity to thé receptor. Compare, for
example, the&;() of 8 (50 nM, R; = N(CHz),) with its simple
homologue4 (~10 000 nM, R = H). One might reasonably
attribute the greater activity & over 4 to the strong basicity
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Table 2. Relative Energies of Protonatib®btained from HF/6-31G**
ab Initio Calculations on CompourtlAssuming Vacuum and Agueous

Conditions
’/\lTNz
A\
\Nf(Nn
"

OH

protonation site vacuuim agueoud
N1 1.07 0.00
N2 0.00 0.25
Na 56.85 53.28
Nsub 25.29 13.30

a|n units of kcal/mol.

of the N atom at R Nevertheless3 is only slightly more basic
than 4 (pKq(pred) = 3.36 vs 2.18}7 Ab initio quantum
mechanical calculations @at the HF/6-31G** level of theory,
in vacuum and aqueous (implicit solvation) conditions, indicated
that the most basic atom is not the N in R N(CHa): (i.e.,
Nsup but rather N or N, in the triazole ring (Table 2). Among
the four N atoms in8, the rank of basicity is N~ N, >
Nsub > Na. These results suggest thaf,Ns less basic than the
triazole-ring atoms Nand N, although it should be restated
that all of the N atoms 18 are weakly basic. It is evident that
the basicity of the N(Ck), group is mitigated by its strong
conjugation with the triazole ring. One might suspect that
disrupting this conjugation by extension of the substituent group
would afford a basic N atom and thereby enhance binding
affinity. However, 17 (R3 = CH:N(CHz3),) and 18 (Rz =
(CHy)2N(CHj3),) showed>6-fold decrease in binding affinity
to the DOR compared witB.

In conclusion, we report here a novel family éfselective
opioid receptor antagonists containing the 1,2,4-triazole core

structure. The subject compounds are chemically and structurally

distinct from the classical opioids such as morphine and other
known small-molecule opioids (e.g+}-4-[()R)-o-((2S 5R)-
4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzW|N-di-

ethylbenzamide (SNCB80)). Moreover, these compounds are
synthetically accessible as pure compounds in high yield and,

uncommon among opioids, lack chiral centers. Compo8nd
the most active among this first generation of substituted 1,2,4-
triazoles, exhibited strong binding affinit)K{ = 50 nM) and
appreciable selectivity (selectivity rati@/u = 80; 6/x > 200)

for the 6 opioid receptor. The weak basicity 8f(pKy(pred)=
3.36) favors the neutral (unprotonated) form under physiological
conditions (pH 7.4). Virtually all known opioids, whether

agonists or antagonists, contain at least one basic N atom. The

only exception to our knowledge is tlheagonist salvinorin A,
a natural compound extracted fréndivinorum34and a series
of cyclic peptides reported by Schiller et3lthat act ag) and

u receptor antagonists. The present compounds thus represent

the first nonpeptidicd-selective opioid antagonists lacking a
basic N atom.
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