Novel derivatives of 3-alkyl-1,5-diaryl-1*H*-1,2,4-triazoles and their pharmacological evaluation as CB₁ cannabinoid ligands

Laura Hernandez-Folgado¹, Pilar Goya¹, Jordi Frigola², María Rosa Cuberes², Alberto Dordal², Jörg Holenz², Nadine Jagerovic¹

¹ Instituto de Química Médica (CSIC), Juan de la Cierva, Madrid, Spain

² Laboratorios del Dr. Esteve S. A., Barcelona, Spain

Received 7 September 2007; Accepted 10 January 2008; Published 18 February 2008 © Springer-Verlag 2008

Abstract In a previous study, we have identified 3alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type-1 (CB₁) receptor antagonists. However, the synthesis yields for the ligands were low. Here we present an alternative synthesis pathway with improved yields. In addition, we have synthezised new structural derivatives and studied their results in competitive radioligand binding assays for cannabinoid receptors.

Keywords Cannabinoid; 1,2,4-Triazole; Binding.

Introduction

Due to the potential therapeutic effects [1] of cannabinoids that include antiemetic, analgesic, antiglaucoma, obesity treatment, alcoholism, bronchodilatation, and inflammation, a considerable number of cannabinoid ligands have been reported in recent years. Their effects are mediated through cannabinoid receptors [2–4]. So far two types of cannabinoid receptors have been cloned, namely the cannabinoid type-1 (CB₁) and cannabinoid type-2 (CB₂), which belong to the class of G-protein coupled receptors. The CB₁ receptors are spread throughout the body and the CB₂ receptors mainly in the immune system. Ligands with known affinity for the cannabinoid receptors belong to several structural classes. Pyrazoles and aminoalkylindoles (*AAIs*) are two of the most well known classes of heterocyclic ligands for the cannabinoid receptors [5–8].

In our early research program, it was found that the triazole motif exhibits cannabinoid activity [9]. We reported that 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole (**11**) showed cannabinoid activity in *in vivo* assays. This prompted us to extend our previous investigation by synthesizing a series of 1,2,4-triazoles in order to study the influence of variable aliphatic side chains and aryl substituents. However, the synthesis route that was previously followed afforded unsatisfactory yields. 1,5-Diaryl-3-alkyl-1H-1,2,4-triazoles were synthesized condensing the corresponding *N*-acylbenzamides with phenylhydrazines. We therefore decided to attempt a different approach in order to improve their preparation.

We describe herein the synthesis of new 1,2,4-triazole analogues with improved yields and present initial results from radioligand binding assays as part of our investigation on cannabinoid active compounds.

Results and discussion

Synthesis

The formation of 1,2,4-triazoles from hydrazonyl chlorides has shown to be an excellent strategy [10, 11]. Thereby, 1,5-diaryl-1H-1,2,4-triazoles **8**–

Correspondence: Nadine Jagerovic, Instituto de Química Médica (CSIC), Juan de la Cierva 3, E-28006-Madrid, Spain. E-mail: nadine@iqm.csic.es

a) dry toluene, rt;

- b) *NCS/DMS*, dry CH₂Cl₂, 0 to -78° C to room temperature;
- c) benzylamine for 10; 4-chlorobenzylamine for 8, 9, 11, 15, 18, and 19; 2,4-dichlorobenzylamine for 12; 4-fluorobenzylamine for 13 and 16; 4-(aminomethyl)pyridine for 14 and 17, *TEA*, *Me*CN, rt;
- d) aq. NaOCl, MeCN, room temperature (reflux for 18).

Scheme 1

19 bearing an aliphatic substituent in position 3 were prepared as described in Scheme 1.

Condensation of aldehydes with phenylhydrazines gave the corresponding hydrazone intermediates which were used in the next step without further purification. The hydrazones were then treated at -78° C with *N*-chlorosuccinimide/dimethyl sulfide complex following *Patel*'s procedures [12] to yield

Table 2 Structures of 3-alkyl-1,5-diaryl-1*H*-1,2,4-triazolesand overall yields

Cl H R N							
1-7							
Compound	R	R'	Yield/(%)				
1 2 3 4 5 6	CH ₂ CH ₃ CH ₂ (CH ₂) ₃ CH ₃ CH ₂ (CH ₂) ₄ CH ₃ CH ₂ (CH ₂) ₄ CH ₃ CH ₂ (CH ₂) ₅ CH ₃	2,4-Cl ₂ 2,4-Cl ₂ H 2,4-Cl ₂ 2,4-Cl ₂ 2,4-Cl ₂ 2,4-Cl ₂	45 5 42 59 47 38				
7	Me Me Me	2,4-Cl ₂	10				

<u>N</u>							
R ['] 8–19							
Compound	R	<i>R</i> ′	<i>R</i> ″	X	Yield/ (%)		
8	CH ₂ CH ₃	$2,4-Cl_2$	4-Cl	С	48		
9	$CH_2(CH_2)_3CH_3$	$2,4-Cl_{2}$	4-Cl	С	22		
10	CH ₂ (CH ₂) ₄ CH ₃	Н	Н	С	47		
11	CH ₂ (CH ₂) ₄ CH ₃	2,4-Cl ₂	4-Cl	С	34		
12	$CH_2(CH_2)_4CH_3$	2,4-Cl ₂	2,4-Cl ₂	С	31		
13	$CH_2(CH_2)_4CH_3$	2,4-Cl ₂	4-F	С	41		
14	CH ₂ (CH ₂) ₄ CH ₃	2,4-Cl ₂	Н	Ν	26		
15	$CH_2(CH_2)_5CH_3$	2,4-Cl ₂	4-Cl	С	23		
16	CH ₂ (CH ₂) ₅ CH ₃	2,4-Cl ₂	4-F	С	35		
17	CH ₂ (CH ₂) ₅ CH ₃	2,4-Cl ₂	Н	Ν	24		
18		2,4-Cl ₂	4-Cl	C	59		
19	Me	2,4-Cl ₂	4-Cl	C	34		
	Me Me						

Novel derivatives of 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles

c) 4-chlorobenzylamine, MeCN, room temperature; d) aq. NaOCl, MeCN, reflux.

Scheme 2

hydrazonyl chlorides 1-7 in moderate yields (Table 1). The light sensitive hydrazonyl chlorides readily reacted with the corresponding benzylamines or with 4-(aminomethyl)pyridine giving crude triazenes which were then subjected to cyclization. The cyclization occurred using sodium hypochlorite as oxidizing agent at room temperature to give reasonable yields (Table 2) of the desired triazoles **8–17** and **19**. However, this cyclization needed to be performed under reflux conditions to obtain the triazole **18**.

In the case of the 1,5-diaryl-1*H*-1,2,4-triazole subtituted in position 3 by a norbornenyl residue (21) (Scheme 2), the commercial starting aldehyde, 5-norbornene-2-carboxaldehyde, was used as a mixture of *endo/exo* isomers in 3/1 proportion determined by ¹H NMR. The two resulting diastereomers 21a and 21b were isolated by medium pressure flash chromatography on silica gel. The structural identification of 21a and 21b has been further realized using two-dimensional NMR techniques (HMQC and COSY) and nuclear *Overhauser* effect measurements (*nOe*). Thereby, the structures of 21a and 21b have been attributed to the *endo* and to the *exo* isomers.

It is known that the nature of the alkyl side chain has a profound effect upon the pharmacological activity of most cannabinoids. Thus, C-3 unsubstituted 1,5-diaryl-1*H*-1,2,4-triazoles **24** and **25** have been prepared following Scheme 3 [13]. Amidines **22** and **23** were synthesized by refluxing the corre-

a) $(OMe)_2$ CHNMe₂, reflux;

b) 2,4-dichlorophenylhydrazine, *Ac*OH 70%, 1,4-dioxane, reflux

Scheme 3

sponding benzamide with *N*,*N*-dimethylformamide dimethyl acetal. Reacting 2,4-dichlorophenylhydrazine with these amidines gave 1,2,4-triazoles **24** and **25**. Whereas **24** was obtained in moderate yield (53%), **25** was obtained in low yield (3%). This difference in reactivity is probably due to the mesomeric effects caused by chlorine atoms on position 2 of the phenyl ring. The electron density at that position is greater in the case of the 2,4-dichlorophenyl amidine (**25**) than for the 4-chlorophenyl amidine (**24**) resulting in a less reactive carbonyl group for the amidine **25**.

Regarding the 3-alkyl-1,5-diaryl-1,2,4-triazoles **8–19**, **21a**, and **21b**, the present method of preparation offers an improved route to this series of compounds compared to the synthesis procedures described previously for the triazole **11**. The overall yields of the previous published preparation and the present synthesis are 3.3 and 20.0% for **11**.

Binding assays

Competitive binding assays were carried out to measure the ability of this series of triazole to displace the radioligand [³H]-CP55940 from CB_1 and CB_2 cannabinoid receptors. The results of these preliminary assays are reported in Table 3.

Table 3 Displacement of specific $[^{3}H]$ -CP55940 binding (at 1 μ *M*) in CHO cells stably transfected with human CB₁ and CB₂ receptors, expressed as percentage (%)

Compound	CB ₁ : Displacements ^a (%) at $1 \mu M$	CB ₂ : Displacements ^a (%) at $1 \mu M$
SR141716	100 ^b	47.3 ^c
WIN55212-2	100 ^d	100 ^e
8	23.0 ± 15.3	13.7 ± 4.2
9	53.9 ± 23	n.t.
10	22.2 ± 15.2	49.6 ± 3.6
11	64.3 ± 15.5	9.7 ± 9.2
12	62.6 ± 5.5	n.t.
13	41.5 ± 6.8	n.t.
15	56.6 ± 27.1	n.t.
17	21.0 ± 21.9	-4.1 ± 11.2
18	27.6 ± 11.3	n.t.
19	43.3 ± 4.0	n.t.
21a	36.6 ± 4.8	n.t.
21b	27.9 ± 1.6	n.t.
24	-8.1 ± 1.8	-15.1 ± 5.0

^a Values expressed as mean of three experiments with standard deviation. n.t. = Not tested; ^b $K_i = 5.8 \pm 0.8 \text{ nM}$; ^c $K_i \approx 1000 \text{ nM}$; ^d $K_i = 13.1 \text{ nM}$; ^e $K_i = 7.3 \text{ nM}$

Displaced cannabinoid CP55940: $K_d = 0.52 \text{ n}M$ for CB₁ and $K_d = 0.63 \text{ n}M$ for CB₂

The synthesized 8–13, 15, 17–19, 21a, 21b, and 24 showed less affinity for CB₁ receptor than the reference cannabinoid ligands SR141716 and WIN55212-2. From the tested compounds for CB₂ receptor, only one (10) shows a moderate binding. However, these preliminary data allow us to make observations about structure-activity relationships.

The importance of the side chain for binding to cannabinoid receptors was revealed by the triazole 24 which lacks a 4-substituent on the triazole core. This triazole did not displace [³H]-CP55940 from either CB₁ or CB₂ receptors contrary to any of the 3-substituted triazoles of the present series. Increasing the length of the side chain led to a significant increase in affinity for CB₁ receptor, the ethyl derivative 8 and the heptyl derivative 15 showing displacement values of 23 and 56.6%. However, restriction of the side chain's conformation mobility by cycloalkyl substituents resulted in moderate CB₁ receptor activity. Where hexyl analogue 11 showed a value of 64.3%, cyclohexyl (18), cyclohexenylmethyl (19), and norbornenyl (21a and 21b) data were 27.6, 43.3, 36.6, and 27.9%.

Regarding diaryl substitution, displacement data of the diphenyl derivative **10** (22.2%) indicated a lowering of affinity for CB₁ receptor with respect to the 2,4-dichlorophenyl analogues **11** (64.3%) and **12** (62.6%). However, it is interesting to note that **10** showed a higher affinity (49.6%) for CB₂ receptor than **11** (9.7%). Substitution of the 4-chlorophenyl group (**11**) for 2,4-dichlorophenyl (**12**) at the C5 position had no effect on the affinity for CB₁ receptor. However replacement of the 5-(4-chlorophenyl) ring substituent with either a 4-fluorophenyl or a pyridyl group resulted in lower affinities.

Conclusion

Very recently we published a study on feeding behavior and alcohol self-administration of the triazole **11** on rats [14]. A triazole named LH-21 has been shown to reduce food intake and weight gain in obese animals with major peripheral components. These effects have been shown to be mediated through CB₁ receptors even though its affinity for this receptor is considered moderate [**11** (LH-21) $K_i = 748 \pm 193 \text{ nM}$ [9]]. In the present study, an improved synthesis of LH-21 has been described. Different structural modifications of this triazole are reported. Regarding the preliminary biological activity, among the tested compounds LH-21 (11) still showed the best $[^{3}H]$ -CP55940 displacement value.

Experimental

Chemistry

Toluene was distilled over sodium-benzophenone, and CH₂Cl₂ was distilled over calcium chloride. The aqueous solution of NaOCl $(d = 1.206 \text{ g/cm}^3)$, available chlorine 10–13%) was purchased from Aldrich. Bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde was purchased from Aldrich. Melting points were determined with a Reichert Jung Thermovar apparatus. Mass spectra were recorded using electrospray positive mode. Flash column chromatographies were run on silica gel 60 (230-400 Mesh) or on a medium pressure flash system with prepacked silica gel cartridges [Biotage Flash 40, cartridges KP-Sil 40S $(4 \times 7 \text{ cm})$ or $4M (4 \times 15 \text{ cm})$ with a particle size of $32-63 \mu \text{m}$ of 60 Å; FlashMaster Personal with prepacked cartridges FlashPack of 2, 10, 20, or 50 g]. Elemental analysis was performed on a Heraeus CHN-O rapid analyzer. Results were within $\pm 0.4\%$ of the theoretical values. Analytical HPLC was run on a Waters 6000 with Delta Pak C 18.5 μ m, 300 Å, $3.9 \times 150 \text{ mm}^2$ column, using as eluent *Me*CN/H₂O (0.05%) $H_3PO_4 + 0.04\%$ TEA) in the proportion indicated in each case; flow rate 1 cm³/min; 254 nm. ¹H and ¹³C NMR spectra were recorded on a Gemini 200, Varian 300, 400, and 500 unity spectrometers using TMS as the internal standard. All chemical shifts are reported in ppm.

General procedure for preparing hydrazonyl chlorides 1–7 and 20

To a solution of the corresponding aldehyde (1 equiv) in 30- $100 \,\mathrm{cm}^3$ dry toluene was added the appropriate hydrazine (1) equiv), and the mixture was stirred at room temperature for 15h (30min for 3). Removal of the solvent provided the crude hydrazone, which was used in the next step without further purification. In a round-bottom flask fitted with a dropping funnel, a solution of NCS (1.5 equiv) in $30-70 \text{ cm}^3 \text{ dry}$ CH₂Cl₂ was stirred with DMS (3 equiv) at 0°C for 30 min. A white precipitate was formed. After cooling this reaction mixture to -78° C in an acetone/dry ice bath, a solution of the hydrazone prepared above in 30-80 cm³ dry CH₂Cl₂ was added dropwise. The resulting orange suspension was stirred for 2-3h and then allowed to warm to room temperature (the orange suspension turned to a dark red solution). The solvent was evaporated, and the residue was dried at reduced pressure and purified by flash chromatography (n-hexane or cyclohexane/EtOAc, 98/2 for 3).

N-2,4-Dichlorophenylpropyl-1-acetohydrazonyl chloride (1, C₉H₉N₂Cl₃)

Compound **1** was prepared from 0.76 cm³ propionaldehyde (10.5 mmol), 1.79 g 2,4-dichlorophenylhydrazine (10.5 mmol), 2.02 g *NCS* (15.2 mmol), and 2.23 cm³ *DMS* (30.3 mmol): yield 1.20 g (45%) as a transparent oil; $R_{\rm f}$ =0.75 (*n*-hexane); ¹H NMR (CDCl₃): δ =8.06 (1H, br, s, NH), 7.32 (1H, d, J=8.8 Hz, 6-H), 7.26 (1H, d, J=2.4 Hz, 3-H), 7.15 (1H,

dd, J = 8.8, 2.4 Hz, 5-H), 2.65 (2H, q, J = 7.3 Hz, CH₂CH3), 1.26 (3H, t, J = 7.3 Hz, CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 138.7$ (1-C), 132.1 (C(Cl)=N), 128.7 (3-C), 127.9 (5-C), 124.5 (4-C), 117.7 (2-C), 115.1 (6-C), 32.6 (CH₂CH₃), 11.4 (CH₂CH₃) ppm.

N-2,4-*Dichlorophenylhexyl-1-hydrazonyl chloride* (**2**, C₁₂H₁₅N₂Cl₃)

Compound **2** was prepared from 1.74 cm^3 hexanaldehyde (14.4 mmol), 2.46 g 2,4-dichlorophenylhydrazine (14.4 mmol), 3.29 g NCS (24.6 mmol), and 3.62 cm^3 DMS (49.2 mmol): yield 226 mg (5%) as a red oil; $R_f = 0.80$ (*n*-hexane); ¹H NMR (CDCl₃): $\delta = 8.06$ (1H, br, s, NH), 7.32 (1H, d, J = 8.8 Hz, 6-H), 7.16 (1H, d, J = 2.0 Hz, 3-H), 7.14 (1H, dd, J = 8.8, 2.0 Hz, 5-H), 2.61 (2H, t, J = 7.3 Hz, CH₂CH₂CH₂CH₃), 1.70 (2H, p, J = 7.3 Hz, CH₂CH₂CH₂CH₃), 1.37–1.30 (4H, m, CH₂CH₂CH₂CH₂CH₃), 0.90 (3H, br, t, J = 6.3 Hz, CH₂CH₂CH₂CH₂CH₃) pm; ¹³C NMR (CDCl₃): $\delta = 138.7$ (1-C), 131.2 (C(Cl)=N), 128.7 (3-C), 128.0 (5-C), 124.5 (4-C), 117.7 (2-C), 115.1 (6-C), 38.8 (CH₂CH₂CH₂CH₂CH₃), 30.7 (CH₂CH₂CH₂CH₂CH₃), 26.3 (CH₂CH₂CH₂CH₂CH₃), 22.3 (CH₂CH₂CH₂CH₂CH₃), 1.3.9 (CH₂CH₂CH₂CH₂CH₃) ppm.

N-Phenylheptyl-1-acetohydrazonyl chloride (**3**, C₁₃H₁₉N₂Cl) Compound **3** was prepared from 2.45 cm^3 heptanaldehyde $(17.5 \text{ mmol}), 1.73 \text{ cm}^3 \text{ phenylhydrazine} (17.5 \text{ mmol}), 3.64 \text{ g},$ NCS (27.2 mmol), and 4.00 cm³, DMS (54.4 mmol): yield 1.75 g (42%) as an orange oil; $R_{\rm f} = 0.75$ (cyclohexane/ *EtOAc*, 98/2); ¹H NMR (CDCl₃): $\delta = 7.59$ (1H, br, s, NH), 7.25 (2H, t, J = 7.3 Hz, 3-H), 7.03 (2H, d, J = 7.3 Hz, 2-H), 6.88 (1H, t, J = 7.3 Hz, 4-H), 2.61 (2H, t, J = 7.3 Hz, CH₂-CH₂CH₂CH₂CH₂CH₃), 1.70 (2H, p, *J* = 7.3 Hz, CH₂CH₂CH₂-CH₂CH₂CH₃), 1.39–1.22 (6H, m, CH₂CH₂CH₂CH₂CH₂CH₃), 0.90 (3H, br, t, J = 6.5 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$) ppm; ¹³C NMR (CDCl₃): $\delta = 143.9$ (1-C), 129.3 (3-C), 127.8 (C(Cl)=N), 120.5 (4-C), 113.0 (2-C), 38.8 (CH₂CH₂CH₂-CH₂CH₂CH₃), 31.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 28.2 (CH₂- $CH_2CH_2CH_2CH_2CH_3)$, 26.6 ($CH_2CH_2CH_2CH_2CH_2CH_3$), 22.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 14.0 (CH₂CH₂CH₂CH₂- CH_2CH_3) ppm.

N-2,4-Dichlorophenylheptyl-1-acetohydrazonyl chloride (4, C₁₃H₁₇N₂Cl₃)

L. Itellio

CH₃), 22.5 (CH₂CH₂CH₂CH₂CH₂-CH₃), 14.0 (CH₂CH₂-CH₂CH₂CH₂CH₃) ppm.

N-2,4-Dichlorophenyloctyl-1-acetohydrazonyl chloride (5, $C_{14}H_{19}N_2Cl_3$)

Compound 5 was prepared from $1.22 \,\mathrm{cm}^3$ octanaldehyde (7.8 mmol), 1.33 g 2,4-dichlorophenylhydrazine (7.8 mmol), 1.67 g NCS (12.5 mmol), and 1.83 cm³ DMS (25.0 mmol): yield 1.19 g (47%) as a transparent oil; $R_{\rm f} = 0.80$ (*n*-hexane); ¹H NMR (CDCl₃): $\delta = 8.06$ (1H, br, s, NH), 7.32 (1H, d, J = 8.7 Hz, 6-H), 7.27 (1H, d, J = 2.4 Hz, 3-H), 7.14 (1H, dd, J = 8.7, 2.4 Hz, 5-H), 2.61 (2H, t, J =7.4 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$), 1.69 (2H, p, J =7.4 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.38–1.20 (8H, m, $CH_2CH_2CH_2CH_2CH_2CH_3$), 0,87 (3H, br, t, J =6.5 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$) ppm; ¹³C NMR (CDCl₃): $\delta = 138.7$ (1-C), 131.1 (C(Cl)=N), 128.7 (3-C), 128.0 (5-C), 124.5 (4-C), 117.7 (2-C), 115.1 (6-C), 38.8 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 31.7 (CH₂CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 28.9, 28.5 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 26.6 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 22.6 (CH₂CH₂CH₂-CH₂CH₂CH₂CH₃), 14.1 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃) ppm.

N-2,4-Dichlorophenylcyclohexyl-1-acetohydrazonyl chloride (6, $C_{13}H_{15}N_2Cl_3$)

Compound **6** was prepared from 2.57 cm³ cyclohexanecarboxaldehyde (21.2 mmol), 3.60 g 2,4-dichlorophenylhydrazine (21.2 mmol), 4.28 g NCS (32.0 mmol), and 4.71 cm³ DMS (64.1 mmol): yield 2.47 g (38%) as a transparent oil; R_f = 0.75 (*n*-hexane); ¹H NMR (CDCl₃): δ = 8.08 (1H, br, s, NH), 7.31 (1H, d, *J* = 8.8 Hz, 6-H), 7.26 (1H, d, *J* = 2.2 Hz, 3-H), 7.14 (1H, dd, *J* = 8.8, 2.2 Hz, 5-H), 2.52 (1H, tt, *J* = 11.0, 3.3 Hz, 1'-H cyclohexane), 2.05–1.98 (3H, m, H cyclohexane), 1.84–1.17 (7H, m, H cyclohexane) ppm; ¹³C NMR (CDCl₃): δ = 138.7 (1-C), 135.2 (C(Cl)=N), 128.7 (3-C), 127.9 (5-C), 124.4 (4-C), 117.7 (2-C), 115.1 (6-C), 47.1 (1'-C), 30.6 (2'-C), 25.8 (4'-C), 25.6 (3'-C) ppm.

N-2,4-Dichlorophenyl-2-(2,6,6-trimethyl-1-cyclohexenyl)-1acetohydrazonyl chloride ($\mathbf{7}$, $C_{17}H_{21}N_2Cl_3$)

Compound **7** was prepared from 1.06 cm³ 2-(2,6,6-trimethyl-1-cyclohexene)-1-acetaldehyde (6.0 mmol), 1.02 g 2,4-dichlor-ophenylhydrazine (6.0 mmol), 1.26 g *NCS* (9.4 mmol), and 1.38 cm³ *DMS* (18.9 mmol): yield 220 mg (10%) as a transparent oil; $R_{\rm f}$ = 0.70 (*n*-hexane); ¹H NMR (CDCl₃): δ = 8.06 (1H, br, s, NH), 7.28–7.15 (3H, m, H aromatics), 3.38 (2H, s, CH₂CCl), 2.00 (2H, t, *J* = 5.5 Hz, CH₂C(CH₃)=), 1.62 (3H, s, CH₂C(CH₃)=), 1.53–1.43 (4H, m, CH₂CH₂C(CH₃)₂), 0.99 (6H, s, 2 × CH₃) ppm; ¹³C NMR (CDCl₃): δ = 138.8 (1-C), 133.1 (CH₂C=), 130.3 (CH₃C=), 129.1 (3-C), 128.4 (5-C), 127.8 (C(Cl)=N), 124.4 (4-C), 117.7 (2-C), 115.3 (6-C), 40.2 (CH₂C(CH₃)₂), 38.3 (CH₂C(CH₃)=), 35.2 (C(CH₃)₂), 33.3 (CH₂CCl), 28.7 (2 × CH₃), 21.0 (CH₃), 19.7 (CH₂) ppm.

N-2,4-Dichlorophenylbicyclo[2.2.1]hept-5-enyl-1acetohydrazonyl chloride (**20**, C₁₄H₁₃N₂Cl₃)

Compound **20** was prepared from 2.13 cm³ bicyclo[2.2.1]hept-5-ene-2-carboxaldehyde (17.8 mmol), 3.03 g 2,4-dichlorophenylhydrazine (17.8 mmol), 3.63 g *NCS* (27.2 mmol), and 4.00 cm³ *DMS* (54.4 mmol): yield 2.02 g (36%) as a transparent oil; $R_{\rm f} = 0.55$ (*n*-hexane); ¹H NMR (CDCl₃): $\delta = 8.07$ (1H, br, s, NH), 7.28 (1H, d, J = 2.3 Hz, 3-H), 7.25 (1H, d, J = 8.8 Hz, 6-H), 7.15 (1H, dd, J = 8.8 Hz, 2.3, 5-H), 6.22 (1H, dd, J = 5.6, 2.9 Hz, 2'-H norbornene), 5.94 (1H, dd, J = 5.6, 2.9 Hz, 3'-H norbornene), 3.33 (1H, br, s, 4'-H norbornene),

3.25 (1H, dt, J = 9.0 Hz, 4.0, 5'-H norbornene), 2.95 (1H, br, s, 1'-H norbornene), 1.99 (1H, ddd, J = 20.9, 9.0, 3.5 Hz, 6'ec-H norbornene), 1.67 (1H, ddd, J = 20.9, 4.0, 2.8 Hz, 6'ax-H norbornene), 1.53–1.51 (1H, m, 7'-H norbornene), 1.37 (1H, m, 7'-H norbornene) ppm; ¹³C NMR (CDCl₃): $\delta = 138.8$ (1-C), 137.5 (2'-C), 133.8 (C(Cl)=N), 132.0 (3'-C), 128.7 (3-C), 127.9 (5-C), 124.4 (4-C), 117.6 (2-C), 115.0 (6-C), 48.9 (7'-C), 48.0 (4'-C), 46.7 (1'-C), 42.6 (5'-C), 30.1 (6'-C) ppm.

General procedure for preparing 3-alkyl-1,5-diaryl-1H-1,2,4triazoles **8–19**, **21a**, and **21b**

To a solution of hydrazonyl chloride (1 equiv) in $15-50 \text{ cm}^3$ *Me*CN were added first the corresponding benzylamine (1.2 equiv) and then, *TEA* (1.2 equiv). The mixture was stirred at room temperature for 1–4 h. Then, the solvent was removed *in vacuo* and the residue was used in the next step without further purification. To a solution of the crude triazene in 10– 50 cm^3 *Me*CN were added an aqueous solution of $5-15 \text{ cm}^3$ NaOCl, and the mixture was stirred at room temperature (for **18** and **21** at reflux) overnight. The reaction mixture was diluted with $20-60 \text{ cm}^3$ *EtOAc* and washed with $3 \times 30 \text{ cm}^3$ H₂O. The organic layer was dried over anhydrous Na₂SO₄, the solvent was evaporated, and the residue was purified by different chromatographic methods indicated in each case.

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-ethyl-1H-1,2,4-triazole (8, $C_{16}H_{12}Cl_3N_3$)

Compound **8** was prepared from 1.00 g **1** (4.0 mmol), 0.580 cm³ 4-chlorobenzylamine (4.8 mmol), 0.665 cm³ *TEA* (4.8 mmol), and 10 cm³ aq. NaOCl (flash chromatography: cyclohexane/*Et*₂O, 4/1): yield 674 mg (48%) as an orange solid; mp 108–110°C; $R_f = 0.40$ (cyclohexane/*Et*₂O, 5/1); ¹H NMR (CDCl₃): $\delta = 7.48$ (1H, d, J = 2.0 Hz, 3'-H), 7.38 (2H, d, J = 8.7 Hz, 2"-H), 7.40–7.34 (2H, m, 6'-H, 5'-H), 7.26 (2H, d, J = 8.7 Hz, 3"-H), 2.83 (2H, q, J = 7.6 Hz, CH₂), 1.37 (3H, t, J = 7.6 Hz, CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 166.1$ (3-C triazole), 154.3 (5-C triazole), 136.4, 136.2, 134.7, 132.6 (1'-C, 2'-C, 4'-C, 4"-C), 130.4 (6'-C), 129.9 (3'-C), 129.0, 128.8 (2"-C, 3"-C), 128.2 (5'-C), 125.9 (1"-C), 21.6 (CH₂), 12.3 (CH₃) ppm; ES-MS: m/z (%) = 352 (M⁺ + 1, 100).

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-pentyl-1H-1,2,4-triazole (9, C₁₉H₁₈Cl₃N₃)

Compound **9** was prepared from 210 mg **2** (0.70 mmol), 0.104 cm³ 4-chlorobenzylamine (0.80 mmol), 0.120 cm³ *TEA* (0.80 mmol), and 5 cm³ aq. NaOCl (medium pressure flash chromatography: *n*-hexane/*EtOAc*, 100/0–30/1): yield 61 mg (22%) as a white solid; mp 92–95°C; $R_{\rm f}$ =0.40 (*n*-hexane/*EtOAc*, 8/1); ¹H NMR (CDCl₃): δ =7.46–7.45 (1H, m, 3'-H), 7.36–7.30 (2H, m, 6'-H, 5'-H), 7.32 (2H, d,

$$\begin{split} J &= 8.8 \, \text{Hz}, \, 2''\text{-H}), \, 7.23 \, (2\text{H}, \, \text{d}, \, J &= 8.8 \, \text{Hz}, \, 3''\text{-H}), \, 2.74 \, (2\text{H}, \, \text{t}, \\ J &= 7.7 \, \text{Hz}, \, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3), \, 1.77 \, (2\text{H}, \, \text{p}, \, J &= 7.7 \, \text{Hz}, \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3), \, 1.36\text{-}1.27 \, (4\text{H}, \, \text{m}, \, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_3), \, 0.84 \, (3\text{H}, \, \text{br}, \, \text{t}, \, J &= 7.0 \, \text{Hz}, \, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_3), \, 0.84 \, (3\text{H}, \, \text{br}, \, \text{t}, \, J &= 7.0 \, \text{Hz}, \, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_3), \, 0.84 \, (3\text{H}, \, \text{br}, \, \text{t}, \, J &= 7.0 \, \text{Hz}, \, \text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_3), \, 0.84 \, (3\text{H}, \, \text{br}, \, \text{t}, \, J &= 7.0 \, \text{Hz}, \, \text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_2\text{CH}_3), \, 136.6 \, (34.8, \, 132.9 \, (1'\text{-C}, \, 2'\text{-C}, \, 4'\text{-C}, 4''\text{-C}), \\ 130.7 \, (6'\text{-C}), \, 130.1 \, (3'\text{-C}), \, 129.2, \, 129.0 \, (2''\text{-C}.3''\text{-C}), \, 128.4 \\ (5'\text{-C}), \, 126.0 \, (1''\text{-C}), \, 31.6 \, (\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_3), \, 28.4 \\ (\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_2 \\ \text{CH}_2\text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3), \, 14.0 \, (\text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_3 \\ \text{CH}_3) \, \text{ppm}; \\ \text{ES-MS:} \, m/z \, (\%) = 394 \, (\text{M}^+ + 1, \, 100). \end{split}$$

1,5-Diphenyl-3-hexyl-1H-1,2,4-triazole (10, C₂₀H₂₃Cl₃N₃)

Compound 10 was prepared from 1.00 g 3 (4.2 mmol), $0.549 \,\mathrm{cm}^3$ benzylamine (5.0 mmol), $0.700 \,\mathrm{cm}^3$ TEA (5.0 mmol), and 10 cm^3 aq. NaOCl (flash chromatography: cyclohexane/ Et_2O , 4.5/1); yield 602 mg (47%) as an orange oil; $R_f = 0.50$ (*n*-hexane/*EtOAc*, 5/1); ¹H NMR (CDCl₃): $\delta = 7.48 - 7.29$ (10H, m, H aromatics), 2.80 (2H, t, J = 7.7 Hz, $CH_2CH_2CH_2CH_2CH_3$), 1.83 (2H, p, $J = 7.7 \text{ Hz}, \text{ CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3), 1.47 - 1.29 \text{ (6H, m,}$ $CH_2CH_2CH_2CH_2CH_2$, 0.87 (3H, br, t, J = 6.9 Hz, CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta =$ 164.7 (3-C triazole), 154.0 (5-C triazole), 138.3 (1'-C), 129.8, 128.5 (4'-C, 4"-C), 129.3 (5'-C), 128.9, 128.5 (2"-C, 3"-C), 128.1 (1"-C), 125.3 (6'-C), 31.6 (CH₂CH₂CH₂-CH₂CH₂CH₃), 29.2 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.5 (CH₂- $CH_2CH_2CH_2CH_2CH_2)$, 22.6 ($CH_2CH_2CH_2CH_2CH_2CH_3$), 14.1 (CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ES-MS: m/z (%) = $306 (M^+ + 1, 100).$

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole (11, C₂₀H₂₀Cl₃N₃)

Compound 11 was prepared from 500 mg 4 (1.6 mmol), 0.237 cm³ 4-chlorobenzylamine (1.9 mmol), 0.272 cm³ TEA (1.9 mmol), and 10 cm³ aq. NaOCl (flash chromatography: cyclohexane/EtOAc, 9/1 and medium pressure flash chromatography: cyclohexane/ Et_2O , 8/1); yield 223 mg (34%) as a white solid; mp 60–63°C; $R_f = 0.50$ (*n*-hexane/*Et*OAc, 5/1); ¹H NMR (CDCl₃): $\delta = 7.45 - 7.22$ (7H, m, H aromatics), 2.75 (2H, t, J = 7.8 Hz, $CH_2CH_2CH_2CH_2CH_3$), 1.76 (H, p, J = 7.5 Hz 5, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 1.35–1.25 (6H, m, $CH_2CH_2CH_2CH_2CH_3$), 0.81 (3H, br, t, J = 6.4 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta =$ 165.4 (3-C triazole), 154.5 (5-C triazole), 136.6, 136.4, 134.8, 132.9 (1'-C, 2'-C, 4'-C, 4"-C), 130.6 (6'-C), 130.1 (3'-C), 128.4 (5'-C), 129.2, 129.0 (2"-C, 3"-C), 126.0 (1"-C), 31.2 (CH₂- $CH_2CH_2CH_2CH_2CH_3$), 29.0 ($CH_2CH_2CH_2CH_2CH_2CH_3$), 28.3 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.2 (CH₂CH₂CH₂CH₂CH₂-CH₂CH₃), 22.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 14.0 (CH₂CH₂- $CH_2CH_2CH_2CH_3$) ppm; ES-MS: m/z (%) = 408 (M⁺ + 1, 76).

1,5-Bis(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole $(12, C_{20}H_{19}Cl_4N_3)$

Compound **12** was prepared from 1.94 g **4** (6.3 mmol), $1.02 \text{ cm}^3 2,4$ -dichlorobenzylamine (7.6 mmol), $1.06 \text{ cm}^3 TEA$ (7.6 mmol), and 15 cm^3 aq. NaOCl (flash chromatography:

cyclohexane/MeOH, 95/5 and medium pressure flash chromatography: cyclohexane/ Et_2O , 10/1): yield 876 mg (31%) as a yellow oil; $R_f = 0.50$ (*n*-hexane/*EtOAc*, 5/1); ¹H NMR (CDCl₃): $\delta = 7.42 - 7.21$ (6H, m, H aromatics), 2.84 (2H, t, J = 7.5 Hz, $CH_2CH_2CH_2CH_2CH_3$), 1.84 (2H, p, J =7.5 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.35-1.25 (6H, m, CH₂- $CH_2CH_2CH_2CH_2CH_3$), 0.87 (3H, bt, J = 5.7 Hz, CH_2CH_2 -CH₂CH₂CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 165.5$ (3-C triazole), 152.6 (5-C triazole), 137.1, 136.3, 134.4, 133.7, 132.3 (1'-C, 2'-C, 4'-C, 1"-C, 2"-C, 4"-C), 132.4, 130.3, 129.9, 129.8, 127.8, 127.2 (6'-C, 5'-C, 3'-C, 6"-C, 5"-C, 3"-C), 126.1 (1"-C), 31.4 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂), 28.8 CH₃), 28.0 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 22.4 (CH₂CH₂- $CH_2CH_2CH_2CH_3$), 14.0 ($CH_2CH_2CH_2CH_2CH_3$) ppm; ES-MS: m/z (%) = 442 (M⁺ + 1, 78).

l-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-3-hexyl-1H-1,2,4-triazole (13, C₂₀H₂₀Cl₂FN₃)

Compound 13 was prepared from 200 mg 4 (0.65 mmol), $0.089 \,\mathrm{cm}^3$ 4-fluorobenzylamine (0.78 mmol), $0.109 \,\mathrm{cm}^3$ TEA (0.78 mmol) and 5 cm^3 aq. NaOCl (flash chromatography: cyclohexane/ Et_2O , 7/1): yield 104 mg (41%) as a brown solid; mp 43–45°C; $R_f = 0.45$ (*n*-hexane/*EtOAc*, 5/1); ¹H NMR (CDCl₃): $\delta = 7.50 - 7.49$ (1H, m, 3'-H), 7.42 (2H, dd, J = 8.7, 5.3 Hz, 2"-H), 7.41-7.36 (2H, m, 6'-H, 5'-H), 6.98 (2H, t, $J = 8.7 \text{ Hz}, 3''-\text{H}), 2.79 \text{ (2H, t, } J = 7.9 \text{ Hz}, CH_2CH_2CH_2 CH_2CH_2CH_3$), 1.81 (2H, p, J = 7.9 Hz, $CH_2CH_2CH_2CH_2$ -CH₂CH₃), 1.4–1.28 (6H, m, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 0.85 (3H, br, t, J = 6.9 Hz, $CH_2CH_2CH_2CH_2CH_3$) ppm; ¹³C NMR (CDCl₃): $\delta = 163.6$ (1C, d, JC-F 238, 4"-C), 164.3 (3-C triazole), 154.7 (5-C triazole), 136.5, 134.9, 132.9 (1'-C, 2'-C, 4'-C), 130.6 (6'-C), 130.1 (2"-C), 130.0 (3'-C), 128.3 (5'-C), 123.8 (1"-C), 115.9 (1C, d, $J_{C-F} = 22 \text{ Hz}$, 3"-C), 31.5 CH₃), 28.4 (CH₂CH₂CH₂CH₂CH₂CH₃), 28.2 (CH₂CH₂-CH₂CH₂CH₂CH₃), 22.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 14.1 $(CH_2CH_2CH_2CH_2CH_2CH_3)$ ppm; ES-MS: m/z (%) = 392 $(M^+ + 1, 100).$

4-[1-(2,4-Dichlorophenyl)-3-hexyl-1H-1,2,4-triazole-5-yl]pyridine (14, C₁₉H₂₀Cl₂N₄)

Compound 14 was prepared from 310 mg 4 (1.0 mmol), 123 mm^3 4-(aminomethyl)pyridine (1.2 mmol), 0.169 cm³ *TEA* (1.2 mmol), and 7 cm^3 aq. NaOCl (flash chromatography: cyclohexane/ Et_2O , 2/1–1/1): yield 98 mg (26%) as a brown solid: mp 87–90°C; $R_f = 0.30$ (*n*-hexane/*EtOAc*, 1/1); ¹H NMR (CDCl₃): $\delta = 8.57$ (2H, d, J = 6.2 Hz, 3"-H), 7.53 (1H, t, J = 1.3 Hz, 3'-H), 7.41–7.40 (2H, m, 6'-H, 5'-H), 7.32 (2H, d, J = 6.2 Hz, 2"-H), 2.81 (2H, t, J = 7.5 Hz, $CH_2CH_2CH_2CH_2$ -CH₂CH₃), 1.81 (2H, p, J=7.5 Hz, CH₂CH₂CH₂CH₂CH₂CH₂-CH₃), 1.43-1.22 (6H, m, CH₂CH₂CH₂CH₂CH₂CH₃), 0.85 (3H, br, t, J = 7.0 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 165.8$ (3-C triazole), 153.0 (5-C triazole), 150.4 (3"-C), 137.0 (1"-C), 134.7, 134.4, 132.8 (1'-C, 2'-C, 4'-C), 130.7 (6'-C), 129.9 (3'-C), 128.5 (5'-C), 121.5 (2"-C), 31.4 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.9 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.3 (CH₂CH₂CH₂CH₂CH₂CH₃), 28.1 (CH₂CH₂CH₂CH₂- CH₂CH₃), 22.5 (CH₂CH₂CH₂CH₂CH₂CH₃), 14.0 (CH₂CH₂-CH₂CH₂CH₂CH₃) ppm; ES-MS: m/z (%) = 375 (M⁺ + 1, 100).

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-heptyl-1H-1,2,4-triazole (**15**, C₂₁H₂₂Cl₃N₃)

Compound 15 was prepared from 250 mg 5 (0.78 mmol), 0.113 cm³ 4-chlorobenzylamine (0.93 mmol), 0.130 cm³ TEA (0.93 mmol), and 10 cm³ aq. NaOCl (flash chromatography: cyclohexane/CH₂Cl₂, 2.5/1-1/3 and medium pressure flash chromatography: cyclohexane/ Et_2O , 8/1): yield 75 mg (23%) as a white solid: mp 56–58°C; $R_{\rm f} = 0.50$ (*n*-hexane/ *EtOAc*, 5/1; ¹H NMR (CDCl₃): $\delta = 7.49$ (1H, br, s, 3'-H), 7.38–7.34 (2H, m, 5'-H, 6'-H), 7.36 (2H, d, J = 8.7 Hz, 2"-H), 7.26 (2H, d, J = 8.6 Hz, 3"-H), 2.78 (2H, t, J =7.5 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$, 1.80 (2H, p, J =7.5 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.33–1.24 (8H, m, $CH_2CH_2CH_2CH_2CH_2CH_3$), 0.83 (3H, br, t, J = 6.3 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 165.4$ (3-C triazole), 154.5 (5-C triazole), 136.6 136.4 134.8, 132.8 (1'-C, 2'-C, 4'-C, 4"-C), 130.6 (6'-C), 130.1 (3'-C), 129.2, 129.0 (2"-C, 3"-C), 128.4 (5'-C), 126.0 (1"-C), 31.7 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 29.3 (CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 29.0 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.4 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.2 (CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 22.6 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 14.1 $(CH_2CH_2CH_2CH_2CH_2CH_3)$ ppm; ES-MS: m/z (%) = 422 (M^+ + 1, 99).

1-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-3-heptyl-1H-1,2,4-triazole (**16**, C₂₁H₂₂Cl₂FN₃)

Compound 16 was prepared from 200 mg 5 (0.62 mmol), $0.085 \,\mathrm{cm}^3$ 4-fluorobenzylamine (0.75 mmol), $0.104 \,\mathrm{cm}^3$ *TEA* (0.75 mmol), 5 cm^3 aq. NaOCl (flash chromatography: cyclohexane/ Et_2O , 7/1): yield 88 mg (35%) as a brown solid: mp 45–48°C; $R_f = 0.30$ (*n*-hexane/*EtOAc*, 5/1); ¹H NMR (CDCl₃): $\delta = 7.51 - 7.49$ (1H, m, 3'-H), 7.43 (2H, dd, J = 8.5, 5.3 Hz, 2"-H), 7.38–7.37 (2H, m, 5'-H, 6'-H), 6.99 (2H, t, J = 8.5 Hz, 3"-H), 2.79 (2H, t, J =7.6 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$, 1.82 (2H, p, J =7.6 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.71-1.26 (8H, m, $CH_2CH_2CH_2CH_2CH_2CH_3$), 0.85 (3H, br, t, J = 6.4 Hz, $CH_2CH_2CH_2CH_2CH_2CH_2CH_3$) ppm; ¹³C NMR (CDCl₃): $\delta = 163.6$ (1-C, d, $J_{C-F} = 24$ Hz, 4"-C), 165.3 (3-C triazole), 154.7 (5-C triazole), 136.5, 134.9, 132.9 (1'-C, 2'-C, 4'-C), 130.6 (6'-C), 130.2 (2"-C), 130.0 (3'-C), 128.3 (5'-C), 123.8 (1"-C), 115.9 (1-C, d, $J_{C-F} = 22 \text{ Hz}$, 3"-C), 31.7 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 29.3 (CH₂CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 29.0 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.4 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.2 (CH₂CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 22.6 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 14.1 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃) ppm; ES-MS: m/z (%) = $406 (M^+ + 1, 100).$

4-[1-(2,4-Dichlorophenyl)-3-heptyl-1H-1,2,4-triazole-5-yl]pyridine (17, C₂₀H₂₂Cl₂N₄)

Compound **17** was prepared from 400 mg **5** (1.2 mmol), 0.152 cm^3 4-(aminomethyl)pyridine (1.5 mmol), 0.207 cm^3 *TEA* (1.5 mmol), 7 cm^3 aq. NaOCl (flash chromatography:

cyclohexane/ Et_2O , 2/1–1.7/1): yield 116 mg (24%) as a brown solid: mp 93–97°C; $R_f = 0.40$ (*n*-hexane/*Et*OAc, 1/1); ¹H NMR (CDCl₃): $\delta = 8.58$ (2H, d, J = 6.1 Hz, 3"-H), 7.53 (1H, t, J = 1.3 Hz, 3'-H), 7.41–7.40 (2H, m, 5'-H, 6'-H), 7.31 (2H, d, J = 6.1 Hz, 2"-H), 2.80 (2H, t, J =7.5 Hz, $CH_2CH_2CH_2CH_2CH_2CH_3$), 1.81 (2H, p, J =7.5 Hz, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.27-1.20 (8H, m, $CH_2CH_2CH_2CH_2CH_2CH_3$), 0.84 (3H, br, t, J = 6.4 Hz, $CH_2CH_2CH_2CH_2CH_2CH_2CH_3$) ppm; ¹³C NMR (CDCl₃): $\delta = 165.8$ (3-C triazole), 153.0 (5-C triazole), 150.4 (3"-C), 137.0 (1"-C), 134.8, 134.5, 132.8 (1'-C, 2'-C, 4'-C), 130.7 (6'-C), 129.9 (3'-C), 128.5 (5'-C), 121.5 (2"-C), 31.7 (CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 29.2 (CH₂CH₂CH₂CH₂-CH₂CH₂CH₃), 28.9 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 28.3 CH₂CH₂CH₃), 22.6 (CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 14.0 $(CH_2CH_2CH_2CH_2CH_2CH_3)$ ppm; ES-MS: m/z (%) = $389 (M^+ + 1, 100).$

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-cyclohexyl-1H-1,2,4-triazole (**18**, C₂₀H₁₈Cl₃N₃)

Compound **18** was prepared from 1.21 g **6** (4.0 mmol), 0.580 cm³ 4-chlorobenzylamine (4.8 mmol), 0.660 cm³ *TEA* (4.8 mmol), 15 cm³ aq. NaOCl (recrystallized from *Me*CN): yield 948 mg (59%) as a white solid: mp 118–120°C; ¹H NMR (CDCl₃): δ = 7.50 (1H, br, s, 3'-H), 7.39–7.37 (4H, m, 5'-H, 6'-H, 2'''-H), 7.27 (2H, d, J = 8.6 Hz, 3'''-H), 2.83 (1H, tt, J = 11.4, 3.4 Hz, 1''-H cyclohexane), 2.14–2.09 (2H, m, 2''-H cyclohexane), 1.86–1.81 (2H, m, 3''-H cyclohexane), 1.73–1.67 (2H, m, 3''-H cyclohexane), 1.49–1.23 (2H, m, 4''-H cyclohexane) ppm; ¹³C NMR (CDCl₃): δ = 169.1 (3-C triazole), 154.3 (5-C triazole), 136.5, 136.3, 134.9, 132.9 (1'-C, 2'-C, 4'-C, 4'''-C), 130.6 (6'-C), 130.1 (3'-C), 129.2, 128.9 (2'''-C, 3'''-C), 128.3 (5'-C), 126.1 (1'''-C), 37.7 (1''-C), 31.8 (2''-C), 26.0 (4''-C), 25.9 (3''-C). ES-MS: m/z (%) = 406 (M⁺ + 1, 100).

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-3-[(2,6,6-trimethyl-1-cyclohexene)-1-methyl]-1H-1,2,4-triazole(19, $C_{24}H_{24}Cl_3N_3$)

Compound 19 was prepared from 215 mg 7 (0.6 mmol), $0.087 \,\mathrm{cm}^3$ 4-chlorobenzylamine (0.7 mmol), $0.100 \,\mathrm{cm}^3$ TEA (0.7 mmol), 10 cm³ aq. NaOCl (medium pressure flash chromatography: cyclohexane/ Et_2O , 8/1): yield 94 mg (34%) as an orange oil; $R_f = 0.60$ (cyclohexane/*EtOAc*, 5/1); ¹H NMR (CDCl₃): $\delta = 7.49$ (1H, t, J = 1.3 Hz, 3'-H), 7.37 (2H, d, J=8.9 Hz, 2"-H), 7.36–7.35 (2H, m, 5'-H, 6'-H), 7.27 (2H, d, J = 8.9 Hz, 3''-H), 3.75 (2H, s, CH₂CCl), 2.00 (2H,t, J = 6.1 Hz, $CH_2C(CH_3) = 0$, 1.71 (3H, s, $CH_2C(CH_3) = 0$), 1.64–1.56 (2H, m, CH₂CH₂C(CH₃)=), 1.48–1.40 (2H, m, $CH_2CH_2C(CH_3)_2$), 1.03 (6H, s, 2×CH₃) ppm; ¹³C NMR (CDCl₃): $\delta = 165.1$ (3-C triazole), 154.1 (5-C triazole), 136.4, 136.1, 135.0, 132.8 (1'-C, 2'-C, 4'-C, 4"-C), 133.1 (CH₂C=), 130.6 (6'-C), 130.3 (CH₃C=), 130.2 (3'-C), 129.2, 128.9 (2"-C, 3"-C), 128.3 (5'-C), 126.2 (1"-C), 39.6 (CH₂C(CH₃)₂), 35.0 (C(CH₃)₂), 32.8 (CH₂C(CH₃)=), 28.4 (2×CH₃), 27.7 (CH₂C=), 20.6 (CH₃), 19.4 (CH₂) ppm; ES-MS: m/z (%) = 460 (M⁺ + 1, 95); HPLC: $MeCN/H_2O$, 50/50, $\tau_{\rm R}$ % = 6.55 min (89%).

 $\begin{array}{l} 3\mbox{-}(Bicyclo[2.2.1]hept\mbox{-}5\mbox{-}enyl)\mbox{-}5\mbox{-}(4\mbox{-}chlorophenyl)\mbox{-}1\mbox{-}1\mbox{-}(2,4\mbox{-}dichlorophenyl)\mbox{-}1\mbox{H-}1\mbox{,}2\mbox{-}4\mbox{-}chlorophenyl)\mbox{-}1\mbox{-}(2,4\mbox{-}dichlorophenyl)\mbox{-}1\mbox{-}1\mbox{-}2\mbox{,}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mbox{-}1\mbox{-}1\mbox{-}2\mbox{-}1\mb$

Compound **21a** and **21b** were prepared from 1.05 g **20** (3.3 mmol), 0.490 cm³ 4-chlorobenzylamine (4.0 mmol), 0.560 cm³ *TEA* (4.0 mmol), 10 cm³ aq. NaOCl (medium pressure flash chromatography: cyclohexane/ Et_2 O, 8/1): yield 523 mg (38%) **21a** as a white solid and 111 mg (8%) **21b** as a white solid.

21a: mp 103–104°C; $R_f = 0.70$ (cyclohexane/*EtOAc*, 4/1); ¹H NMR (CDCl₃): $\delta = 7.49$ (1H, t, J = 1.3 Hz, 3'-H), 7.36–7.35 (2H, m, 5'-H, 6'-H), 7.35 (2 H, d, J = 8.8 Hz, 2'''-H), 7.27 (2H, d, J = 8.8 Hz, 3'''-H), 6.20 (1H, dd, J = 5.6, 3.0 Hz, 2''-H norbornene), 5.85 (1H, dd, J = 5.6, 2.8 Hz, 3''-H norbornene), 3.50 (1H, dt, J = 9.1, 4.0 Hz, 5''ec-H norbornene), 3.42 (1H, br, s, 4''-H norbornene), 2.95 (1H, br, s, 1''-H norbornene), 2.21–2.15 (1H, m, 6''ec-H norbornene), 1.67–1.63 (1H, m, 6''ax-H norbornene), 1.53–1.50 (1H, m, 7''-H norbornene), 1.45–1.45 (1H, m, 7''-H norbornene) ppm; ¹³C NMR (CDCl₃): $\delta = 167.5$ (3-C triazole), 154.2 (5-C triazole), 137.2 (2''-C), 136.4, 136.2, 134.8, 132.9 (1'-C, 2'-C, 4'-C, 4'''-C), 132.9 (3''-C), 130.6 (6'-C), 130.1 (3'-C), 129.2, 128.9 (2'''-C, 3'''-C), 128.3 (5'-C), 126.1 (1'''-C), 49.5 (7''-C), 46.9 (4''-C), 42.7 (1''-C), 37.6 (5''-C), 30.7 (6''-C) ppm; ES-MS: m/z (%) = 416 (M⁺ + 1, 95).

21b: mp 137–139°C; $R_f = 0.75$ (cyclohexane/*EtOAc*, 4/1); ¹H NMR (CDCl₃): $\delta = 7.45$ (1H, br, s, 3'-H), 7.35–7.31 (4H, m, 5'-H, 6'-H, 2'''-H), 7.22 (2H, d, J = 8.6 Hz, 3'''-H), 6.14 (2H, br, s, 2''-H, 3''-H norbornene), 3.08 (1H, br, s, 4''-H norbornene), 2.92 (1H, br, s, 1''-H norbornene), 2.78 (1H, dd, J = 8.5, 3.9 Hz, 5''ax-H norbornene), 2.21–2.11 (1H, m, 6''ec-H norbornene), 1.67 (1H, d, J = 8.3 Hz, 7''-H norbornene), 1.58– 1.46 (1H, m, 6''ax-H norbornene), 1.35 (1H, d, J = 8.3 Hz, 7''-H norbornene) ppm; ¹³C NMR (CDCl₃): $\delta = 168.5$ (3-C triazole), 154.4 (5-C triazole), 137.7 (2''-C), 136.5, 136.3, 134.8, 132.8 (1'-C, 2'-C, 4'-C, 4'''-C), 136.2 (3''-C), 130.6 (6'-C), 130.1 (3'-C), 129.2, 128.9 (2'''-C, 3'''-C), 128.3 (5'-C), 126.0 (1'''-C), 48.3 (7''-C), 46.0 (4''-C), 42.0 (1''-C), 37.8 (5''-C), 31.4 (6''-C). ES-MS: m/z (%) = 416 (M⁺ + 1, 100).

General procedure for preparing N[']-acyl-N,N-dimethylamidines 22 and 23

A suspension of the corresponding benzamide in $4 \text{ cm}^3 N$, *N*-dimethylformamide dimethyl acetal was stirred at reflux for 2 h. Then, the mixture was cooled, upon which a white solid precipitated. The solid was collected by filtration, dried under reduced pressure and recrystallized from *n*-hexane.

4-Chloro-N-[(dimethylamino)methylene]benzamide (22, C₁₀H₁₁ClN₂O)

Compound **22** was prepared from 1.00 g 4-chlorobenzamide (6.4 mmol): yield 1.11 g (82%) as a white solid: mp 103–104°C; ¹H NMR (CDCl₃): δ =8.59 (1H, s, CH=N), 8.17 (2H, d, *J*=8.7 Hz, 2-H), 7.34 (2H, d, *J*=8.7 Hz, 3-H), 3.16 (3H, s, CH₃), 3.14 (3H, s, CH₃) ppm; ¹³C NMR (CDCl₃): δ =176.6 (CO), 160.8 (CH=N), 137.9 (4-C); 135.3 (1-C), 131.1, 128.1 (2-C, 3-C), 41.3 (CH₃), 35.2 (CH₃) ppm; ES-MS: *m*/*z* (%) = 211 (M⁺ + 1, 100).

2,4-Dichloro-N-[(dimethylamino)methylene]benzamide (23, C₁₀H₁₀Cl₂N₂O₂)

Compound **23** was prepared from 1.00 g 2,4-dichlorobenzamide (5.3 mmol): yield 1.24 g (96%) as a white solid: mp 71– 72°C; ¹H NMR (CDCl₃): δ = 8.55 (1H, s, CH=N), 7.87 (1H, d, *J* = 8.4 Hz, 6-H), 7.38 (1H, d, *J* = 2.1 Hz, 3-H), 7.22 (1H, dd, *J* = 8.4, 2.1 Hz, 5-H), 3.16 (3H, s, CH₃), 3.13 (3H, s, CH₃) ppm; ¹³C NMR (CDCl₃): δ = 176.8 (CO), 160.7 (CH=N), 135.4 (2-C), 133.8 (1-C), 132.3 (6-C), 130.3 (3-C), 126.5 (5-C), 41.5 (CH₃), 35.4 (CH₃) ppm; ES-MS: *m*/*z* (%) = 245 (M⁺ + 1, 100).

5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-1H-1,2,4-triazole (**24**, C₁₄H₈Cl₃N₃)

To a solution of 914 mg 2,4-dichlorophenylhydrazine hydrochloride (4.3 mmol) in 1 cm³ 5 *N* NaOH and 4 cm³ 1,4dioxane were added 8 cm³ 70% aq. *Ac*OH and 750 mg **22** (3.6 mmol). The mixture was stirred at reflux for 1 h and then 15 cm³ H₂O were added precipitating an orange solid. The solid was collected by filtration, washed with H₂O, dried under reduced pressure, and recrystallized from *Et*OH, affording 618 mg **24** as an orange solid (53%): mp 135–136°C; ¹H NMR (CDCl₃): δ = 8.11 (1H, s, 3-H triazole), 7.53 (1H, t, *J* = 1.3 Hz, 3'-H), 7.39 (2H, d, *J* = 8.9 Hz, 2"-H), 7.39–7.38 (2H, m, 5'-H, 6'-H), 7.29 (2H, d, *J* = 8.9 Hz, 3"-H) ppm; ¹³C NMR (CDCl₃): δ = 154.4 (5-C triazole), 152.2 (3-C triazole), 136.9, 136.7, 134.6, 132.8 (1'-C, 2'-C, 4'-C, 4"-C), 130.8 (6'-C), 130.0 (5'-C), 129.2, 129.1 (2"-C, 3"-C), 128.5 (3'-C), 125.7 (1"-C) ppm; ES-MS: *m/z* (%) = 324 (M⁺ + 1, 100).

1,5-Bis(*2,4-dichlorophenyl*)-*1H-1,2,4-triazole* (**25**, C₁₄H₇Cl₄N₃)

To a solution of 210 mg 2,4-dichlorophenylhydrazine hydrochloride (1.0 mmol) in $0.2 \text{ cm}^3 5N$ NaOH and $2 \text{ cm}^3 1,4$ dioxane were added 2 cm^3 70% aq. AcOH and 200 mg 23 (0.8 mmol). The mixture was stirred at reflux for 5 h, and then $20 \text{ cm}^3 \text{ H}_2\text{O}$ were added, precipitating an orange solid. The solid was collected by filtration, washed with H₂O, dried, and purified by medium pressure chromatography (cyclohexane/ EtOAc, 6/1 to give 8 mg 25 (3%) as a white solid: mp 107–111°C; $R_{\rm f} = 0.50$ (cyclohexane/*EtOAc*, 6/1); ¹H NMR (CDCl₃): $\delta = 8.21$ (1H, s, 3-H triazole), 7.27–7.46 (6H, m, H aromatics). ¹³C NMR (CDCl₃): $\delta = 152.7$ (5-C triazole), 152.4 (3-C triazole), 137.4, 136.7, 134.6 (1'-C, 2'-C, 4'-C), 133.6, 132.3 (2"-C, 4"-C), 132.4, 130.5, 130.1, 129.8, 128.0, 127.3 (6'-C, 5'-C, 3'-C, 5''-C, 6''-C, 3''-C) ppm; ES-MS: m/z (%) = 360 (M⁺+1, 100); HPLC: MeCN/H₂O, 90/10, $\tau_{\rm R} =$ 19.06 min (93%).

Binding assays

Membranes from HEK-293 EBNA cells with human CB₁ or CB₂ cannabinoid receptor expressed were supplied by Perkin Elmer. The receptor concentration was 3.5 pmol/mg proteins and the protein concentration was 6.4 mg/cm^3 . The binding assays were performed as described by *Ross* [15] with modifications. The commercial membrane was diluted (1:60) with the binding buffer (50 mM *Tris*Cl, 5 mM MgCl₂, 2.5 mM *EDTA*, 0.5 mg/cm³ BSA, *pH*=7.4). The radioligand used

was [³H]-CP55940 (PerkinElmer) at 0.135 n*M* and the final volume was 200 mm³. The incubation was initiated with the addition of 160 mm³ membrane and the incubation time was 90 min at 30°C. After incubation, the membrane was collected onto pre-treated glass fiber filters (Schleicher & Schnell 3362), with polyethylenimine 0.5%. The filter was washed four times with 1 cm³ washing buffer (50 m*M Tris*Cl, pH = 7.4) and then filter sections were transferred to vials and 5 cm³ Ecoscint H liquid scintillation cocktail were added to each vial. Vials were allowed to set for several hours and then quantified by liquid scintillation spectrophotometry (Wallac Winspectral 1414). Non-specific binding was determined with 10 μ *M* WIN55212-2. Competition binding data were analyzed by using the LIGAND program [16] and assays were performed in triplicate determinations for each point.

Acknowledgments

This work was supported by the Spanish research projects SAF2006-13391-C03-02 and RETICS (RD06/001/0014). *LHF* is recipient of a postdoctoral grant from the research program of "Comunidad de Madrid": CANNAB-CM (S-SAL-0261-2006).

References

- Makriyannis A, Mechoulam R, Piomelli D (2005) Neuropharmacology 48:1068
- 2. Pertwee RG, Ross RA (2002) Prostaglandins Leukot Essent Fatty Acids 66:101

- Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham C, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) Pharmacol Rev 54:161
- Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ (2004) Neuropharmacology 47:345
- 5. Palmer SL, Thakur GA, Makriyannis A (2002) Chem Phys Lipids 121:3
- 6. Lange JH, Kruse CG (2005) Drug Discov Today 10:693
- 7. Smith RA, Fathi Z (2005) Drugs 8:53
- 8. Barth F (2005) Ann Rep Med Chem 40:103
- Jagerovic N, Hernandez-Folgado L, Alkorta I, Goya P, Navarro M, Serrano A, Rodriguez de Fonseca F, Dannert MT, Alsasua A, Suardiaz M, Pascual D, Martin MI (2004) J Med Chem 47:2939
- 10. Paulvannan K, Chen T, Hale R (2000) Tetrahedron 56:8071
- 11. Paulvannan K, Hale R, Sedehi D, Chen T (2001) Tetrahedron 57:9677
- 12. Patel HV, Vyas KA, Pandey SP, Fernandes PS (1996) Tetrahedron 52:661
- Lin YI, Lang SA, Lovell MF, Perkinson NA (1976) J Org Chem 44:4160
- Pavon FJ, Bilbao A, Hernandez-Folgado L, Cippitelli A, Jagerovic N, Abellan G, Rodriguez-Franco MA, Serrano A, Macias M, Gomez R, Navarro M, Goya P, Rodriguez de Fonseca F (2006) Neuropharmacology 51:358
- Ross RA, Brockie HC, Stevenson LA, Murphy VL, Templeton F, Makriyannis A, Pertwee RG (1999) Brit J Pharmacol 126:665
- 16. Munson PJ, Rodbard D (1980) Anal Biochem 107:220