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[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-
pyrazole-1-caboxamidine (SLV-319) a potent CB1 receptor
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Abstract—Design, synthesis and conformational analysis of few imidazole and oxazole as bioisosters of 4S-(�)-3-(4-chlorophenyl)-
N-methyl-N 0-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-caboxamidine (SLV-319) 2 is reported. Computer
assisted conformational analysis gave a direct clue for the loss of CB1 antagonistic activity of the ligands without a fine docking
simulation for the homology model.
� 2007 Elsevier Ltd. All rights reserved.
CB1 receptor antagonist is a promising approach to
treat the obesity by reducing appetite and body weight.1

Rimonabant hydrochloride (1) (SR 141716A) (Fig. 1) is
the first therapeutically potent and selective CB1 recep-
tor antagonist, recently approved in Europe as antiobe-
sity drug, which belongs to diaryl pyrazole family.2

Since the discovery of Rimonabant, several classes of
CB1 receptor antagonists with diverse chemical struc-
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tures have been disclosed.3–5 Lange et al. from Solvay
Pharmaceuticals have disclosed the 3,4-diaryl dihydro-
pyrazole 2 (SLV-319) (Fig. 1) as a CB1 antagonist,
which has elicited potent in vitro6 and in vivo7 activities
and are currently in Phase IIB.

Bioisosteric replacement is one of the modest methodolo-
gies to create therapeutically equivalent surrogates. There
are number of reports for the bioisosteric replacement of
pyrazole nucleus of rimonabant 1 by pyrazine,8 imidaz-
ole,9 thiazoles,10 triazoles10 and dihydropyrazoles.11

More recently, we have synthesized several diaryl dihyd-
ropyrazole carboxamide derivatives using bioisosteric
replacement in a rational approach in conjunction with
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Figure 1. Potent CB1 receptor antagonists.

Table 1. In vitro hCB1 functional assay for assessing cAMP activity

for compounds 3–7

Compound Concentration

(lM)

hCB1 (cAMP)a

pmol/lg protein

DMSO 0.04 ± 0.00

Forskolin 10 10.12 ± 0.64

WIN-55212-2 100 1.27 ± 0.04

3 10 0.89 ± 0.07

4 10 0.91 ± 0.19

5 10 1.01 ± 0.17

6 10 0.78 ± 0.05

7 10 0.95 ± 0.08

2 10 4.09 ± 0.27

1 10 8.45 ± 1.30

a Values indicate mean ± SD performed in duplicate and the results

being representative of at least three independent experiments.

Table 2. In vitro hCB1 functional assay for assessing cAMP activity at

lower concentrations of WIN-55212-2 for compounds 3–7

Compound Concentration

(lM)

hCB1 (cAMP)a

pmol/lg protein

DMSO 0.03 ± 0.00

Forskolin 2 1.98 ± 0.23

WIN-55212-2 1 0.69 ± 0.26

3 10 1.22 ± 0.08

4 10 0.94 ± 0.06

5 10 0.55 ± 0.00

6 10 0.60 ± 0.31

7 10 1.3 ± 0.15

a Values indicate mean ± SD performed in duplicate and the results

being representative of at least three independent experiments.
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molecular modeling studies.12 Wherein the optimization
of the diaryl dihydropyrazole-3-carboxamide class of
compounds led to the compound as potent CB1 receptor
antagonist with significant antiobesity effect in animal
model and similar interactions of the diaryl dihydropy-
razole-3-carboxamides have been observed in the homol-
ogy models of CB1 receptor as those with 1 and 2.12

However, no studies have been disclosed towards bio-
isosteric replacement of dihydropyrazole moiety of sul-
fonyl carboxamidine derivative 2 by different
heterocycles.

In continuation of our cannabinoid research,12–17 we se-
lected compound 2 for further modification and the
dihydropyrazole system of 2 was replaced by isosters
such as imidazole and oxazole to afford the compounds
3–7 (Fig. 2).18 Further the compounds 3–7 were studied
for in vitro (Tables 1 and 2), in vivo pharmacological
evaluation in relevant CB1 antagonist models (Table
3) and conformational analyses (Figs. 3 and 4).

The compounds 3–7 have been synthesized as depicted
in Scheme 1. The oxazole ethyl ester derivative 8 and
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Figure 2. Novel Imidazole and Oxazole bioisosters of SLV-319.
corresponding imidazole derivatives were synthesized
as described in the literature.9,10,19 Hence, ethyl ester
derivative 8 was directly converted into amide 9 using
trimethylaluminium and ammonium chloride.20 Amide
derivative 9 was converted to nitrile intermediate 10
O
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Table 3. In vivo efficacy of compounds 3–7 in 5% sucrose solution

intake model in female Zucker fa/fa rats at a single oral dose of 10 mg/

kg

Compound 5% Sucrose solution

intake in 4 h in grama

% Inhibition in intake

of 5% sucrose solution

Control 37.9 ± 3.8

3 32.4* ± 4.7 14.4 ± 6.8

4 37.1 ± 2.9 2.2 ± 8.5

5 35.4 ± 3.2 6.7 ± 7.3

6 36.3 ± 4.1 4.3 ± 12.1

7 37.7 ± 5.2 0.6 ± 14.1

2 23.6* ± 2.7 37.6 ± 5.3

1 24.2* ± 4.2 36.1 ± 10.5

a Values indicate Mean ± SEM for n = 6 rats in 4 h.
* p < 0.05, when compared with the control group, one way ANOVA

followed by Dunnett’s multiple comparison test.
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using oxalyl chloride and dimethyl formamide.21 Ami-
dine 11 was conveniently synthesized by reacting nitrile
derivative 10 and methylamine hydrochloride using tri-
methylaluminium.22 Finally, amidine 11 was reacted
with p-chlorobenzenesulfonylchloride in the presence
Figure 4. (a) Superimposition of molecule 3 (line mode) with 2 (stick mode).

Superimposition of molecule 6 (line mode) with 2 (stick mode).

Figure 3. (a) Energy-minimized structure of compound 2. (b) Energy-min

compound 6.
of triethylamine affording compound 6.23 Employing
the similar set of transformations the compounds 3–5
and 7 were also synthesized.

The bioisosters 3–7 have been synthesized and evaluated
in two CB1 antagonist assays.24,25 There are number of
in vitro assay employed to explore the functionality of
CB1 ligands. The cAMP quantification is one of the
most commonly used methods.26 The in vitro screening
of the compounds 3–7 was done in hCB1 (cAMP)
assay24 and to our surprise, the compounds 3–7 did
not response significantly in the forskolin-stimulated
cAMP assay as compared to positive controls 1 and 2
(Table 1). Unlike 1 and 2 none of the compounds res-
cued 100 lM WIN-55212-2 mediated decrease of for-
skolin induced cyclic AMP generation. We further
tested the antagonism of the compounds against 1 lM
WIN-55212-2, where compounds 3 and 7 showed partial
reversal of cyclic AMP decrease induced by 1 lM of the
agonist (Table 2). In order to confirm this loss of respon-
siveness as CB1 antagonist, the same set of molecules
was evaluated against appetite suppression model in
(b) Superimposition of molecule 5 (line mode) with 2 (stick mode). (c)

imized structure of compound 3. (c) Energy minimized structure of
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Scheme 1. Reagents and conditions: (a) Al(Me)3 (2.0 M sol in toluene), NH4Cl, C6H6, 78–80 �C, 2 h, 68%; (b) (COCl)2, DMF, 0–25 �C, 1 h, 77%; (c)

Al(Me)3 (2.0 M sol in toluene), CH3NH2ÆHCl, C7H8, 108–110 �C, 2 h, 90%; (d) 4-ClC6H4SO2Cl, Ch2Cl2, NEt3, 0–5 �C, 16 h, 45%.
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rodents. The CB1 receptor antagonist markedly and
selectively reduces sucrose feeding and drinking in ro-
dents and in obese Zucker fa/fa rats,27,28 thus the
in vivo effects of the compounds 3–7 were evaluated in
5% sucrose solution intake model in female Zucker fa/
fa rats25 (Table 3). Notably, all the compounds 3–7
showed no suppression of sucrose solution consumption
while compounds 1 and 2 induced a significant reduc-
tion in the solution intake. The in vitro and in vivo re-
sults prompted us to further verify the loss in CB1
receptor antagonistic activity. The computer assisted
conformational analysis of the compounds 3–7 was car-
ried out to establish the correlation between the orienta-
tion and biological activity of the molecules.

From the energy-minimized29 structures of compounds
2, imidazole isoster 3 and oxazole isoster 6, large differ-
ences have been observed in the orientation of com-
pounds 3 and 6 as compared to compound 2 (Fig. 3),
which may be attributed for the loss in CB1 receptor
antagonistic activity.

A general CB1 inverse agonist pharmacophore model re-
quired for crucial receptor–ligand interaction has been
proposed on the basis of the CB1 receptor modeling.4

Furthermore; conformational analysis29,30 was carried
out on compounds 2, 3, 5 and 6. As the position of nitro-
gen changed, substitution on the central five membered
ring also changed because of the change in the hybridiza-
tion state. As can be seen from Figure 4, orientation of the
p-chlorophenyl in the ligand 3 has become perpendicular
to the p-chlorophenyl in 2. There is also a rotation of the
phenyl ring in the 4th position of the pyrazole ring. Simi-
lar conformational changes have been observed in the
compound 6. As in both compounds 3 and 6, it was ob-
served that the change in nitrogen position altered the po-
sition of phenyl ring and p-chlorophenyl substituent, this
could well provide the explanation for bioisosters 3–7 did
not show CB1 antagonistic activity.

In summary, the bioisosteric replacement of dihydropy-
razole nucleus of compound 2 by imidazole and oxazole
resulted in the complete loss of required conformation
of the molecules, which is suggested to be necessary
for CB1 receptor binding. Thus, bioisosters 3–7 did
not show any pharmacological effect as CB1 receptor
antagonist. In the absence of crystallized receptor–li-
gand complexes and without performing the molecular
modeling in the homology model our conformational
analysis still gave valuable information on the recep-
tor–ligand interactions.
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