

PII: S0040-4020(96)00641-2

Palladium-Catalysed Oligocyclisations of 2-Bromododeca-1,11-diene-6-ynes¹

Hans Henniges^{a,b}, Frank E. Meyer^{a,b}, Ute Schick^a, Frank Funke^{a,b}, Philip J. Parsons^{b*}, Armin de Meijere^{a*}

^aInstitut für Organische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany

^bSchool of Chemistry, University of Sussex, Falmer, BN1 2QJ, UK

Abstract: Variously substituted 2-bromo-dodeca-1,11-diene-6-ynes under palladium-catalysis undergo (i) biscyclisation followed by (a) 6π -electrocyclic rearrangement to give [1,2:3,4]bisannelated cyclohexadiene derivatives (*cis/trans*-7-Me \rightarrow *cis/trans*-21-Me, 9 \rightarrow 20-Me, 14-Me \rightarrow 19-Me, 14-All \rightarrow 22+23, 15a-e \rightarrow 24a-e, 27 \rightarrow 28, *E,E*-37 \rightarrow 38+39, 42 \rightarrow 43), (b) Diels-Alder reaction to bicyclo[4.1.0]hept-2-enes (*E/Z*-54 \rightarrow 52), or (ii) tetracyclisation to a tetracyclo[6.3.1.0^{1,8}.0^{2.6}]dodec-2ene (58 \rightarrow 60), simply controlled by the type of substituents and substitution pattern on the starting dienyne as well as the reaction conditions. Copyright © 1996 Elsevier Science Ltd

Introduction

Sequential transformations have become a rapidly expanding area of research.^[2] The formation of several carbon-carbon bonds by a combination of different reaction types in a single experimental operation is a highly attractive method of enhancing the efficiency of organic synthesis. In this respect the potential of transition metal-catalysed coupling reactions is well known and has been greatly probed and extended in recent years.^[3] In particular the Heck reaction has gained considerable importance in intra-, inter-, and even mixed inter-intramolecular carbon-carbon bond coupling sequences of open-chain precursors.^[4] Indeed, due to several modern improvements it has developed from a simple coupling reaction for alkenes with alkenyl and aryl halides into an impressively useful synthetic tool. Based on the working hypothesis for the mechanism of the Heck reaction^[4h] with the assumed occurrence of certain alkenyl-palladium intermediates, one can conceive of combinations of several consecutive Heck type and other reactions which ought to be applicable for the efficient construction of complex oligocyclic molecules. We report herein on the palladium-catalysed transformations of various 2-bromododeca-1,11-diene-6-ynes which can give tricyclic systems with a central six- and two annelated five-membered rings by a reaction cascade of two Heck type couplings and a subsequent 6π -electrocyclisation. The scope and limitations of this reaction with regard to the substitution pattern and the presence of heteroatoms in the substrates are presented.

The Basic Tricyclisation Cascade

In close analogy to the finding by Negishi et al. that the 2-bromohept-1-ene-6-yne 1 can be coupled with alkenes leading to indene derivatives,^[5] we recently discovered that, when subjected to Heck reaction conditions (5 mol% Pd(OAc)₂, 10 mol% PPh₃, 2 equiv. Ag₂CO₃, MeCN, 80 °C, 36 h), various enol ethers, such as ethyl vinyl ether (3), can be coupled with 1, to give five-membered ring annelated cyclohexadienes such as 6. This transformation may be envisaged to proceed via intramolecular cyclisation of enyne 1 to the palladium-alkenyl intermediate 2, which is trapped intermolecularly by excess alkene, giving the alkyl palladium species 4. β -Hydride elimination from 4 then leads to the conjugated hexatriene 5, which undergoes a thermal electrocyclic rearrangement to the final cyclohexadiene 6 in 43% yield (Scheme 1). It was essential to use silver(I) carbonate instead of the cheaper potassium carbonate to prevent palladium-catalysed double bond isomerisation.^[6] The reaction temperature plays a critical role in determining the type of product, as higher temperatures (110–120 °C) usually afford aromatized bicyclic compounds.^[7] The intra-intermolecular

Scheme 1. $E = CO_2Et$.

sequence of two Heck reactions and a 6π -electrocyclisation complement the sequence of an intramolecular palladium-catalysed cyclisation of 2-bromo-1,6- as well as 2-bromo-1,7-dienes and a Diels-Alder reaction of the resulting 1,2-bismethylenecyclopentanes with alkenes to yield bicyclo[4.3.0]non-1(6)-enes and bicyclo-[4.4.0]dec-1(6)-enes, respectively.^[1d,e]

Scheme 2. E = CO₂Et. A: 1) *n*BuLi, THF, $-78 \text{ °C} \rightarrow 0 \text{ °C}$; 2) MeI, DMSO, 10 °C, 3 h. – B: 50% NaOH, *n*Bu₄NI (1 mol%), allyl bromide, CH₂Cl₂, 20 °C, 6–11 h. – C: 1) *n*BuLi, THF, $-78 \text{ °C} \rightarrow -10 \text{ °C}$; 2) allyl bromide, DMSO, 0 °C, 30 min.

The logical extension of the intra-intermolecular domino transformation was to tether the external alkene onto the enyne system and make the whole cascade a completely intramolecular process.^[8] Suitable 2-bromododeca-1,11-diene-6-ynes^[9] should undergo a 5-exo-dig cyclisation as observed for 2-bromoenynes (see Scheme 1), ensuing intramolecular 5-exo-trig attack upon the tethered double bond and a 6π -electrocyclisation should eventually lead to tricyclic products.

The dienynes used were generally synthesized from unsaturated aldehydes or ketones and 2-bromo-4,4bis(ethoxycarbonyl)-1-heptene-6-yne. This was achieved by the addition of the aldehyde or ketone to the lithium derivative 11 of this terminal acetylene. The resulting secondary or tertiary alcohols were usually transformed to the corresponding methyl ethers. Dienynes *cis/trans*-7-Me^[10] and 14-Me were thus prepared by treatment of the lithium acetylide 11 with 2-allylcyclohexanone (8)^[11] and 2,2-dimethylpentenal (12),^[12] respectively, which gave the 2-bromo-dodeca-1,11-diene-6-yne-8-ols *cis/trans*-7-H (78%) and 14-H (75%) in good yields. The diastereomeric mixture of *cis/trans*-7-H was separated by column chromatography. Deprotonation of the hydroxy functionality in each of them with *n*-butyllithium at low temperature and addition of methyl iodide in dimethylsulfoxide afforded the corresponding methyl ethers *cis*-7-Me (86%), *trans*-7-Me (72%), and 14-Me (78%), respectively. Another precursor for the palladium-catalysed cascade reaction 9-Me was synthesized in the same way from 1-allylcyclohexylcarbaldehyde (10)^[13] and 11, except that the resulting alkoxide was directly methylated with methyl iodide without an intervening work-up.

With a view to ultimately forming oxygen containing oligocyclic compounds, a series of 2-bromo-9-oxadecadienynes 15-All was synthesized. Treatment of the lithium acetylide 11 with aldehydes 13a-e gave the secondary alcohols 15a-e-H (65-85% yield), which were converted to the corresponding allyl ethers 15a-e-All by treatment with allyl bromide in the presence of 50% aqueous sodium hydroxide in dichloromethane under phase transfer catalysis (nBu_4NI) (64-89% yield). As an additional model compound with an oxygen in the chain, which is also an all carbon 2-bromodecadienyne, the allyl ether 14-All was prepared (77% yield) from the secondary alcohol 14-H (Scheme 2).

Treatment of the methoxybromodienyne 14-Me with the catalyst as above $(5 \text{ mol}\% \text{ of } Pd(OAc)_2, 20 \text{ mol}\% \text{ of } PPh_3, Ag_2CO_3, MeCN, 80 °C, 3 h)$ gave the bisannelated cyclohexadiene 19-Me in 60% isolated yield. This confirms that an initial palladium-catalysed 5-*exo-dig* cyclisation generates an alkenylpalladium intermediate 16, which then cyclizes in a 5-*exo-trig* mode to the alkylpalladium species 17. Ensuing β -hydride elimination eventually gives the hexatriene intermediate 18, and its 6π -electrocyclic rearrangement under the reaction conditions yields the observed tricycle 19-Me.

The efficiency of this domino process is nicely demonstrated by the cleanly proceeding palladiumcatalysed transformation of the spirocyclic precursor 9 to the tetracyclic compound 20-Me in 87% yield. Even when the dienyne precursor contains a cyclohexane ring as in *cis/trans*-7-Me, which could conceivably cause steric problems during the palladium catalysed ring formation as a consequence of restricted conformational mobility, the reaction proceeds smoothly. Treatment of *cis/trans*-7-Me under the above mentioned conditions gives the corresponding tetracyclic compounds *cis*-21-Me and *trans*-21-Me in yields of 48% and 88%, respectively (Scheme 3). The exceptionally low yield of *cis*-21-Me was not inherent, as the corresponding tetracyclic tertiary allylic alcohol *cis*-21-H was obtained from the unprotected secondary propargyl alcohol *cis*-7-H in 85% yield.

Scheme 3. $E = CO_2Et$.

The intramolecular competition between the oxygen containing and the all-carbon pentenyl tether in the allyl ether 14-All from 14-H was won by the latter, as the palladium-catalysed tricyclisation gave the carbocyclic compound 22 with the allyloxy side-chain intact and the heterotricycle 23 in a ratio of 2:1 according to the ¹H NMR spectrum of the crude product mixture (total yield $93\%^{[14]}$). After column chromatography, 22 and 23 were isolated in 58 and 23% yield, respectively. The significantly greater loss of 23 during chromatography is apparently due to a greater sensitivity of this product. In this case the formation of the fully carbocyclic over the dihydrofuran system is probably favoured by the *gem*-dimethyl substitution at C-9 (Scheme 4). This benefit from a Thorpe-Ingold effect, is also evident in the high yields from the tricyclisations of 2-bromo-9oxadodecadienynes 15-All, at least of the alkyl substituted examples 15a–c-All (Scheme 4). It is remarkable that the dihydrofuran-annelated cyclohexadienes 24 are dehydrogenated by 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in toluene to the corresponding furan-annelated compounds 25 in up to 84% yield; only from the methyl substituted precursor 24a was the corresponding dihydrofuran-annelated benzene derivative obtained as a by-product (36%).^[15]

Scheme 4. $E = CO_2Et$. A: 5 mol% Pd(OAc)₂, 10 mol% PPh₃, 3 equiv. Ag₂CO₃, MeCN, 60 °C, 6 h. – B: Same as A, but 80 °C, 9 h. – C: 10 mol% Pd(OAc)₂, 20 mol% PPh₃, 2 equiv. Ag₂CO₃, MeCN, 80 °C, 6 h. – D: Same as A, but 3 equiv. Ag₂CO₃, 4 h. – E: Same as C, but 12 h. – F: Same as C, but 110 °C, 7 h.

The Stereochemical Outcome of the Reaction Cascade

In order to test for possible diastereoselectivity in the formation of two new stereogenic centers due to the known stereospecificity of the 6π -electrocyclisation process,^[16] which is the final step in this reaction cascade, the terminally mono- and disubstituted 2-bromododecadienynes 27 and *E*,*E*-37 were synthesized (Scheme 5).

To access compound 27, the envne 11 was coupled with trans-5-phenyl-4-pentenal^[17] and the resulting alkoxide trapped with methyl iodide, as for other alkoxide intermediates above, to give 27 in a yield of 62%. The preparation of 1.12-bisphenyl-substituted dienvne *E.E*-37 required a modification of this strategy. Coupling of the 1-phenyl-substituted analogue of bromoenyne 11 with 5-phenyl-4-hexenal failed, presumably because of halogen metal exchange at the bromoalkenyl unit after addition of *n*-butyllithium. Neither lowering the temperature (-90 to -100 °C), nor the use of lithium disopropylamide (LDA) instead of *n*-butyllithium as the base resulted in a successful coupling reaction. The synthesis of E_{E} -37 was, however, achieved by consecutive alkylation of diethyl malonate with the two appropriate alkyl bromides E-35 and 33, one bearing the 2-bromoalkene and the other the envne unit. For the synthesis of 33, lithium trimethylsilylacetylide was added to trans-5-phenyl-4-pentenal, and the resulting alkoxide methylated by subsequent addition of methyl iodide, to give the crude TMS-protected envne 30, which was directly desilylated to 31 under basic conditions (NaOH, MeOH, 25 °C, 15 h) in an overall yield of 80%. Hydroxymethylation (n-butyllithium, paraformaldehyde, -78 °C, 86%) of 31 and exchange of the hydroxy group in 32 for bromide with carbon tetrabromide/triphenylphosphane^[18] at 0 °C yielded 1-bromooctenyne **33** (92%). (E)-1,2-Dibromo-3-phenyl-2-propene (E-35) was prepared from phenylpropadiene [19a] (34) by bromination in dichloromethane [19b] and chromatographic separation from the (Z)-isomer. It was found to be rather sensitive towards (E/Z)isomerisation, and had to be used immediately after chromatography. Therefore freshly purified (E)-35 was

H. HENNIGES et al.

used to alkylate diethyl sodiomalonate first, and to avoid the transformation of undesired Z-36 during this reaction by isomerisation of the (E)-dibromide E-35 prior to malonate alkylation, the reaction was quenched before completion, and the mixture worked-up; this gave the sufficiently stable E-36 in moderate yield (53%). The assembly of dienyne E,E-37 was completed by alkylating the deprotonated (NaH/DME) malonate E-36 with the propargyl bromide 33 (45% yield).

Under palladium-catalysis (10 mol% Pd(OAc)₂, 20 mol% PPh₃, 3 equiv. K_2CO_3 , 60 °C, 3 d) compound 27 afforded only the expected tricycle **28** in a yield of 83% as a single diastereomer with the phenyl and methoxy groups in a *trans* orientation.^[3d,20] The palladium-catalysed reaction cascade leading to the 1,3,5hexatriene intermediate, which finally undergoes the 6π -electrocyclisation, is not adversely effected by the terminal phenyl group on the alkene tether. In addition its presence revealed the remarkable influence of the methoxy group on the rotaselectivity of the electrocyclic rearrangement.^[21] Only one of the two disrotatory movements, that are allowed under thermal conditions according to the Woodward-Hoffmann rules,^[16c] takes place, bringing the methoxy and the phenyl group highly selectively into a *trans* relationship (Scheme 5).^[22]

When E,E-37 was treated with Pd(OAc)₂, PPh₃, and K₂CO₃ in deoxygenated acetonitrile at 80 °C, a considerably longer reaction time of 7 d was necessary for total consumption of starting material. Two

products of similar polarity were obtained, the aromatized system 39 without the methoxy group at what was formerly C-8 in 37 and the expected cyclohexadiene 38 as a single diastereomer. Apparently, the final ring formation in this case is also directed by the methoxy substituent and thus the relative configuration of three new stereocenters is controlled. The cyclohexadiene derivative 38 turned out to be quite sensitive towards oxidation when exposed to air, and it decomposed upon standing. The major product 39 can be rationalized as arising from 38 by 1,4-elimination of methanol under the reaction conditions, probably initiated by deprotonation in the benzylic-allylic position and subsequent isomerisation of the resulting cross-conjugated tricyclic triene.

The Influence of Additional Substituents on the Reaction Mode

In order to further explore scope and limitations of this tricyclisation protocol, several other differently substituted 2-bromododeca-1,11-diene-6-ynes were prepared. The readily accessible 8-bromo-5-methoxy-1-phenyloct-1-ene-6-yne **33** was coupled to the 2-bromocyclohexenyl-substituted malonate **41**, which was prepared from diethyl malonate and 2,3-dibromocyclohexene (**40**) in 67% yield. The bromodienyne **42** was obtained in moderate yield (44%), and when subjected to the cyclisation conditions (10 mol% Pd(OAc)₂, 20 mol% PPh₃, 2 equiv. K₂CO₃, MeCN, 80 °C, 3 d), gave two products, one of which decomposed rapidly after isolation. The more polar of the two products was identified by NMR studies as the expected tetracyclic system **43**. However, its steadily proceeding decomposition prevented the verification of the assumed relative configuration. The unidentified less polar second product was probably the aromatic compound **44** by close analogy with the formation of **39** from *E,E-37*. The lability of **43** may be attributed to the phenyl substituent on the cyclohexadiene ring, which makes it more prone to oxidation (Scheme **6**).

Scheme 6. $E = CO_2Et$.

This methodology is also limited by the fact that alkyl substituents *cis* to the bromine atom on C-1 of the 2-bromodienyne prevent the electrocyclic rearrangement from proceeding after the initial palladium-catalysed biscyclisation has occurred.^[23] To study the effect of aliphatic substituents on the other terminus of the dienyne, the model compound **46** with two methyl groups at C-12 was prepared by adding **11** to 5-methyl-4-hexenal,^[24] and methylating the resulting alcohol **45** (81% yield) using the standard procedure (*n*BuLi, THF, then MeI, DMSO, 92% yield).

Another model compound with one methyl and one methoxycarbonyl group at C-12 was prepared, starting with the adduct of 11 to 4-(tetrahydropyranyloxy)butanal.^[25] The secondary alcohol 48 (93% yield) was transformed to the corresponding methyl ether, and the primary alcohol functionality was deprotected

with 2 M hydrochloric acid in methanol to give 49 (81% overall yield). Swern oxidation (oxalyl chloride/DMSO, NEt₃, $CH_2Cl_2)^{[26]}$ afforded the aldehyde 50 in excellent yield (98%), which was converted to the 2-bromodienyne E/Z-54 in 76% yield (E/Z-ratio 1.7:1) via a Wittig-Horner olefination with diethyl 1-(methoxycarbonyl)ethylphosphonate (Scheme 7).^[27]

Scheme 7. $E = CO_2Et. - A: 1)$ *n*BuLi, THF, -78 °C; 2) MeI, DMSO, 0 °C. - B: 2 N HCl, MeOH, 25 °C. - C: 3 mol% Pd(OAc)₂, 12 mol% PPh₃, 2 equiv. Ag₂CO₃, MeCN, 80 °C, 8 h. - D: 11 mol% Pd(OAc)₂, 20 mol% PPh₃, 3 equiv. K₂CO₃, MeCN, 130 °C, 14 h.

Treatment of the dimethyl derivative 46 with the standard palladium catalyst (10 mol% Pd(OAc)₂, 20 mol% PPh₃, 2 equiv. K₂CO₃, MeCN, 80 °C, 8 h) yielded a 2:1 mixture of the two diastereomeric bicyclopentenylidene derivatives *cis/trans*-51. Thus, β -hydride elimination in the *tert*-alkylpalladium intermediate 47 did not proceed in the usual way to give a conjugated 1,3,5-hexatriene, set up for 6π -electrocyclisation, but from one of the six primary C-H positions to yield the non-conjugated 1,3,6-heptatriene 51, and isomerization to the conjugated 1,3,5-heptatriene apparently did not take place (Scheme 7). The triene 51 cannot undergo a 6π -electrocyclic rearrangement. The analogous 1,3,6-heptatriene *cis/trans*-53 (1.2:1) was obtained under palladium catalysis in the presence of silver carbonate from *E/Z*-54 at 80 °C. However, when this reaction was run at 130 °C in the presence of potassium carbonate, only the *cis*-disubstituted bicyclopentylidene derivative *cis*-53 was isolated as such (31%), while the *trans*-isomer had undergone an intramolecular Diels-Alder reaction to give the tetracyclic compound 52 (Scheme 7). The configuration and structure of 52, isolated in 47% yield, was proved by an X-ray crystal structure analysis (see Figure 1).^[28]

Fig. 1. Molecular structure of diethyl 13-methoxy-9-methoxycarbonyltetracyclo[7.4.0.0^{1,10}.0^{2,6}]tridec-2(6)ene-4,4-dicarboxylate (52) in the crystal.^[28] Monoclinic crystal of space group $P2_1/c$, Z = 4, unit cell dimensions a = 13.029(4) Å, b = 9.784(3) Å, c = 17.154(4) Å, V = 2167.4(11) Å³, 4605 reflexions collected with 7°<2 Θ <45°, $R_w = 12.59\%$.

Varying the substitution pattern at C-11 rather than C-12 of the terminal double bond would conceivably affect the reaction mode of the dienyne system. For instance a methyl group at this position would not interfere with either the 5-exo-dig, or the 5-exo-trig cyclisation, leading to the biscyclized intermediate, but the β -hydride elimination as the final step of the palladium-catalysed cascade would be prevented. If no suitable hydrogen were present, as in all of the previous examples, the neopentylpalladium intermediate would have to find another reaction mode, e. g. by attack on one of the adjacent double bonds. To prove this hypothesis, the 2-bromodienyne **58** was prepared from 4-bromo-1-butyne **55**. Treatment with two equivalents of β methylallylmagnesium chloride in THF and subsequent trapping of the resulting alkynylmagnesium chloride with paraformaldehyde yielded **56** (73%), which was mesylated at -50 °C (MsCl, NEt₃, CH₂Cl₂). Deprotonated (with NaH in DME) diethyl malonate was reacted with the crude mesylate to afford the enyne **57** in 57% yield. The synthesis of the cyclisation precursor **58** was concluded by alkylation of **57** after deprotonation with sodium hydride in DME with 2,3-dibromopropene (77% yield).

When 58 was subjected to the cyclisation conditions $(3 \text{ mol}\% \text{ Pd}(\text{OAc})_2, 12 \text{ mol}\% \text{ PPh}_3, 2 \text{ equiv.}$ Ag₂CO₃, DME/MeCN 1:1, 60 °C, 2 d), three products were observed, two of which were isolated by column chromatography. One was the tetracycle 60 (30%), which was apparently formed by a 5-*exo-trig* cyclisation of the neopentylpalladium intermediate 59 to the tricyclic neopentylpalladium bromide 61, in which β -hydride elimination was still precluded, so that attack of the remaining double bond in a sterically favoured 3-*exo-trig* mode occurred. Finally β -hydride elimination afforded the cyclopropane-bridged triquinane derivative 60. The second product (35% yield) was the bicyclo[3.1.0]hexane derivate 63, apparently formed from 59 by a 3-*exo-trig* attack on the nearest double bond, and ensuing β -hydride elimination (Scheme 8).

Scheme 8. $E = CO_2Et$.

Conclusion

Under palladium catalysis 2-bromododeca-1,11-diene-6-ynes undergo two consecutive Heck type cyclisations to conjugated 2,2'-dimethylene-1,1-bicyclopentylidenes, and these react further to give bisannelated cyclohexa-1,3-dienes by 6π -electrocyclisation under the same conditions (60–80 °C). This methodology allows the facile construction of tricyclic skeletons consisting of a central six- and two vicinally annelated five-membered carbo- or heterocycles. A substituent in the second ring formed controls the relative configuration of a new stereogenic center in the third ring by exerting a rotaselectivity on the 6π -electrocyclisation leads to 2-methylene-2'-vinyl-1,1'-bicyclopentylidenes, which can undergo an intramolecular Diels-Alder reaction, when the vinyl group is activated by an electron withdrawing group. A substituent at C-11 totally prevents the β -hydride elimination, which normally leads to the conjugated 1,3,5-hexatrienes, and causes two more cyclisation steps to occur, eventually leading to an interesting tetracyclic skeleton containing a bridging cyclopropane ring.

Research on such palladium-catalysed cascade reactions is continuing in our laboratories. Forthcoming results on the cyclisation of homologous 2-bromotrideca-1,12-diene-7-ynes and 2-bromotetradeca-1,13-diene-7-ynes will be published elsewhere in due course.

Experimental Part

¹H NMR: Bruker AM 250 (250 MHz), WH 270 (270 MHz), Jeol EX 400 (400 MHz), Varian VXR 200 (200 MHz), VXR 500 S (500 MHz), $\delta = 0$ for tetramethylsilane as internal standard, 7.26 for chloroform. – ¹³C NMR: Bruker AM 250 (62.9 MHz), Jeol EX 400 (100.6 MHz) Varian VXR 500 S (125.7 MHz), $\delta =$ 77.00 for deuteriochloroform, * = assignment is interchangeable. The multiplicities of ¹³C NMR signals were determined with the help of either DEPT- (Distortionless Enhancement by Polarisation Transfer) or APTtechniques (Attached Proton Test) and are designated as follows: CH₂, CH = (+) (DEPT and APT), CH₂ = (-) (DEPT and APT), quaternary C = (-) (APT) or (C_{quat}) (DEPT). - IR: Bruker IFS 66, Perkin-Elmer 298. - MS: Varian MAT CH 7, MAT 731. - HRMS: Varian MAT 311 A. The molecular composition was determined by high resolution mass spectrometry with preselected ion peak matching at R >> 10000 to be within ± 2 ppm of the exact masses. - Melting points: Büchi 510, uncorrected. - Column chromatography was performed on Macherev-Nagel silica gel 230-240 mesh, thin layer chromatography on Macherey-Nagel Fertigfolien Alugram Sil G/UV254. - Microanalyses: Mikroanalytisches Laboratorium des Instituts für Organische Chemie der Georg-August-Universität Göttingen. - All operations were performed under nitrogen. Diethyl ether and THF were dried by distillation from sodium or potassium/benzophenone, dimethylsulfoxide, acetonitrile, dimethoxyethane and triethylamine by distillation from calcium hydride. The following abbreviations have been used: PE = petroleum ether bp. 40–60 °C. DMSO = dimethylsulfoxide. DME = 1.2-dimethoxyethane.

General Procedure 1 (GP 1a,b) for the Addition of Diethyl 1-Lithio-6-bromo-6-heptene-1-yne-4,4dicarboxylate to Aldehydes and Ketones: *n*-Butyllithium (1.05 mmol, in *n*-hexane) is added dropwise to a well stirred solution of diethyl 6-bromo-6-heptene-1-yne-4,4-dicarboxylate (1 mmol) in THF (10 mL) at -78°C. Stirring is continued for 30 min and the aldehyde (1.05 mmol) added dropwise. (a) The reaction mixture is allowed to warm up to 0 °C, water is added (20 mL) and the aqueous phase is extracted with Et₂O (3 × 20 mL). The organic layer is washed with brine (25 mL), dried over magnesium sulfate and concentrated under vacuum. The residue is purified by chromatography on silica gel as indicated below. Or (b) the reaction mixture is warmed up slowly to 0 °C, DMSO (10 mL) and methyl iodide (1 mL) are added in one portion and stirring is continued for 2 h at 10 °C. The reaction mixture is poured into water (40 mL) and extracted with Et₂O (3 × 50 mL). The organic layer is washed with water (2 × 50 mL) and brine (20 mL), dried over magnesium sulfate and concentrated under vacuum, followed by column chromatography on silica gel.

General Procedure (GP 2a,b) for Palladium-Catalysed Oligocyclisations: To a solution of vinyl bromide (1 mmol) in deoxygenated acetonitrile (10 mL) in a screw cap pyrex bottle are added 2–10 mol% palladium(II) acetate, 4–20 mol% triphenylphosphane and 2–3 equiv. of base. The sealed bottle is heated to 60-130 °C for 2 h–3 d. After cooling to room temperature the reaction mixture is (a) poured into water (50 mL) and extracted with dichloromethane. The organic phases are washed with brine (50 mL) and dried over magnesium sulfate. Removal of the solvents yields the crude product, which is chromatographed on silica gel. Or (b) the reaction mixture is concentrated under vacuum to approximately 1–2 mL residue (not until dryness !), which is directly chromatographed on silica gel.

General Procedure (GP 3) for the Alkylation of Malonates with Alkyl Bromides: A suspension of sodium hydride (15 mmol, 1.2 equiv., 60% in mineral oil) in DME (50 mL) is treated with diethyl malonate (12.5 mmol, 1 equiv.) dropwise at room temperature. After the gas formation has finished, the alkyl bromide (12.5 mmol) is added in one portion and the reaction mixture further stirred for 1–48 h. It is poured into water (20 mL), the aqueous layer is extracted with Et_2O (3 × 30 mL) and the combined organic layers are washed with brine (20 mL). Drying over magnesium sulfate and concentration under vacuum are followed by chromatography on silica gel.

Diethyl 5-Ethoxy-7-phenyl-1,3,4,5-tetrahydroindene-2,2-dicarboxylate (6): In accordance with GP 2b 6-bromo-4,4-bis(ethoxycarbonyl)-1-phenyl-6-heptene-1-yne^[5] (1) (210 mg, 0.534 mmol), palladium acetate (6 mg, 5 mol%), triphenylphosphane (14 mg, 10 mol%), and silver(I) carbonate (294 mg, 1.07 mmol, 2 equiv.) were treated in acetonitrile (15 mL). Additional to GP 2b freshly distilled ethyl vinyl ether (2 mL)

was added, after which the carefully closed pyrex-bottle was heated to 80 °C for 1 d. Chromatography of the crude product on silica gel (40 g, column 2.5 × 25 cm, PE/Et₂O 10 : 1 + 2 vol% triethylamine) yielded **6** (88 mg, 43%) as a colourless oil ($R_f = 0.39$ in PE/Et₂O 2 : 1). – IR (film): v = 3056 cm⁻¹ (CH), 2978 (CH), 2934, 2872, 1732, 1662, 1492, 1464, 1444, 1390, 1366, 1254, 1192, 1116, 1096, 1072, 1002, 916, 860, 788, 762, 734, 702, 646. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.21$ (t, ³J = 7 Hz, 3 H, CHOCH₂CH₃), 1.22 (t, ³J = 7 Hz, 3 H, CH₃), 1.23 (t, ³J = 7 Hz, 3 H, CH₃), 2.46–2.51 (m, 2 H, 4-H), 3.08 (bs, 2 H, 1-H*), 3.16 (bs, 2 H, 3-H*), 3.54 (q, ³J = 7 Hz, 2 H, CHOCH₂), 4.12–4.23 (mc, 4 H, OCH₂), 4.32 (ddd, ³J = 8, ³J = 8, ³J = 4 Hz, 1 H, 5-H), 5.78 (d, ³J = 4 Hz, 1 H, 6-H), 7.27–7.38 (m, 5 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.94$ (+, CH₃), 15.64 (+, CHOCH₂CH₃), 30.10 (-, C-4), 40.67 and 43.34 (-, C-1, C-3), 58.37 (C_{quat}, C-2), 61.48 and 61.52 (-, OCH₂), 62.80 (-, CHOCH₂), 72.51 (+, C-5), 123.69 (+, C-6), 127.13 (+, C-Ph), 127.55 (+, C-Ph), 128.03 (+, C-Ph), 129.74 (C_{quat}), 134.29 (C_{quat}), 138.25 (C_{quat}), 139.84 (C_{quat}), 171.73 and 172.11 (C_{quat}, C=O). – MS (EI, 70 eV), *m/z* (%): 384 (13) [M⁺], 338 (57) [M⁺ - C₂H₅OH], 310 (9), 264 (99), 237 (44), 191 (100), 165 (30), 115 (7), 91 (3), 45 (3). – C₂₃H₂₈O₅: calcd 384.1937 (correct HRMS). – C₂₃H₂₈O₅ (384.5): Anal. Calcd for C 71.85, H 7.34; found: C 71.67, H 7.38.

Diethyl 2-Bromo-9,9-dimethyl-8-hydroxydodeca-1,11-diene-6-yne-4,4-dicarboxylate (14-H): According to GP 1, to a solution of diethyl 6-bromo-6-heptene-1-vne-4.4-dicarboxylate (2.00 g, 6.3 mmol)^[5] in THF (20 mL) *n*-butyllithium (2.94 mL, 6.9 mmol, 2.34 M in *n*-hexane) and 2,2-dimethyl-4-pentenal (12) (708 mg, 6.3 mmol)^[12] were added. After standard work-up, the crude product was chromatographed on silica gel (70 g, column 2.5×35 cm, PE/Et₂O 10:1) to yield 14-H (2.03 g, 75%) as a colourless oil ($R_f = 0.19$ in $PE/Et_{2}O_{3}$: 1), - IR (film): v = 3520 cm⁻¹ (OH), 3080 (C=CH₂), 2980, 2240, 1740 (C=O), 1640 (C=C), 1370, 1200, 1060, 920, 865. -1 H NMR (250 MHz, CDCl₃): $\delta = 0.93$ (s, 3 H, 9-CH₃), 0.94 (s, 3 H, 9-CH₃), 1.27 (t, ${}^{3}J = 7.1$ Hz, 6 H, CH₂CH₃), 1.84 (d, ${}^{3}J = 6.0$ Hz, 1 H, OH), 2.10 (mc, 2 H, 10-H), 2.98 (d, ${}^{5}J = 2.0$ Hz, 2 H, 5-H), 3.28 (s, 2 H, 3-H), 4.03 (dt, ${}^{5}J$ = 2.0, ${}^{3}J$ = 6.0 Hz, 1 H, 8-H), 4.22 (m, 4 H, OCH₂CH₃), 5.06 (d, ${}^{3}J$ = 11.4 Hz, 1 H, 12-H), 5.07 (d, ${}^{3}J$ = 15.7 Hz, 1 H, 12-H), 5.61 (d, J = 1.6 Hz, 1 H, 1-H), 5.80 (bs, 1 H, 1-H), 5.82 (m, 1 H, 11-H). -13C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.9$ (+, CH₂CH₃), 22.4 (+, 9-CH₃), 22.6 CH₃), 22.6 (-), 38.6 (C_{auat}, C-9), 42.7 (-), 42.8 (-), 56.3 (C_{auat}, C-4), 61.9 (-, OCH₂CH₃), 70.2 (+, C-8), 80.9 (Count), 83.6 (Count), 117.6 (-, C-12), 122.4 (-, C-1), 126.5 (Count, C-2), 134.8 (+, C-11), 169.1 (Count, C=O). – MS (70 eV), m/z (%): 401/399 (2), 349 (44) [M⁺ – Br], 273 (28), 267 (36), 237 (33), 225 (27), 153 (64), 91 (46), 55 (100). - Anal. Calcd for C₂₀H₂₉BrO₅ (429.3): C 55.95, H 6.81, Br 18.61; found: C 56.19, H 6.88, Br 18.08.

Diethyl 2-Bromo-9,9-dimethyl-8-methoxydodeca-1,11-diene-6-yne-4,4-dicarboxylate (14-Me);

n-Butyllithium (0.52 mL, 1.2 mmol, 2.36 M in n-hexane) was added to a solution of 14-H (500 mg, 1.2 mmol) in THF (20 mL) at -78 °C, and the solution was warmed slowly to 0 °C. DMSO (20 mL) and methyl iodide (1 mL) were added dropwise and the reaction mixture was stirred at 10 °C for 3 h. Then it was poured into water (50 mL), the aqueous phase was extracted with Et_2O (3 × 50 mL) and the combined organic phases were washed with water $(3 \times 50 \text{ mL})$ and brine (50 mL). After drying over magnesium sulfate, solvents were removed under vacuum and the crude material chromatographed on silica gel (30 g, column 2.5×20 cm, PE/Et₂O 10:1) to give 14-Me (403 mg, 78%) as a colourless oil ($R_f = 0.25$). – IR (film): v = 3070 cm⁻¹ (C=CH₂), 2960, 2930, 2820, 1750 (C=O), 1625 (C=C), 1430, 1285, 1190, 1095, 1010, 905, 860. – ¹H NMR $(250 \text{ MHz}, \text{CDCl}_3)$: $\delta = 0.87$ (s, 3 H, 9-CH₃), 0.89 (s, 3 H, 9-CH₃), 1.23 (t, ³J = 7.2 Hz, 6 H, CH₂CH₃), 2.04 (m, 2 H, 10-H), 2.96 (d, ⁵J = 1.9 Hz, 2 H, 5-H), 3.26 (s, 2 H, 3-H), 3.30 (s, 3 H, OCH₃), 3.50 (t, ⁵J = 1.9 Hz, 1 H, 8-H), 4.16 (m, 4 H, OCH₂CH₃), 4.97 (m, 1 H, 12-H), 5.02 (bs, 1 H, 12-H), 5.57 (bs, 1 H, 1-H), 5.76 (bs, 1 H, 1-H), 5.76 (m, 1 H, 11-H). - ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 13.9 (+, CH₂CH₃), 22.6 (-), 22.7 (+, 9-CH₃), 23.1 (+, 9-CH₃), 38.2 (C_{ouat}, C-9), 42.9 (-), 43.8 (-), 56.3 (C_{ouat}, C-4), 57.0 (+, OCH₃), 61.9 (-, OCH₂CH₃), 79.2 (+, C-8), 81.3 (C_{ouat}), 81.4 (C_{ouat}), 117.3 (-, C-12), 122.3 (-, C-1), 126.6 (C_{ouat}, C-2), 134.8 (+, C-11), 169.1 (Cquat, C=O). - MS (70 eV), m/z (%): 444/442 [M+], 429/427 (5/4) [M+ - CH₃], 359 (16), 329/327 (18/19), 285/287 (36/37), 255 (25), 207 (38), 178 (48), 134 (40), 91 (57), 55 (100). - $C_{21}H_{31}BrO_5$: calcd 442.1354 (correct HRMS). – Anal. Calcd for $C_{21}H_{31}BrO_5$ (443.4): C 56.89, H 7.05; found: C 56.75, H 6.87.

1-[7'-Bromo-5',5'-bis(ethoxycarbonyl)-1'-methoxyoct-7'-ene-2'-ynyl]-1-(2''-propenyl)cyclohexane (9-Me): A solution of diethyl 6-bromo-6-heptene-1-vne-4.4-dicarboxylate (1.50 g, 4.72 mmol) in THF (25 mL) was treated in accordance with GP 1b with n-butyllithium (2.10 mL, 5.0 mmol, 2.36 M in n-hexane) and 1-allylcyclohexylcarbaldehyde (10) (754 mg, 5.0 mmol). After warming up to 0 °C DMSO (25 mL) and methyl iodide (2.11 g, 14.9 mmol) were added and stirring was continued for 3 h at 40 °C. Standard work-up and chromatography of the crude product on silica gel (60 g, column 2.5×35 cm, PE/Et₂O 30: 1) yielded 9-Me (2.01 g, 88%) as a colourless oil ($R_{\rm f}$ = 0.44 in PE/Et₂O 4 : 1), - IR (film): v = 3080 cm⁻¹ (C=CH₂), 2990. 2940, 2860, 1740 (C=O), 1640 (C=C), 1450, 1290, 1220, 920, 860, $-{}^{1}$ H NMR (250 MHz, CDCl₂): $\delta = 1.26$ $(t, {}^{3}J = 7.1 \text{ Hz}, 6 \text{ H}, \text{CH}_{2}\text{CH}_{2}), 1.32-1.52 \text{ (m, 10 H, cyclohexyl-H)}, 2.23 \text{ (mc, 2 H, 1"-H)}, 3.00 \text{ (d, } {}^{5}J = 1.9 \text{ Hz},$ 2 H. 4'-H). 3.29 (s. 2 H. 6'-H). 3.32 (s. 3 H. OCH₂). 3.71 (t. ${}^{5}J = 1.8$ Hz. 1 H. 1'-H). 4.19 (m. 4 H. OCH₂CH₂). 4.99 (bs, 1 H, 3"-H), 5.05 (bs, 1 H, 3"-H), 5.60 (d, J = 1.5 Hz, 1 H, 8'-H), 5.76 (m, 1 H, 2"-H), 5.79 (bs, 1 H, 8'-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 13.9 (+, CH₂CH₃), 21.3 (-), 21.4 (-), 22.6 (-), 26.0 (-), 29.9 (-), 30.8 (-), 36.9 (-), 40.7 (C_{quat}, C-1), 42.9 (-, C-6'), 56.3 (C_{quat}, C-5'), 57.1 (+, OCH₃), 61.9 (-, OCH₂CH₃), 77.5 (+, C-1'), 81.2 (C_{quat}), 81.9 (C_{quat}), 117.1 (-, C-3"), 122.3 (-, C-8'), 126.7 (C_{quat}, C-7'), 135.0 (+, C-2"), 169.1 (C_{quat}, C=O). - MS (70 eV), m/z (%): 484/482 (1/1) [M+], 423 (6), 404 (18), 361 (24), 319 (80), 237 (100), 163 (23), 135 (38), 111 (54), 91 (44), 43 (36). - C₂₄H₃₅BrO₅: calcd 482.1667 (correct HRMS).

cis- and trans-1-[6'-Bromo-4'.4'-bis(ethoxycarbonyl)-6'-heptene-1'-vnyl]-1-hydroxy-2-(2''-propenvl)cvclohexane (cis- and trans-7-H): According to GP 1a 2-(2-propenyl)cyclohexanone (8) (1.12 g, 8.1 mmol), n-butyllithium (3.60 mL, 8.5 mmol, 2.36 M in n-hexane), and 6-bromo-6-heptene-1-vne-4.4dicarboxylate (2.57 g, 8.1 mmol) were reacted in THF (30 mL). After standard work-up, the crude product was chromatographed on silica gel (225 g, column 3.5×70 cm, PE/Et₂O 9 : 1) to give trans-7-H (1.50 g, 41%, $R_{\rm f} = 0.25$ in PE/Et₂O 1 : 1) and *cis*-7-H (1.35 g, 37%, $R_{\rm f} = 0.20$ in PE/Et₂O 1 : 1) as colourless oils. *trans*-7-H: IR (film): v = 3550 cm⁻¹ (OH), 3080 (C=CH₂), 2950, 1735 (C=O), 1635 (C=C), 1440, 1375, 920, 865. -¹H NMR (250 MHz, CDCl₃): $\delta = 1.17$ (m, 6 H, CH₂CH₃), 1.54 (m, 8 H), 1.95 (m, 3 H), 2.52 (d, ²J = 12.2 Hz, 1 H, 1"-H), 2.90 (s, 2 H, 3'-H), 3.23 (s, 2 H, 5'-H), 4.17 (m, 4 H, OCH₂CH₃), 4.94–5.04 (m, 2 H, 3"-H), 5.56 (bs, 1 H, 7'-H), 5.75 (bs, 1 H, 7'-H), 5.76 (m, 1 H, 2"-H). - ¹³C-NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta =$ 13.8 (+, CH₂CH₃), 21.1 (-), 22.4 (-), 24.8 (-), 25.7 (-), 35.1 (-), 39.9 (-), 42.8 (-, C-5'), 45.7 (+, C-2), 56.3 (Couat, C-4'), 61.8 (-, OCH2CH3), 69.8 (Couat, C-1), 78.1 (Couat), 88.8 (Couat), 115.8 (-, C-3"), 122.2 (-, C-7'), 122.2 (-, 126.6 (C_{quat}, C-6'), 137.6 (+, C-2"), 169.0 (C_{quat}, C=O). - MS (70 eV), m/z (%): 456/454 (3/2) [M+], 427/425 (7/6), 409/407 (20/19), 375 (78) [M+ - Br], 357 (100), 335 (55), 301 (38), 283 (86), 255 (47), 199 (33), 159 (35), 115 (34), 91 (62), 55 (47), 41 (96). - C₂₂H₃₁BrO₅: calcd 454.1354 (correct HRMS). - Anal. Calcd for $C_{22}H_{31}BrO_5$ (455.4): C 58.02, H 6.86, Br 17.55; found: C 57.93, H 6.76, Br 17.12. – cis-7-H: IR (film): v = 3420 cm⁻¹ (OH), 3070 (C=CH₂), 2930, 2860, 2240, 1725 (C=O), 1625 (C=C), 1370, 1290, 1190, 1040, 735. -¹H NMR (250 MHz, CDCl₃): 1.23 (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.37–1.91 (m, 10 H), 2.53–2.57 (m, 2 H), 2.95 (s, 2 H, 3'-H), 3.25 (s, 2 H, 5'-H), 4.18 (m, 4 H, OCH_2CH_3), 4.94–5.07 (m, 2 H, 3"-H), 5.57 (d, J = 1.5Hz, 1 H, 7'-H), 5.77 (bs, 1 H, 7'-H), 5.79 (m, 1 H, 2"-H). - ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta =$ 13.8 (+, CH₂CH₃), 22.4 (-), 23.9 (-), 25.3 (-), 29.2 (-), 35.7 (-), 41.4 (-), 42.7 (-, C-5'), 47.4 (+, C-2), 56.2 (C_{quat}, C-4'), 61.8 (-, OCH₂CH₃), 72.8 (C_{quat}, C-1), 80.7 (C_{quat}), 85.0 (C_{quat}), 116.0 (-, C-3"), 122.3 (-, C-7'), 126.4 (C_{quat}, C-6'), 138.0 (+, C-2"), 169.0 (C_{quat}, C=O). - MS (70 eV), m/z (%): 418 (4), 361 (22), 342 (11), 305 (46), 262 (22), 153 (34), 139 (59), 113 (58), 83 (37), 74 (43), 57 (83), 43 (100). - Anal. Calcd for C₂₂H₃₁BrO₅ (455.4): C 58.02, H 6.86, Br 17.55; found: C 58.15, H 7.01, Br 17.28.

trans-1-[6'-Bromo-4',4'-bis(ethoxycarbonyl)-6'-heptene-1'-ynyl]-1-methoxy-2-(2''-propenyl)cyclohexane (*trans*-7-Me): According to the preparation of 14-Me, a solution of *trans*-7-H (1.00 g, 2.2 mmol) in THF (30 mL) was treated with *n*-butyllithium (1.0 mL, 2.4 mmol, 2.36 M in *n*-hexane), methyl iodide (1.0 mL), and DMSO (20 mL). Standard work-up and chromatography on silica gel (35 g, column 2.5 × 20 cm, PE/Et₂O 16 : 1) gave *trans*-7-Me (0.74 g, 72%) as a colourless oil ($R_f = 0.59$ in PE/Et₂O 1 : 1). – IR (film): v = 2940 cm⁻¹, 2240, 1740 (C=O), 1640 (C=C), 1445, 1380, 1150, 915, 865. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.20$ (t, ³*J* = 7.2 Hz, 6 H, CH₂CH₃), 1.26–1.54 (m, 8 H), 1.68–2.03 (m, 2 H), 2.50 (m, 1 H), 2.90 (s, 2 H, 3'-H), 3.18 (s, 3 H, OCH₃), 3.21 (s, 2 H, 5'-H), 4.13 (m, 4 H, OCH₂CH₃), 4.87–4.96 (m, 2 H, 3"-H), 5.54 (d, *J* = 1.5 Hz, 1 H, 7'-H), 5.69 (m, 1 H, 2"-H), 5.71 (bs, 1 H, 7'-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.8$ (+, CH₂CH₃), 21.0 (–), 22.3 (–), 24.3 (–), 25.5 (–), 34.1 (–), 34.4 (–), 42.7 (–, C-5'), 45.5 (+, C-2), 50.4 (+, OCH₃), 56.2 (C_{quat}, C-4'), 61.7 (–, OCH₂CH₃), 75.2 (C_{quat}), 80.1 (C_{quat}), 85.4 (C_{quat}), 115.2 (–, C-3"), 122.1 (–, C-7), 126.6 (C_{quat}, C-6'), 137.9 (+, C-2"), 168.9 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 441/439 (6/5), 409/407 (14/13), 389 (16) [M⁺ – Br], 315 (19), 283 (25), 237 (100), 205 (77), 153 (40), 135 (45), 112 (90), 111 (61), 91 (85), 77 (60), 41 (66). – Anal. Calcd for C₂₃H₃₃BrO₅ (469.4): C 58.85, H 7.09, Br 17.02; found: C 59.03, H 7.15, Br 17.09.

cis-1-[6'-Bromo-4',4'-bis(ethoxycarbonyl)-6'-heptene-1'-ynyl]-1-methoxy-2-(2''-propenyl)cyclohexane (*cis*-7-Me): According to the preparation of 14-Me, a solution of *cis*-7-H (1.00 g, 2.2 mmol) in THF (30 mL) was treated with *n*-butyllithium (1.0 mL, 2.4 mmol, 2.36 M in *n*-hexane), methyl iodide (1.0 mL), and DMSO (20 mL). Standard work-up and chromatography of the crude product on silica gel (40 g, column 2.5 × 20 cm, PE/Et₂O 16 : 1) gave *cis*-7-Me (0.88 g, 86%) as a colourless oil ($R_f = 0.59$ in PE/Et₂O 1 : 1). – IR (film): v = 3080 cm⁻¹ (C=CH₂), 2940, 1740 (C=O), 1635 (C=C), 1445, 1435, 1290, 1050, 1095, 915, 865. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.20$ (t, ³*J* = 7.1 Hz, 6 H, CH₂CH₃), 1.25–1.76 (m, 9 H, cyclohexyl-H and 1"-H), 2.05 (d, ²*J* = 11.1 Hz, 1 H, 1"-H), 2.54 (m, 1 H, 2-H), 2.96 (s, 2 H, 3'-H), 3.23 (bs, 5 H, OCH₃ and 5'-H), 4.13 (m, 4 H, OCH₂CH₃), 4.86–5.04 (m, 2 H, 3"-H), 5.54 (d, *J* = 1.5 Hz, 1 H, 7'-H), 5.65 (m, 1 H, 2"-H), 5.71 (bs, 1 H, 7'-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.8$ (+, CH₂CH₃), 22.4 (–), 23.5 (–), 25.1 (–), 28.3 (–), 34.8 (–), 35.9 (–), 42.7 (–, C-5'), 46.4 (+, C-2), 50.5 (+, OCH₃), 56.3 (C_{quat}, C-4'), 61.8 (–, OCH₂CH₃), 77.8 (C_{quat}), 82.2 (C_{quat}, C-1), 82.7 (C_{quat}), 115.4 (–, C-3"), 122.1 (–, C-7"), 126.6 (C_{quat}, C-6'), 137.8 (+, C-2"), 168.9 (C_{quat}, C=O). – MS (70 eV), *m*/z (%): 409/407 (12/11), 389 (15) [M⁺ - Br], 283 (25), 237 (100), 220 (15), 205 (75), 135 (50), 112 (80), 91 (95). – Anal. Calcd for C₂₃H₃₃BrO₅ (469.4): C 58.85, H 7.09, Br 17.02; found: C 58.85, H 7.12, Br 17.09.

Diethyl 2-Bromo-8-hydroxynon-1-ene-6-yne-4,4-dicarboxylate (15a-H): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (10.0 g, 32.0 mmol), *n*-butyllithium (18.8 mL, 32.0 mmol, 1.7 M in hexane) and ethanal (1.54 g, 35.0 mmol) were reacted in THF (150 mL). Chromatography of the crude product on silica gel (250 g, column 4×40 cm, PE/Et₂O 3 : 1) afforded **15a**-H (9.68 g, 85%) as a colourless oil ($R_f = 0.13$). – IR (film): v = 3413 cm⁻¹ (OH), 2980, 2931 (C–H), 1735 (C=O), 1626 (C=C), 1446, 1292, 1147, 1014, 900, 858. – ¹H NMR (400 MHz, CDCl₃): $\delta = 1.25$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.26 (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.39 (d, ³*J* = 6.5 Hz, 3 H, 9-H), 2.17 (bs, 1 H, OH), 2.97 (d, ⁵*J* = 1.3 Hz, 2 H, 5-H), 3.24 (s, 2 H, 3-H), 4.20 (mc, 5 H, 2 × OCH₂CH₃, H-8), 5.61 (d, ²*J* = 1.3 Hz, 1 H, 1-H), 5.85 (d, ²*J* = 1.3 Hz, 1 H, 1-H). – ¹³C NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 13.86$ (+, 2 × OCH₂CH₃), 21.93 (-, C-3), 22.30 (+, C-9), 41.37 (-, C-5), 55.97 (C_{quat}, C-4), 61.83 (-, 2 × OCH₂CH₃), 64.10 (+, C-8), 79.32 (C_{quat}, C-6), 81.57 (C_{quat}, C-7), 122.36 (-, C-1), 126.38 (C_{quat}, C-2), 168.91 (C_{quat}, 2 × CO₂Et). – MS (70 eV), *m/z* (%): 281 (100) [M⁺ – Br], 207 (47), 161 (51), 137 (53), 91 (41), 43 (82) [C₃H₇⁺].

Diethyl 2-Bromo-8-hydroxydeca-1-ene-6-yne-4,4-dicarboxylate (**15b-**H): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (10.0 g, 32.0 mmol), *n*-butyllithium (15.0 mL, 33.0 mmol, 2.20 M in hexane) and propanal (1.98 g, 34.0 mmol) were reacted in THF (150 mL). Chromatography of the crude product on silica gel (250 g, column 4×40 cm, PE/Et₂O 3 : 1) afforded **15b-**H (9.70 g, 82%) as a colourless oil ($R_f = 0.15$). – IR (film): v = 3482 cm⁻¹ (OH), 2970, 2936 (C–H), 1738 (C=O), 1628 (C=C), 1466, 1292, 1217, 1043, 901. – ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, ³J = 7.3 Hz, 3 H, 10-H), 1.28 (t, ³J = 7.1 Hz, 6 H, 2 × OCH₂CH₃), 1.65 (mc, 2 H, 9-H), 2.13 (bs, 1 H, OH), 2.95 (d, ⁵J = 1.6 Hz, 2 H, 5-H), 3.23 (s, 2 H, 3-H), 4.21 (mc, 5 H, 2 × OCH₂CH₃, 8-H), 5.61 (d, ²J = 1.6 Hz, 1 H, 1-H), 5.81 (d, ²J = 1.6 Hz, 1 H, 1-H). –

11559

¹³C NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 9.31$ (+, C-10), 13.91 (+, 2 × OCH₂CH₃), 22.36 (-, C-3), 30.95 (-, C-9), 42.73 (-, C-5), 56.08 (C_{quat}, C-4), 61.97 (-, 2 × OCH₂CH₃), 63.61 (+, C-8), 79.45 (C_{quat}, C-6), 85.03 (C_{quat}, C-7), 122.56 (-, C-1), 126.38 (C_{quat}, C-2), 169.17 (C_{quat}, 2 × CO₂Et). – MS (70 eV), *m/z* (%): 359/357 (37/36), 313/311 (15/14), 285/283 (81/76), 257/255 (41/39), 203 (38), 175 (41), 131 (75), 91 (100), 57 (61).

Diethyl 2-Bromo-8-hydroxy-8-phenyloct-1-ene-6-yne-4,4-dicarboxylate (15d-H): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (9.31 g, 29.4 mmol), *n*-butyllithium (14.1 mL, 30.0 mmol, 2.13 M in hexane), and benzaldehyde (3.40 g, 32.0 mmol) were reacted in THF (150 mL). Chromatography of the crude product on silica gel (250 g, column 4×40 cm, PE/Et₂O 5 : 1) afforded **15d**-H (9.68 g, 78%) as a colourless oil ($R_f = 0.22$, PE/Et₂O 3 : 1). – IR (film): v = 3264 cm⁻¹ (OH), 3037, 2907 (C–H), 1734 (C=O), 1626 (C=C), 1429, 1044, 758, 700, 640. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.23$ (t, ³J = 7.2 Hz, 6 H, $2 \times OCH_2CH_3$), 2.71 (d, ³J = 6.2 Hz, 1 H, OH), 2.99 (d, ⁵J = 2.0 Hz, 2 H, 5-H), 3.26 (s, 2 H, 3-H), 4.19 (mc, 4 H, $2 \times OCH_2CH_3$), 5.39 (br. d, ³J = 6.2 Hz, 1 H, 8-H), 5.56 (d, ²J = 1.5 Hz, 1 H, 1-H), 5.70 (d, ²J = 1.5 Hz, 1 H, 1-H), 7.35–7.52 (m, 5 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₃), plus DEPT): $\delta = 13.85$ (+, $2 \times OCH_2CH_3$), 2.247 (-, C-3), 42.76 (-, C-5), 56.02 (C_{quat}, C-4), 62.00 (-, $2 \times OCH_2CH_3$), 64.42 (+, C-8), 81.43 (C_{quat}, C-6), 83.92 (C_{quat}, C-7), 122.67 (-, C-1), 126.23 (C_{quat}, C-2), 126.45, 128.21, 128.46 (+, C-Ph), 140.71 (C_{quat}, C-Ph), 169.15 (C_{quat}, $2 \times CO_2Et$). – MS (70 eV), *m/z* (%): 343 (45) [M⁺ - Br], 269 (98), 251 (55), 223 (75), 195 (100), 179 (45), 115 (25), 105 (85), 77 (48) [C₆H₅⁺], 43 (8) [C₃H₇⁺].

Diethyl 2-Bromo-8-hydroxy-8-(p-methoxyphenyl)oct-1-ene-6-yne-4,4-dicarboxylate (15e-H): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (9.70 g, 30.6 mmol), *n*-butyllithium (13.1 mL, 31.0 mmol, 2.36 M in hexane), and anisaldehyde (3.85 g, 28.3 mmol) were reacted in THF (200 mL). Chromatography of the crude product on silica gel (250 g, column 5×25 cm, PE/Et₂O 3 : 1) afforded **15e**-H (8.30 g, 65%) as a colourless oil ($R_f = 0.42$, PE/Et₂O 1 : 1). – IR (film): v = 3282 cm⁻¹ (OH), 2980, 2936 (C–H), 1734 (C=O), 1611 (C=C), 1512, 1194, 1039, 855, 569. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.20$ (t, ³*J* = 7.2 Hz, 6 H, $2 \times OCH_2CH_3$), 2.94 (d, ⁵*J* = 1.8 Hz, 2 H, 5-H), 3.20 (bs, 1 H, OH), 3.22 (s, 2 H, 3-H), 3.75 (s, 3 H, OCH₃), 4.14 (q, ³*J* = 7.2 Hz, 4 H, $2 \times OCH_2CH_3$), 5.32 (br. d, *J* = 6.1 Hz, 1 H, 8-H), 5.52 (d, ²*J* = 1.5 Hz, 1 H, 1-H), 5.72 (d, ²*J* = 1.5 Hz, 1 H, 1-H), 6.83 (d, ³*J* = 8.5 Hz, 2 H, *o*-Ar-H), 7.35 (d, ³*J* = 8.5 Hz, 2 H, *m*-Ar-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.70$ (+, $2 \times OCH_2CH_3$), 22.32 (-, C-3), 42.60 (-, C-5), 55.04 (+, OCH₃), 55.83 (C_{quat}, C-4), 61.86 (-, $2 \times OCH_2CH_3$), 63.70 (+, C-8), 80.71 (C_{quat}, C-6), 84.11 (C_{quat}, C-7), 113.55 (+, $2 \times o$ -C-Ar), 122.61 (-, C-1), 126.05 (C_{quat}, C-2), 127.78 (+, $2 \times m$ -C-Ar), 133.02 (C_{quat}, C-Ar), 159.23 (C_{quat}, C-Ar), 169.05 (C_{quat}, $2 \times CO_2$ Et). – MS (70 eV), *m/z* (%): 454/452 (2/2) [M+], 409/407 (1/1), 393/391 (8/8), 373 (28) [M+ - Br], 323/327 (7/7), 281 (45), 225 (75), 137/135 (98/100) [C₄H₈Br⁺], 109 (18), 81/79 (23) [Br⁺], 56 (66).

Diethyl 8-Allyloxy-2-bromo-9,9-dimethyldodeca-1,11-diene-6-yne-4,4-dicarboxylate (14-All): To a solution of 14-H (800 mg, 1.86 mmol) in THF (30 mL) *n*-butyllithium (0.8 mL, 1.9 mmol, 2.36 M in *n*-hexane) was added dropwise at -78 °C, after which stirring was continued for 10 min. The reaction mixture was heated to -10 °C, DMSO (20 mL) was added in one portion and afterwards allyl bromide (0.7 mL, 8.1 mmol) at 0 °C. The reaction mixture was further stirred for 30 min, water (10 mL) was added and the aqueous layer extracted with Et₂O (2 × 20 mL). After washing with brine (30 mL) and drying over magnesium sulfate, the solvents were removed under vacuum and the crude product purified by chromatography on silica gel (70 g, column 1.5 × 30 cm, PE/Et₂O 7 : 1) to yield 14-All (672 mg, 77%) as a colourless oil ($R_f = 0.12$). – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.85$ (s, 3 H, CH₃), 0.95 (s, 3 H, CH₃), 1.25 (t, 6 H, CH₂CH₃), 2.10 (mc, 2 H, 10-H), 2.98 (d, ⁴J = 1.8 Hz, 2 H, 3-H), 3.27 (s, 2 H, 5-H), 3.68 (dd, 1 H, OCH₂CHCH₂), 3.84 (dd, 1 H, OCH₂CHCH₂), 5.25 (bd, 1 H, OCH₂CHCH₂), 5.60 (d, ⁴J = 1.8 Hz, 1 H, 1-H), 5.81 (m, 3 H, 1-H, OCH₂CHCH₂), 11-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.90$ (+, CH₂CH₃), 22.52 (-, C-3), 22.82 (+, CH₃), 23.14 (+, CH₃), 38.20 (C_{ouat}, C-9), 42.84 (-, C-5), 42.95 (-, C-10), 56.20 (C_{ouat}, C-4), 61.86

(-, CH₂CH₃), 69.85 (-, OCH₂CHCH₂), 76.38 (+, C-8), 81.21 (C_{quat}, C-6), 81.52 (C_{quat}, C-7), 116.63 (-, OCH₂CHCH₂), 117.34 (-, C-12), 122.36 (-, C-1), 126.58 (C_{quat}, C-2), 134.68 (+, OCH₂CHCH₂), 134.87 (+, C-11), 169.09 (C_{quat}, CO₂Et). – MS (70 eV), m/z (%): 470/468 (1/2) [M⁺], 441/439 (3/4) [M⁺ - C₂H₅], 429/427 (7/8) [M⁺ - C₃H₅], 389 (61) [M⁺ - Br], 345 (20), 327 (78), 271 (17), 265 (39), 255 (55), 241 (40), 227 (30), 163 (27), 159 (39), 131 (36), 91 (53), 55 (89), 41 (100). – Anal. Calcd for C₂₃H₃₃BrO₅ (469.4): C 58.85, H 7.09, Br 17.02; found: C 59.23, H 7.19, Br 16.57.

Diethyl 8-Allyloxy-2-bromonon-1-ene-6-yne-4,4-dicarboxylate (15a-All): To a solution of 15a-H (3.87 g, 10.7 mmol) in dichloromethane (100 mL) were added tetrabutylammonium iodide (40 mg, 1 mol%), allyl bromide (1.45 g, 12 mmol), and a sodium hydroxide solution (100 mL, 50% NaOH in water). After stirring for 6 h at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane $(3 \times 30 \text{ mL})$ and the combined organic phases were washed with brine (100 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (200 g, column 4×30 cm, PE/Et₂O 5 : 1) to give 15a-All (3.61 g, 84%) as a colourless oil ($R_f = 0.28$, PE/Et₂O 3 : 1). – IR (film): v = 2979 cm⁻¹, 2937 (C–H), 1738 (C=O), 1632 (C=C), 1464, 1427, 1367, 1215, 1121, 1015, 900. -1H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (t, $^{3}J = 7.0$ Hz, 3 H, OCH₂CH₃), 1.27 $(t, {}^{3}J = 7.0 \text{ Hz}, 3 \text{ H}, \text{ OCH}_{2}\text{CH}_{3}), 1.41 (d, {}^{3}J = 6.7 \text{ Hz}, 3 \text{ H}, 9-\text{H}), 2.98 (d, {}^{5}J = 1.7 \text{ Hz}, 2 \text{ H}, 5-\text{H}), 3.26 (s, 2 \text{ H}, 3.26 \text{ H}), 3.26 (s, 2 \text{$ 3-H), 3.83–3.95 (m, 2 H, OCH₂CHCH₂), 4.23 (mc, 5 H, $2 \times OCH_2CH_3$, 8-H), 5.17 (dd, ${}^{3}J_{cis} = 10.4$, ${}^{2}J = 1.8 \text{ Hz}, 1 \text{ H}, \text{ OCH}_{2}\text{CHCH}_{2}$), 5.31 (dd, ${}^{3}J_{trans} = 17.2, {}^{2}J = 1.8 \text{ Hz}, 1 \text{ H}, \text{ OCH}_{2}\text{CHCH}_{2}$), 5.62 (d, $^{2}J = 1.1$ Hz, 1 H, 1-H), 5.88 (bs, 1 H, 1-H), 5.90-5.96 (m, 1 H, OCH₂CHCH₂). - ^{13}C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.88$ (+, 2 × OCH₂CH₃), 22.10 (-, C-3), 22.37 (+, CH₃), 42.67 (-, C-5), 55.93 (C_{quat}, C-4), 61.54 (-, 2 × OCH₂CH₃), 64.25 (+, C-8), 69.15 (-, OCH₂CHCH₂), 79.21 (C_{quat}, C-6), 83.73 (C_{ouat}, C-7), 117.10 (-, OCH₂CHCH₂), 122.3 (-, C-1), 126.34 (C_{ouat}, C-2), 134.26 (+, OCH₂CHCH₂), 168.90 $(C_{0114}, 2 \times CO_2Et)$ – MS (70 eV), m/z (%): 345/343 (15/18), 271/269 (57/61), 243/241 (40/42), 189 (36), 117/115 (82/98), 91 (58), 77 (35), 43 (100) [C₃H₇+].

Diethyl 8-Allyloxy-2-bromodec-1-ene-6-yne-4,4-dicarboxylate (15b-All): To a solution of 15b-H (4.01 g, 10.7 mmol) in dichloromethane (100 mL) were added tetrabutylammonium iodide (40 mg, 1 mol%), allyl bromide (1.45 g, 12 mmol), and a sodium hydroxide solution (100 mL, 50% NaOH in water). After stirring for 7 h at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane $(3 \times 30 \text{ mL})$ and the combined organic phases were washed with brine (100 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (200 g, column 4×30 cm, PE/Et₂O 5 : 1) to give **15b**-All (3.51 g, 79%) as a colourless oil ($R_f = 0.16$). – IR (film): $v = 2978 \text{ cm}^{-1}$, 2935 (C–H), 1738 (C=O), 1626 (C=C), 1464, 1288, 1215, 1067, 900. - ¹H NMR (400 MHz, CDCl₃): $\delta = 0.96$ (t, ³J = 7.5 Hz, 3 H, 10-H), 1.26 (t, ³J = 7.2 Hz, 6 H, $2 \times \text{OCH}_2\text{CH}_3$, 1.62–1.72 (m, 2 H, 9-H), 2.96 (d, 5J = 1.8 Hz, 2 H, 5-H), 3.28 (s, 2 H, 3-H), 3.86–3.98 (m, 2 H, OCH₂CHCH₂), 4.24 (mc, 5 H, $2 \times OCH_2$ CH₃, 8-H), 5.09 (dd, ${}^{3}J_{cis} = 10.4$, ${}^{2}J = 1.6$ Hz, 1 H, OCH_2CHCH_2), 5.20 (dd, ${}^{3}J_{trans} = 17.2$, ${}^{2}J = 1.6$ Hz, 1 H, OCH_2CHCH_2), 5.54 (d, ${}^{2}J = 1.3$ Hz, 1 H, 1-H), 5.72 (bs, 1 H, 1-H), 5.88–5.90 (m, 1 H, OCH₂CHCH₂). - ¹³C NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 8.39$ (+, C-10), 13.76 (+, 2 × OCH₂CH₃), 22.30 (-, C-3), 28.84 (-, C-9), 42.64 (-, C-5), 56.00 (C_{ount}, C-6)) 4), 61.68 (-, 2 × OCH₂CH₃), 69.16 (-, OCH₂CHCH₂), 69.87 (+, C-8), 80.10 (C_{quat}, C-6), 82.79 (C_{quat}, C-7), 2 × CO₂Et). – MS (70 eV), m/z (%): 387/385 (9/11), 335 (43) [M⁺ – Br], 255 (31), 205/203 (37/39), 131 (77), 91 (74), 57 (75), 41 (100).

Diethyl 8-Allyloxy-2-bromo-9-methyldec-1-ene-6-yne-4,4-dicarboxylate (15c-All): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (2.00 g, 6.31 mmol), *n*-butyllithium (2.70 mL, 6.62 mmol, 2.45 M in *n*-hexane), and isobutyraldehyde (546 mg, 7.57 mmol) were reacted in THF (30 mL). Chromatography of the crude product on silica gel (90 g, column 2×30 cm, PE/Et₂O 1 : 1) yielded diethyl 2-bromo-8-hydroxy-9-methyldec-1-ene-6-yne-4,4-dicarboxylate (15c-H) (2.01 g, 82%) as a yellow oil ($R_f = 0.60$). – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.69$ (d, ³J = 6.2 Hz, 6 H, CH₃), 1.03 (t, ³J = 7.1 Hz, 6 H,

 CH_2CH_3 , 1.58 (bs, 1 H, OH), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 1.87 (m, 1 H, 9-H), 2.74 (d, J = 2.2 Hz, 2 H, 3-H), 3.05 (s, 2 H, 5-H), 3.80 (bs, 1 H, 0 H), 1.87 (m, 1 H, 9-H), 1.87 1 H, 8-H), 3.98 (m, 4 H, CH₂CH₂), 5.38 (d, J = 1.2 Hz, 1 H, 1-H), 5.56 (bs, 1 H, 1-H), - MS (70 eV), m/2 (%): 347/345(3/3) [M⁺ - C₃H₇], 327 (10), 310 (20), 309 (100) [M⁺ - Br], 299 (8), 291 (8), 271 (14), 253 (20), 245 (18), 235 (55), 225 (26), 216 (24), 189 (32), 173 (12), 172 (21), 147 (22), 145 (24), 119 (32), 97 (23), 93 (63), 91 (45), 79 (20), 71 (79), 69 (20), 55 (28), 43 (96) [C₃H₂+]. - A solution of 15c-H (1.00 g, 2.57 mmol) in THF (30 mL) was treated dropwise with *n*-butyllithium (1.1 mL, 2.70 mmol, 2.45 M in *n*-hexane) at -78 °C. The reaction mixture was warmed to -10 °C, during which it became yellowish. DMSO (30 mL) and allyl bromide (0.9 mL, 10 mmol) were added at 0 °C and stirring was continued for 30 min. After the addition of water (10 mL) and Et₂O (100 mL), the organic layer was washed with water (2 \times 20 mL) and the aqueous phase extracted with Et_2O (3 × 50 mL). Washing with brine (100 mL), drying over magnesium sulfate and removal of the solvents under vacuum gave the crude product, which was chromatographed on silica gel (60 g, column 2×20 cm, PE/Et₂O 3 : 1) to yield 15c-All (0.98 g, 89%) as a colourless oil ($R_f = 0.32$). - IR (film): y = 13081 cm⁻¹, 2979, 2936, 2906, 2873, 2217, 1735 (C=O), 1676, 1653, 1647, 1626, 1466, 1447, 1428, 1387, 1367, 1350, 1324, 1289, 1252, 1215, 1191, 1148, 1113, 1066, 1013, 902, 856, 563. - ¹H NMR (250 MHz, CDCl₃): $\delta = 0.93$ (d, ${}^{3}J = 6.5$ Hz, 3 H, CH₃), 0.96 (d, ${}^{3}J = 6.5$ Hz, 3 H, CH₃), 1.25 (t, ${}^{3}J = 7.1$ Hz, 6 H, CH₂CH₃), 1.88 (m, 1 H, 9-H), 2.96 (d, J = 1.7 Hz, 2 H, 3-H), 3.26 (s, 2 H, 5-H), 3.82 (m, 1 H, OCH₂CHCH₂), 3.85 (m, 1 H, OCH₂CHCH₂), 4.15 (m, 5 H, CH₂CH₃, 8-H), 5.18 (m, 1 H, OCH₂CHCH₂), 5.29 (m, 1 H, OCH₂CHCH₂), 5.61 (m, 1 H, 1-H), 5.80 (s, 1 H, 1-H), 5.84 (m, 1 H, OCH₂CHCH₂). - ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.80$ (+, CH₂CH₃), 17.59 (+, CH₃), 18.42 (+, CH₃), 22.34 (-, C-3), 32.89 (+, C-9), 42.68 (-, C-5), 55.98 (C_{auat}, C-4), 61.79 (-, CH₂CH₃), 69.37 (-, OCH₂CHCH₂), 74.18 (+, C-8), 80.70 (C_{quat}), 81.55 (C_{quat}), 116.87 (-, OCH₂CH*C*H₂), 122.34 (-, C-1), 126.40 (C_{quat}, C-2), 134.46 (+, OCH₂CHCH₂), 169.00 (C_{ouat}, CO₂Et). - MS (70 eV), m/z (%): 387/385 (40/36) [M⁺ - C₃H₇], 349 (70) [M⁺ -Br], 327 (56), 309 (26), 291 (14), 255 (26), 243 (17), 231 (17), 220 (17), 203 (13), 163 (17), 145 (21), 131 (22), 111 (23), 93 (28), 91 (27), 79 (17), 71 (60), 69 (16), 55 (23), 43 (59) $[C_3H_7^+]$, 41 (100). – Anal. Calcd for C₂₀H₂₀BrO₅ (429.4): C 55.95, H 6.81, Br 18.61; found: C 55.96, H 6.79, Br 18.49.

Diethyl 8-Allyloxyphenyl-2-bromooct-1-ene-6-yne-4.4-dicarboxylate (15d-All): To a solution of **15d-**H (2.00 g, 4.73 mmol) in dichloromethane (80 mL) were added tetrabutylammonium iodide (18 mg, 1 mol%), allyl bromide (0.61 g, 5.00 mmol), and a sodium hydroxide solution (80 mL, 50% NaOH in water). After stirring for 11 h at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane $(3 \times 30 \text{ mL})$ and the combined organic phases washed with brine (100 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (150 g, column 2×30 cm, PE/Et₂O 5 : 1) to give **15d**-All (1.40 g, 64%) as a colourless oil ($R_f = 0.54$, PE/Et₂O 3 : 1). – IR (film): v = 2981 cm⁻¹, 2936 (C–H), 1734 (C=O), 1626 (C=C), 1452, 1194, 1068, 917, 700, 546. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.15$ (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 1.16 (t, ${}^{3}J = 7.1 \text{ Hz}$, 3 H, OCH₂CH₃), 2.95 (d, ${}^{5}J = 2.0 \text{ Hz}$, 2 H, 5-H), 3.21 (s, 2 H, 3-H), 3.92–4.22 (m, 7 H, OCH_2CHCH_2 , 2 × OCH_2CH_3 , 8-H), 5.06–5.11 (m, 1 H, OCH_2CHCH_2), 5.12 (dd, ${}^{3}J_{cis} = 12.0$, ${}^{2}J = 1.6$ Hz, 1 H, OCH₂CHCH₂), 5.25 (dd, ${}^{3}J_{trans} = 17.2$, ${}^{2}J = 1.6$ Hz, 1 H, OCH₂CHCH₂), 5.49 (d, ${}^{2}J = 1.6$ Hz, 1 H, 1-H), 5.62 (d, ${}^{2}J$ = 1.6 Hz, 1 H, 1-H), 7.21–7.41 (m, 5 H, Ph-H). – ${}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 13.82 (+, 2 × OCH₂CH₃), 22.50 (-, C-3), 42.78 (-, C-5), 56.00 (C_{quat}, C-4), 61.88 (-, 2 × OCH₂CH₃), 68.85 (-, OCH2CHCH2), 70.44 (+, C-8), 81.71 (Cauat, C-6), 82.38 (Cauat, C-7), 117.52 (-, OCH2CHCH2), 122.50 (-, C-1), 126.31 (Couat, C-2), 127.18, 128.20, 128.30 (+, C-Ph), 134.31 (+, OCH₂CHCH₂), 138.62 $(C_{quat}, C-Ph), 168.98 (C_{quat}, 2 \times CO_2Et). - MS (70 \text{ eV}), m/z (\%): 383 (6) [M^+ - Br], 325 (2), 274 (3), 257 (\%)$ (20), 211 (12), 155 (8), 122 (18), 105 (100), 77 (35), 51 (14).

Diethyl 8-Allyloxy-8-(p-methoxyphenyl)-2-bromooct-1-ene-6-yne-4,4-dicarboxylate (15e-All): To a solution of **15e-H** (4.00 g, 8.82 mmol) in dichloromethane (100 mL) were added tetrabutylammonium iodide (33 mg, 1 mol%), allyl bromide (1.21 g, 10 mmol), and a sodium hydroxide solution (100 mL, 50% NaOH in water). After stirring for 7 h at room temperature, water was added and the organic layer was separated. The aqueous layer was extracted with dichloromethane (4×30 mL) and the combined organic phases were washed

with brine (100 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (200 g, column 5×20 cm, PE/Et₂O 4 : 1) to give **15e**-All (3.51 g, 81%) as a colourless oil ($R_f = 0.23$). $- {}^{1}$ H NMR (250 MHz, CDCl₃): $\delta = 1.22$ (t, ${}^{3}J = 7.1$ Hz, 6 H, $2 \times OCH_2CH_3$), 3.01 (d, ${}^{5}J = 1.8$ Hz, 2 H, 5-H), 3.28 (s, 2 H, 3-H), 3.75 (s, 3 H, OCH₃), 3.93–4.23 (m, 6 H, OCH₂CHCH₂, $2 \times OCH_2CH_3$), 5.10 (bs, 1 H, 8-H), 5.16 (dd, ${}^{3}J_{cis} = 10.3$, ${}^{2}J = 1.3$ Hz, 1 H, OCH₂CHCH₂), 5.27 (dd, ${}^{3}J_{trans} = 17.2$, ${}^{2}J = 1.3$ Hz, 1 H, OCH₂CHCH₂), 5.55 (d, ${}^{2}J = 1.5$ Hz, 1 H, 1-H), 5.70 (d, ${}^{2}J = 1.5$ Hz, 1 H, 1-H), 5.89 (mc, 1 H, OCH₂CHCH₂), 6.85 (d, ${}^{3}J = 8.7$ Hz, 2 H, *o*-Ar-H), 7.36 (d, ${}^{3}J = 8.7$ Hz, 2 H, *m*-Ar-H). $-{}^{13}$ C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.69$ (+, $2 \times OCH_2CH_3$), 22.36 (-, C-3), 42.64 (-, C-5), 54.97 (+, OCH₃), 55.85 (C_{quat}, C-4), 61.72 (-, $2 \times OCH_2CH_3$), 68.48 (-, OCH₂CHCH₂), 69.90 (+, C-8), 81.79 (C_{quat}, C-6), 81.95 (C_{quat}, C-7), 113.46 (+, $2 \times o$ -C-Ar), 117.20 (-, OCH₂CHCH₂), 122.38 (-, C-1), 126.05 (C_{quat}, C-2), 128.48 (+, $2 \times m$ -C-Ar), 133.82 (+, OCH₂CHCH₂), 134.13, 159.38 (C_{quat}, $2 \times C$ -Ar), 168.82 (C_{quat}, $2 \times CO_2$ Et). - MS (70 eV), *m/z* (%): 494/492 (1/1) [M⁺], 413 (40) [M⁺ - Br], 355 (38), 339 (23), 281 (60), 209 (39), 165 (43), 135 (100), 121 (20), 77 (17), 41 (10).

Diethyl 3-Methoxy-4,4-dimethyltricyclo[7.3.0.^{2,6}]dodeca-1(9),2(6)-diene-11,11-dicarboxylate (19-Me): A solution of 14-Me (400 mg, 0.9 mmol) in acetonitrile (10 mL) was reacted according to GP 2b with palladium acetate (11 mg, 5 mol%), triphenylphosphane (47 mg, 20 mol%) and silver(I) carbonate (489 mg, 2 equiv.) for 3 h at 80 °C. The crude product was purified on silica gel (8 g, column 1×15 cm, PE/Et₂O 16 : 1) to give **19**-Me (197 mg, 60%) as a colourless oil ($R_f = 0.20$ in PE/Et₂O 10 : 1). – IR (film): v = 2930 cm⁻¹, 2830, 1740 (C=O), 1670 (C=C), 1470, 1445, 1390, 1370, 1260, 1185, 1165, 1100, 1055, 1025, 870. – ¹H NMR (67.9 MHz, CDCl₃): $\delta = 1.10$ (bs, 6 H, 4-CH₃), 1.24 (t, ³J = 7.0 Hz, 3 H, CH₂CH₃), 1.25 (t, ³J = 7.0 Hz, 3 H, CH₂CH₃), 1.97 (d, ²J = 17.1 Hz, 1 H, 5-H), 2.13–2.34 [m, 5 H, 5(7,8)-H], 2.28–3.24 [m, 4 H, 10(12)-H], 3.40 (s, 3 H, OCH₃), 3.78 (bs, 1 H, 3-H), 4.17 (q, ³J = 7.0 Hz, 4 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 14.0$ (+, CH₂CH₃), 23.0 (+, 4-CH₃), 23.7 (-), 24.5 (-), 30.2 (+, 4-CH₃), 39.7 (-), 42.1 (C_{quat}, C-4), 43.2 (-), 49.7 (-), 58.4 (+, OCH₃), 58.9 (C_{quat}, C-11), 61.37 (-), 61.42 (-), 93.2 (+, C-3), 129.0 (C_{quat}), 131.2 (C_{quat}, 2 C), 138.7 (C_{quat}), 172.1 (C_{quat}), 172.6 (C_{quat}). – MS (70 eV), *m/z* (%): 362 (4) [M⁺], 289 (3), 257 (100), 211 (18), 183 (43), 128 (16), 119 (20), 105 (12), 77 (5), 41 (3). – C₂₁H₃₀O₅: calcd 362.2093 (correct HRMS). – Anal. Calcd for C₂₁H₃₀O₅ (362.5): C 69.59, H 8.34; found: C 69.61, H 8.51.

Diethyl Spiro[cyclohexane-1,1'-(2'-methoxytricyclo[7.4.0.0.^{4',8'}]dodeca-3'(11'),4'(8)-diene-6',6'-dicarboxylate (20-Me): According to GP 2b, to a solution of 9-Me (400 mg, 0.83 mmol) in acetonitrile (10 mL) palladium acetate (6 mg, 3 mol%), triphenylphosphane (12 mg, 6 mol%) and silver(I) carbonate (448 mg, 2 equiv.) were added. The mixture was heated for 4 h at 80 °C. Standard work-up and chromatography on silica gel (20 g, column 2.5 × 20 cm, PE/Et₂O 16 : 1) gave 20-Me (290 mg, 87%) as a colourless oil. – IR (film): $v = 2960 \text{ cm}^{-1}$, 1730 (C=O), 1440, 1370, 1250, 1180, 1100, 1020, 965, 925, 860. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.21$ (t, ³*J* = 7.1 Hz, 3 H, CH₂CH₃), 1.22 (t, ³*J* = 7.1 Hz, 3 H, CH₂CH₃), 1.27–1.56 [m, 10 H, 2(3,4,5,6)-H], 2.03 (d, ²*J* = 17.2 Hz, 1 H, 12'-H), 2.15–2.26 [m, 5 H, 12'(9',10')-H], 2.93–3.11 [m, 4 H, 7'(5')-H], 3.37 (s, 3 H, OCH₃), 3.78 (bs, 1 H, 2'-H), 4.14 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃), 4.17 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.9$ (+, CH₂CH₃), 23.4 (-), 23.5 (-), 23.6 (-), 24.6 (-), 26.2 (-), 31.6 (-), 38.2 (-), 39.8 (-), 43.1 (-), 45.2 (-), 45.8 (C_{quat}, C-1), 58.3 (+, OCH₃), 58.8 (C_{quat}, C-6'), 61.3 (-, OCH₂CH₃), 93.1 (+, C-2'), 128.8 (C_{quat}), 130.9 (C_{quat}), 131.1 (C_{quat}), 138.9 (C_{quat}), 172.0 (C_{quat}, C=O), 172.4 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 402 (5) [M⁺], 370 (47), 329 (4), 297 (100), 296 (44), 251 (10), 223 (32), 167 (7), 129 (6), 91 (3). – C₂₄H₃₄O₅: calcd 402.2406 (correct HRMS). – Anal. Calcd for C₂₄H₃₄O₅ (402.5): C 71.61, H 8.51; found: C 71.71, H 8.46.

Diethyl cis-10a-Methoxy-3,4,5,6,6a,7,8,9,10,10a-decahydro-1*H*-cyclopenta[c]fluorene-2,2-dicarboxylate (cis-21-Me): According to GP 2b, to a solution of cis-7-Me (300 mg, 0.64 mmol) in acetonitrile (10 mL) palladium acetate (5 mg, 3 mol%), triphenylphosphane (11 mg, 7 mol%), and silver(I) carbonate (346 mg, 2 equiv.) were added. The mixture was heated for 4 h at 80 °C. Standard work-up and filtration of the crude product through silica gel (5 g, Et₂O) yielded *cis*-21-Me (120 mg, 48%) as a colourless oil. – IR (film): $v = 2980 \text{ cm}^{-1}$, 2920, 1730 (C=O), 1635 (C=C), 1620 (C=C), 1445, 1390, 1370, 1250, 1190, 1100, 1070, 1055, 1015, 865, 805. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.14-1.22$ (m, 6 H, CH₂CH₃), 1.40–2.03 (m, 10 H), 2.10–2.30 (m, 5 H), 2.89 (bs, 2 H), 2.99 (s, 3 H, OCH₃), 3.00–3.10 (m, 2 H), 4.10–4.25 (m, 4 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 14.0$ (+, CH₂CH₃), 21.1 (–), 23.8 (–), 24.1 (–), 24.6 (–), 26.2 (–), 31.0 (–), 37.6 (–), 40.6 (–), 42.7 (–), 50.2 (+), 51.1 (+), 58.9 (C_{quat}, C-2), 61.5 (–, OCH₂CH₃), 84.4 (C_{quat}, C-10a), 123.3 (C_{quat}), 128.5 (C_{quat}), 132.0 (C_{quat}), 143.0 (C_{quat}), 172.2 (C_{quat}, C=O), 172.3 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 354 (80), 282 (57), 280 (100), 253 (18), 207 (46), 165 (26), 143 (12), 105 (15), 41 (12). – Anal. Calcd for C₂₃H₃₂O₅ (388.5): C 71.11, H 8.30; found: C 70.99, H 8.35.

Diethyl *trans*-10a-Methoxy-3,4,5,6,6a,7,8,9,10,10a-decahydro-1*H*-cyclopenta[*c*]fluorene-2,2-dicarboxylate (*trans*-21-Me): According to GP 2b, to a solution of *trans*-7-Me (300 mg, 0.64 mmol) in acetonitrile (10 mL) palladium acetate (5 mg, 3 mol%), triphenylphosphane (11 mg, 7 mol%), and silver(I) carbonate (346 mg, 2 equiv.) were added. The mixture was heated for 4 h at 80 °C. Standard work-up and filtration of the crude product through silica gel (5 g, Et₂O) yielded *trans*-21-Me (220 mg, 88%) as a colourless oil. – IR (film): v = 2970 cm⁻¹, 2920, 1735 (C=O), 1440, 1365, 1275, 1245, 1185, 1155, 1095, 1070, 860, 800. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.24$ (t, ³*J* = 7.2 Hz, 3 H, CH₂CH₃), 1.25 (t, ³*J* = 7.2 Hz, 3 H, CH₂CH₃), 1.28–1.90 (m, 8 H), 1.95–2.10 (m, 1 H), 2.23–2.34 (m, 6 H), 2.97 (bs, 2 H), 3.10 (s, 3 H, OCH₃), 3.10–3.16 (m, 2 H), 4.17 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃), 4.18 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 14.0$ (+, CH₂CH₃), 19.9 (–), 20.9 (–), 23.7 (–), 24.9 (–), 25.6 (–), 33.6 (–), 37.5 (–), 37.9 (+, C-6a), 39.3 (–), 42.7 (–), 50.2 (+, OCH₃), 58.9 (C_{quat}, C-2), 61.3 (–, OCH₂CH₃), 87.5 (C_{quat}, C-10a), 128.0 (C_{quat}), 131.7 (C_{quat}), 135.3 (C_{quat}), 137.8 (C_{quat}), 172.3 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 356 (18), 357 (20), 354 (90), 282 (78), 280 (100), 253 (22), 208 (27), 207 (45), 165 (23), 143 (33), 69 (18). – Anal. Calcd for C₂₃H₃₂O₅ (388.5): C 71.11, H 8.30; found: C 71.03, H 8.20.

Diethyl *trans*-10a-Hydroxy-3,4,5,6,6a,7,8,9,10,10a-decahydro-1*H*-cyclopenta[*c*]fluorene-2,2-dicarboxylate (*trans*-21-H): According to GP 2b a solution of *trans*-7-H (300 mg, 0.7 mmol) in acetonitrile (10 mL) was treated with palladium acetate (5 mg, 3 mol%), triphenylphosphane (11 mg, 6 mol%), and silver carbonate (385 mg, 2 equiv.) for 3 h at 80 °C. The reaction mixture was concentrated, rapidly (!) filtered through silica gel (3 g) with ether to yield 197 mg (80%) of *trans*-21-H as a colourless oil. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.15$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.40–1.75 (m, 9 H), 1.98–2.03 (m, 2 H), 2.14–2.24 (m, 5 H), 2.75–3.00 (m, 2 H), 3.80 (bs, 2 H), 4.03–4.15 (m, 4 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.7$ (+, CH₂CH₃), 21.0 (–), 23.4 (–), 24.0 (–), 24.5 (–), 25.9 (–), 34.7 (–), 36.2 (–), 39.5 (–), 42.5 (–), 49.2 (+, C-6a), 58.5 (C_{quat}, C-2), 61.1 (–, OCH₂CH₃), 80.3 (C_{quat}, C-10a), 127.7 (C_{quat}), 131.4 (C_{quat}), 138.2 (C_{quat}), 140.2 (C_{quat}), 171.9 (C_{quat}, C=O).

Diethyl *cis*-10a-Hydroxy-3,4,5,6,6a,7,8,9,10,10a-decahydro-1*H*-cyclopenta[*c*]fluorene-2,2-dicarboxylate (*cis*-21-H): According to GP 2b a solution of *cis*-7-H (328 mg, 0.72 mmol) in acetonitrile (20 mL) was treated with palladium acetate (5 mg, 3 mol%), triphenylphosphane (11 mg, 6 mol%), and silver carbonate (392 mg, 2 equiv.) for 3 h at 80 °C. The reaction mixture was concentrated, rapidly (!) filtered through silica gel (3 g) with ether to yield 229 mg (85%) of *cis*-21-H as a colourless oil. – ¹H NMR (250 MHz, CDCl₃): 1.24 (t, ³J = 7.1 Hz, 3 H, CH₂CH₃), 1.25 (t, ³J = 7.1 Hz, 3 H, CH₂CH₃), 1.30–2.09 (m, 10 H), 2.23 (bs, 5 H), 2.35 (dd, ³J = 6.4, ²J = 15.4 Hz, 1 H, 6-H), 2.93 (d, ²J = 16.5 Hz, 1 H, 1-H), 2.99 (d, ²J = 16.6 Hz, 1 H, 1-H), 3.21 (bs, 2 H), 4.14–4.24 (m, 4 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 13.8 (+, CH₂CH₃), 20.5 (-), 21.9 (-), 23.6 (-), 24.6 (-), 26.7 (-), 34.1 (-), 37.5 (-), 39.3 (-), 42.6 (-), 46.8 (+, C-6a), 58.7 (C_{quat}, C-2), 61.2 (-, OCH₂CH₃), 82.2 (C_{quat}, C-10a), 127.7 (C_{quat}), 131.8 (C_{quat}), 136.7 (C_{quat}), 137.5 (C_{quat}), 172.2 (C_{quat}, C=O), 172.3 (C_{quat}, C=O).

Diethyl 3-Allyloxy-4.4-dimethyltricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2(6),1(9)-diene-11,11-dicarboxylate (22) and Diethyl 3-[1'-(1',1'-Dimethyl-3'-butenyl)]-4-oxatricyclo[7,3,0^{2,6},0^{1,9}]dodeca-2(6),1(9)-diene-11.11-dicarboxylate (23): According to GP 2b 14-All (200 mg, 0.43 mmol) was treated with palladium acetate (5 mg, 5 mol%), triphenylphosphane (11 mg, 10 mol%), and silver(I) carbonate (356 mg, 3 equiv.) in acetonitrile (10 mL) at 80 °C for 6 h. The reaction mixture was filtered through a plug of celite, silica gel (treated before with triethylamine and washed with PE), and charcoal prior to concentration. Chromatography of the residue on silica gel (60 g, column 2×20 cm, PE/Et₂O 3 : 1) gave 22 (97 mg, 58%, $R_f = 0.43$) and 23 (38 mg, 23%, $R_f = 0.30$) as colourless oils. 22: ¹H NMR (250 MHz, C₆D₆): $\delta = 0.92$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.02 (s, 3 H, CH₃), 1.14 (s, 3 H, CH₃), 1.84 (d, ${}^{2}J$ = 17.0 Hz, 1 H, 10-H), 1.98 (m, 4 H, 7-H, 8-H), 2.15 (d, ${}^{2}J$ = 17.0 Hz, 1 H, 10-H), 3.22 (m, 2 H, 12-H), 3.54 (m, 2 H, 5-H), 3.94 (m, 7 H, CH₂CH₃, 3-H, OCH₂CHCH₂), 4.98 (m, 1 H, OCH₂CHCH₂), 5.03 (m, 1 H, OCH₂CHCH₂), 5.90 (m, 1 H, OCH₂CHCH₃). -¹³C NMR (62.9 MHz, C₆D₆, plus DEPT): δ = 14.02 (+, CH₂CH₃), 23.73 (+, CH₃), 23.88 (-), 24.76 (-), 29.92 (+, CH₃), 40.49 (-), 42.39 (C_{auat}, C-4), 43.68 (-), 49.94 (-), 59.28 (C_{auat}, C-11), 61.27 (-, CH₂CH₃), 61.32 (-, CH₂CH₃), 71.72 (-, OCH₂CHCH₂), 91.50 (+, C-3), 115.51 (-, OCH₂CHCH₂), 129.81 (C_{qual}), 131.37 (Couat), 132.25 (Couat), 135.98 (Couat), 137.73 (+, OCH₂CHCH₂), 172.05 (Couat, CO₂Et), 172.36 (Couat, $\dot{CO_2Et}$). - MS (70 eV), m/z (%): 388 (12) [M+], 330 (55), 318 (5), 284 (3), 257 (100), 220 (31), 205 (100), 205 (100), 205 (184 (33), 164 (37), 143 (76), 129 (18), 91 (42), 57 (27). - Anal. Calcd for C₂₃H₃₂O₅ (388.5): C 71.11, H 8.30; found: C 71.00, H 8.48. – 23: ¹H NMR (250 MHz, CDCl₃): $\delta = 0.82$ (s, 3 H, CH₃), 0.85 (s, 3 H, CH₃), 1.23 (m, 6 H, CH₂CH₃), 2.06 (m, 2 H, CH₂CHCH₂), 2.22 (m, 4 H, 7-H, 8-H), 2.99 (m, 4 H, 10-H, 12-H), 4.19 (m, 4 H, CH₂CH₃), 4.51 (m, 3 H, 3-H, 5-H), 5.14 (m, 2 H, CH₂CHCH₂), 5.35 (m, 1 H, CH₂CHCH₂).

Diethyl 3-Methyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]**dodeca-2(6)**,1(9)-**diene-11,11-dicarboxylate** (24a): According to GP 2b **15a**-All (2.170 g, 5.407 mmol) was treated with palladium acetate (61 mg, 5 mol%), triphenylphosphane (142 mg, 10 mol%), and silver(I) carbonate (2.98 g, 2 equiv.) in acetonitrile (120 mL) at 80 °C for 9 h. The reaction mixture was filtered through a plug of celite, silica gel, and charcoal prior to concentration. Chromatography of the residue on silica gel (150 g, column 4×30 cm, PE/Et₂O 5 : 1) gave **24a** (1.455 g, 84%) as a colourless oil ($R_f = 0.16$). – IR (film): v = 2976 cm⁻¹, 2930 (C–H), 1737 (C=O), 1446, 1367, 1250, 1181, 1070, 1011, 945, 862, 844. – ¹H NMR (400 MHz, CDCl₃): $\delta = 1.26$ (t, ³J = 7.0 Hz, 6 H, $2 \times \text{OCH}_2\text{CH}_3$), 1.29 (d, ³J = 6.2 Hz, 3 H, CH₃), 2.30 (bs, 4 H, 10-H, 12-H), 2.93–3.19 (m, 4 H, 7-H, 8-H), 4.27 (q, ³J = 7.0 Hz, 4 H, $2 \times \text{OCH}_2\text{CH}_3$), 4.48 (d, ²J = 12.5 Hz, 1 H, 5-H), 4.81 (dd, ²J = 12.5, ⁴J = 1.5 Hz, 1 H, 5-H), 4.91 (bs, 1 H, 3-H). – ¹³C NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 13.87$ (+, $2 \times \text{OCH}_2\text{CH}_3$), 23.54 (–, C-12*), 39.25, 42.73 (–, C-8, C-7), 58.58 (Cquat, C-11), 61.47 (–, $2 \times \text{OCH}_2\text{CH}_3$), 75.19 (–, C-5), 80.84 (+, C-3), 125.82 (Cquat, C-2), 130.82 (Cquat, C-6), 132.45 (Cquat, C-1), 132.98 (Cquat, C-9), 171.88 (Cquat, $2 \times \text{CO}_2\text{EL}$). – MS (70 eV), m/z (%): 274 (19), 258 (63), 231 (41), 185 (48), 173 (63), 115 (39), 91 (18), 43 (100) [C₃H₇+]. – Anal. Calcd for C₁₈H₂₂O₅ (318.4 = aromatised product): C 67.91, H 6.97; found: C 67.88, H 7.08.

Diethyl 3-Ethyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2(6),1(9)-diene-11,11-dicarboxylate (24b): According to GP 2b 15b-All (460 mg, 1.108 mmol) was treated with palladium acetate (25 mg, 10 mol%), triphenylphosphane (58 mg, 20 mol%), and silver(I) carbonate (0.61 g, 2 equiv.) in acetonitrile (40 mL) at 80 °C for 6 h. The reaction mixture was filtered through a plug of celite, silica gel, and charcoal prior to concentration. Chromatography of the residue on silica gel (30 g, column 2 × 20 cm, PE/Et₂O 10 : 1) gave 24b (300 mg, 81%) as a colourless oil ($R_f = 0.22$, PE/Et₂O 4 : 1). – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.97$ (t, ³J = 7.3 Hz, 3 H, CH₂CH₃), 1.33 (t, ³J = 6.9 Hz, 6 H, 2 × OCH₂CH₃), 1.52–1.63 (m, 1 H, CH₂CH₃), 1.78–1.88 (m, 1 H, CH₂CH₃), 2.38 (bs, 4 H, 10-H, 12-H), 3.01–3.20 (m, 4 H, 7-H, 8-H), 4.27 (q, ³J = 6.9 Hz, 4 H, 2 × OCH₂CH₃), 4.56–4.72 (m, 2 H, 5-H), 4.92 (bs, 1 H, 3-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 8.66$ (+, CH₂CH₃), 13.94 (+, 2 × OCH₂CH₃), 20.52, 23.65 (–, C-10, C-12), 28.15 (–, CH₂CH₃), 39.41, 42.78 (–, C-8, C-7), 58.72 (C_{quat}, C-11), 61.52 (–, 2 × OCH₂CH₃), 75.84 (–, C-5), 80.71 (+, C-3), 126.05 (C_{quat}, C-2), 130.65 (C_{quat}, C-6), 131.67 (C_{quat}, C-1), 132.93 (C_{quat}, C-9), 171.96 (C_{quat}, 2 × CO₂Et). – MS

(70 eV), m/z (%): 334 (9) [M+], 305 (100) [M+ - C₂H₅], 275 (11), 259 (8), 229 (23), 157 (10), 128 (8), 57 (5), 44 (7). - Anal. Calcd for C₁₉H₂₆O₅ (334.4): C 68.24, H 7.84; found: C 68.22, H 7.73.

Diethyl 3-Isopropyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]**dodeca-2**(6),1(9)-**diene-11,11-dicarboxylate** (24c): According to GP 2b **15c**-All (300 mg, 0.70 mmol) was treated with palladium acetate (8 mg, 5 mol%), triphenylphosphane (18 mg, 10 mol%), and silver(I) carbonate (579 mg, 3 equiv.) in acetonitrile (15 mL) at 60 °C for 4 h. The reaction mixture was filtered through a plug of celite, silica gel (treated before with triethylamine and washed with PE), and charcoal prior to concentration. Chromatography of the residue on silica gel (60 g, column 2 × 20 cm, PE/Et₂O 4 : 1) gave **24c** (232 mg, 95%) as a colourless oil ($R_f = 0.22$). – IR (film): v = 2962 cm⁻¹, 2871, 2830, 1722, 1628, 1465, 1445, 1383, 1366, 1251, 1180, 1097, 1069, 1035, 947, 932, 890, 861, 831, 806, 733, 632, 583, 521, 458, 418, 410. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.71$ [d, ³*J* = 6.8 Hz, 3 H, CH(CH₃)₂], 1.02 [d, ³*J* = 6.9 Hz, 3 H, CH(CH₃)₂], 1.23 (t, ³*J* = 7.2 Hz, 6 H, OCH₂CH₃), 1.81 [sept, ³*J* = 6.9, ³*J* = 6.8 Hz, 1 H, CH(CH₃)₂], 2.27 (s, 4 H, 10-H, 12-H), 3.01 (m, 4 H, 7-H, 8-H), 4.18 (2 q, ³*J* = 7.2 Hz, 4 H, OCH₂CH₃), 4.51 (d, 2 H, 5-H), 4.73 (m, 1 H, 3-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.96$ (+, CH₂CH₃), 14.59 [+, CH(CH₃)₂], 19.91 [+, CH(CH₃)₂], 20.52 (-), 23.66 (-), 32.45 [+, CH(CH₃)₂], 39.56 (-, C-8), 42.76 (-, C-7), 58.75 (C_{quat}, C-1), 132.97 (C_{quat}, C-9), 172.00 (C_{quat}, CO₂Et).

Diethyl 3-Phenyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]**dodeca-2**(6),1(9)-diene-11,11-dicarboxylate (24d): According to GP 2b 15d-All (800 mg, 1.727 mmol) was treated with palladium acetate (39 mg, 10 mol%), triphenylphosphane (91 mg, 20 mol%), and silver(I) carbonate (0.95 g, 2 equiv.) in acetonitrile (60 mL) at 80 °C for 12 h. The reaction mixture was filtered through a plug of celite, silica gel, and charcoal prior to concentration. Chromatography of the residue on silica gel (50 g, column 3×25 cm, PE/Et₂O 8 : 1) gave 24d (337 mg, 51%) as a colourless oil ($R_f = 0.17$, PE/Et₂O 3 : 1). – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.09$ (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 1.21 (t, ³*J* = 7.1 Hz, 3 H, OCH₂CH₃), 2.31–2.38 (m, 5 H, 7-H, 10-H, 12-H), 2.78–2.95 (m, 3 H, 7-H, 8-H), 4.04 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃), 4.16 (q, ³*J* = 7.1 Hz, 2 H, OCH₂CH₃), 4.67 (d, ²*J* = 13.0 Hz, 1 H, 5-H), 4.81 (dd, ²*J* = 13.0, ⁴*J* = 1.4 Hz, 1 H, 5-H), 5.70 (bs, 1 H, 3-H), 7.23–7.36 (m, 5 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.82$, 13.93 (+, 2 × OCH₂CH₃), 76.36 (-, C-5), 87.28 (+, C-3), 126.22 (C_{quat}, C-2), 127.45, 128.15, 128.43 (+, C-Ph), 131.33 (C_{quat}, C-6), 131.87 (C_{quat}, C-1), 133.31 (C_{quat}, C-9), 141.35 (C_{quat}, C-Ph), 171.73, 172.01 (C_{quat}, 2 × CO₂Et). – MS (70 eV), *m/z* (%): 382 (10) [M⁺], 309 (5), 277 (6), 254 (3), 205 (10), 179 (10), 105 (45), 74 (100), 44 (18). – Anal. Calcd for C₂₃H₂₆O₅ (382.5): C 72.23, H 6.85; found: C 70.68, H 6.97. – HRMS: calcd 382.1780 (correct HRMS).

Diethyl 3-p-Methoxyphenyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2(6),1(9)-diene-11,11-dicarboxylate (24e): According to GP 2b 15e-All (185 mg, 0.408 mmol) was treated with palladium acetate (9 mg, 11 mol%), triphenylphosphane (21 mg, 21 mol%), and silver(I) carbonate (0.23 g, 2.2 equiv.) in acetonitrile (10 mL) at 110 °C for 7 h. The reaction mixture was filtered through a plug of celite, silica gel, and charcoal prior to concentration. Chromatography of the residue on silica gel (20 g, column 1.5×20 cm, PE/Et₂O 4 : 1) gave 24e (38 mg, 25%) as a colourless oil ($R_f = 0.15$). – IR (film): v = 2962 cm⁻¹ (C–H), 1725, 1513, 1261, 899, 721, 651. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.11$ (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 1.21 (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 2.20–2.59 (m, 5 H, 7-H, 10-H, 12-H), 2.71–3.04 (m, 3 H, 7-H, 8-H), 3.79 (s, 3 H, OCH₃), 4.07 (q, ³J = 7.1 Hz, 2 H, OCH₂CH₃), 4.17 (q, ³J = 7.1 Hz, 2 H, OCH₂CH₃), 4.64 (d, ²J = 13.1 Hz, 1 H, 5-H), 5.67 (bs, 1 H, 3-H), 6.89 (d, ³J = 6.8 Hz, 2 H, *o*-Ar-H), 7.17 (d, ³J = 6.8 Hz, 2 H, *m*-Ar-H). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 13.84$, 13.96 (2 × OCH₂CH₃), 20.73, 23.69 (C-10, C-12), 39.10, 42.82 (C-8, C-7), 55.19 (OCH₃), 58.68 (C-11), 61.37, 61.54 (OCH₂CH₃), 76.06 (C-5), 86.81 (C-3), 113.87 (C-Ar), 126.38 (C-2), 128.76 (C-Ar), 131.32 (C-6), 131.88 (C-1), 133.27 (C-9), 133.54 (C-Ar), 159.53 (C-Ar), 171.81, 172.05 (2 × CO₂Et). – MS (70 eV), *m/z* (%): 412 (42) [M⁺], 336 (15), 263 (21), 235 (18), 203 (12), 135 (100), 57 (42), 41 (14). – C₂₄H₂₈O₆: calcd 412.1886 (correct HRMS).

Diethyl 3-Methyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2.5.1(9)-triene-11.11-dicarboxylate (25a): To a solution of 24a (1.20 g, 3.75 mmol) in toluene (150 mL) was slowly (1 h) added 2.3-dichloro-5.6-dicyano-1.4benzoquinone (1.28 g, 5.64 mmol), and the mixture was stirred for additional 30 min at room temperature. The vellow reaction mixture was diluted with Et₂O and washed with sodium hydroxide solution (50 mL, 1%) NaOH in water). The aqueous layer was extracted with Et₂O (4×50 mL) and the combined organic phases were washed with brine (100 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (100 g, column 3.5×25 cm, PE/Et₂O 6 ; 1) to give 25a (656 mg, 55%, $R_f = 0.24$) and the benzoaromatic product 26a (429 mg, 36%, $R_f = 0.17$) as colourless oils. -**25a**: IR (film): $y = 2977 \text{ cm}^{-1}$ (C-H), 1731 (C=O), 1368, 1249, 1186, 1072, 833. - ¹H NMR (400 MHz. CDCl₃): $\delta = 1.25$ (t, ³J = 7.1 Hz, 6 H, 2×OCH₂CH₃), 2.12 (bs, 2 H, 8-H), 2.32 (s, 3 H, CH₃), 2.62 (t, ${}^{3}J = 6.2$ Hz. 2 H, 7-H), 3.09 (s, 2 H, 10-H*), 3.32 (s, 2 H, 12-H*), 4.22 (q, ${}^{3}J = 7.1$ Hz, 4 H, 2 × OCH₂CH₃), 6.98 (s. 1 H, 5-H). ~ ¹³C NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 12.86$ (-, C-10*), 14.01 (+, 2 × OCH₂CH₃), 18.24 (-, C-12*), 24.31 (+, CH₃), 40.04, 43.33 (-, C-8, C-7), 58.51 (C_{quat}, C-11), 61.62 (-, 2×OCH₂CH₃), 115.53 (C_{quat}, C-9), 120.71 (C_{quat}, C-1), 124.93 (C_{quat}, C-6), 132.94 (C_{quat}, C-2), 134.50 (+, C-5), 143.92 (Couat, C-3), 172.17 (Couat, 2×CO2Et). - Anal. Calcd for C18H22O5 (318.4): C 67.91, H 6.97; found: C 67.81, H 7.11. - 26a: IR (film): v = 2977 cm⁻¹ (C-H), 1731 (C=O), 1368, 1249, 1186, 1072. -¹H NMR (400 MHz, CDCl₃): $\delta = 1.25$ (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 1.27 (t, ³J = 7.1 Hz, 3 H, OCH₂CH₃), 1.29 (d, ³J = 6.6 Hz, 3 H, CH₃), 3.38–3.63 (m, 4 H, 10-H, 12-H), 4.26 (mc, 4 H, 2 × OCH₂CH₃), 4.98 (d, ${}^{2}J$ = 12.1 Hz, 1 H, 5-H), 5.11 (d, ${}^{2}J$ = 12.1 Hz, 1 H, 5-H), 5.34 (bs, 1 H, 3-H), 7.05 (d, ${}^{3}J$ = 7.6 Hz, 1 H, 7-H*), 7.10 (d, ${}^{3}J$ = 7.6 Hz, 1 H, 8-H*). – ${}^{13}C$ NMR (100.6 MHz, CDCl₃, plus DEPT): $\delta = 14.29$ (+, 2 × OCH₂CH₃), 21.02, 38.60 (-, C-10, C-12), 40.24 (+, CH₃), 60.98 (C_{quat}, C-11), 62.10 (-, 2 × OCH₂CH₃), 72.61 (-, C-5), 79.76 (+, C-3), 115.59 (C_{quat}, C-9), 119.96 (C_{quat}, C-1), 123.58 (C_{quat}, C-6), 133.33 (C_{quat}, C-2), 138.45, 139.23 (+, C-7, C-8), 171.77 (C_{ouat}, 2×CO₂Et).

Diethyl 3-Ethyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2,5,1(9)-triene-11,11-dicarboxylate (25b): To a solution of 24b (79 mg, 0.236 mmol) in toluene (30 mL) was slowly (1 h) added 2,3-dichloro-5,6-dicyano-1,4benzoquinone (80 mg, 0.352 mmol), and the mixture was stirred for additional 30 min at room temperature. The yellow reaction mixture was diluted with Et₂O and washed with sodium hydroxide solution (30 mL, 1%) NaOH in water). The aqueous layer was extracted with Et₂O (4×25 mL) and the combined organic phases were washed with brine (50 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (20 g, column 1.5×15 cm, PE/Et₂O 5 : 1) to give **25b** (50 mg, 64%) as a colourless oil ($R_f = 0.39$, PE/Et₂O 4 : 1). – IR (film): v = 2990 cm⁻¹ (C-H), 1733 (C=O), 1556, 1533, 1367, 1015, 762, 665. $- {}^{1}$ H NMR (250 MHz, CDCl₃): $\delta = 1.22 - 1.29$ (m, 9 H, $2 \times OCH_2CH_3$, CH₂CH₃), 2.26 (bs, 2 H, 8-H), 2.51–2.63 (m, 4 H, 7-H, CH₂CH₃), 3.06 (s, 2 H, 10-H*), 3.29 (s, 2 H, 12-H*), 4.21 (q, ${}^{3}J$ = 7.1 Hz, 4 H, 2 × OCH₂CH₃), 6.99 (s, 1 H, 5-H). – ${}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.56$ (+, CH₂CH₃), 14.02 (+, 2 × OCH₂CH₃), 18.23, 20.80 (-, C-10, C-12), 24.32 (-, CH₂CH₃), 40.17, 43.32 (-, C-7, C-8), 58.58 (Cquat, C-11), 61.58 (-, 2×OCH2CH3), 114.56 (Cquat, C-9), 120.52 (Cquat, C-1), 124.98 (C_{quat}, C-6), 133.03 (C_{quat}, C-2), 134.56 (+, C-5), 149.32 (C_{quat}, C-3), 172.15 (C_{quat}, 2×CO₂Et). -MS (70 eV), m/z (%): 332 (52) [M⁺], 258 (100), 185 (41), 171 (18), 105 (22), 77 (23), 41 (19). - C₁₉H₂₄O₅: calcd 332.1623 (correct HRMS).

Diethyl 3-Isopropyl-4-oxatricyclo[7.3.0^{2,6}.0^{1,9}]dodeca-2,5,1(9)-triene-11,11-dicarboxylate (25c): A solution of 24c (100 mg, 0.29 mmol) in toluene (20 mL) was reacted with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (69 mg, 0.30 mmol) for 30 min at room temperature. The yellow reaction mixture was diluted with Et_2O and washed with sodium hydroxide solution (10 mL, 1% NaOH in water). The aqueous layer was extracted with Et_2O (3 × 20 mL) and the combined organic phases washed with brine (30 mL) and dried over magnesium sulfate. Removal of the solvents was followed by chromatography of the residue on silica gel (30 g, column 2 × 10 cm, PE/Et₂O 3 : 1) to give 25c (84 mg, 84%) as a yellowish oil. – IR (film): $v = 2968 \text{ cm}^{-1}$, 2924, 2864, 1727 (C=O), 1682 (C=C-O), 1454, 1424, 1376, 1356, 1298, 1250 (=C-O-C), 1182,

11567

1152, 1111, 1068, 1009, 909, 833. $^{-1}$ H NMR (500 MHz, CDCl₃): $\delta = 1.24$ (2 d, ${}^{3}J = 7.0$ Hz, 6 H, CH₃), 1.28 (t, ${}^{3}J = 7.1$ Hz, 6 H, CH₂CH₃), 2.24 (m, 2 H, 8-H), 2.61 (dt, ${}^{3}J = 7.5$, ${}^{4}J = 1.5$ Hz, 2 H, 7-H), 3.06 (t, ${}^{4}J = 1.5$ Hz, 2 H, 10-H), 3.11 [sept, ${}^{3}J = 7.0$ Hz, 1 H, CH(CH₃)₂], 3.31 (mc, 2 H, 12-H), 4.22 (2 q, ${}^{3}J = 7.1$ Hz, 4 H, CH₂CH₃), 7.00 (d, ${}^{4}J = 1.5$ Hz, 1 H, 5-H). $^{-13}$ C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 14.00$ (+, CH₂CH₃), 18.18 (-), 21.79 [+, CH(CH₃)₂], 24.28 (-), 27.27 [+, CH(CH₃)₂], 40.29 (-), 43.26 (-), 58.52 (C_{quat}, C-11), 61.58 (-, CH₂CH₃), 113.43 (C_{quat}), 120.27 (C_{quat}), 124.94 (C_{quat}), 132.97 (C_{quat}), 134.34 (+, C-5), 152.54 (C_{quat}, C-3), 172.14 (C_{quat}, CO₂Et). – MS (70 eV), *m/z* (%): 346 (11) [M⁺], 331 (3) [M⁺ – CH₃], 304 (2), 272 (13), 257 (9), 238 (2), 230 (7), 199 (8), 185 (4), 165 (8), 143 (100), 129 (5), 97 (5), 91 (24), 83 (11), 69 (27), 55 (15), 41 (24). – Anal. Calcd for C₂₀H₂₆O₅ (346.4): C 69.34, H 7.56; found: C 69.25, H 7.66.

Diethyl (E)-2-Bromo-8-methoxy-12-phenyl-1,11-dodecadiene-6-yne-4,4-dicarboxylate (27): According to GP 1b diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (2.00 g, 6.3 mmol), 5-phenyl-4-pentenal^[17] (1.01 g, 6.3 mmol), n-butyllithium (2.80 mL, 6.6 mmol, 2.36 M in n-hexane), and methyl iodide (3.0 mL) were reacted in THF and DMSO (30 mL each). After standard work-up, the crude material was chromatographed on silica gel (95 g, column 2.5 \times 35 cm, PE/Et₂O 16 : 1 to 4 : 1) to yield 27 (1.91 g, 62%) as a colourless oil ($R_{\rm F}$ = 0.35 in PE/Et₂O 4 : 1). – IR (film): $v = 3075 \text{ cm}^{-1}$ (C=CH), 3050 (C=CH), 3020 (C=CH), 2970, 2925, 2815, 2240 (C=C), 1735 (C=O), 1623 (C=C), 1595 (C=C), 1440, 1425, 1365, 1285, 1210, 1185, 905, 855, 740. -¹H NMR (250 MHz, CDCl₂): $\delta = 1.26$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.82 (mc, 2 H, 9-H), 2.33 (mc, 2 H, 10-H), 3.00 (d, ${}^{5}J = 1.8$ Hz, 2 H, 5-H), 3.30 (s, 2 H, 3-H), 3.36 (s, 3 H, OCH₃), 3.96 (tt, ${}^{5}J = 1.7$, ${}^{3}J = 6.6$ Hz, 1 H, 8-H), 4.20 (mc, 4 H, OCH₂CH₂), 5.61 (d, J = 1.5 Hz, 1 H, 1-H), 5.80 (d, J = 1.0 Hz, 1 H, 1-H), 6.18 (dt, ${}^{3}J$ = 6.8 and 15.8 Hz, 1 H, 11-H), 6.42 (d, ${}^{3}J$ = 15.9 Hz, 1 H, 12-H), 7.15–7.36 (m, 5 H, Ph-H). – ${}^{13}C$ NMR $(67.9 \text{ MHz}, \text{CDCl}_3, \text{plus DEPT}): \delta = 13.8 (+, \text{CH}_2\text{CH}_3), 22.4 (-), 28.5 (-), 35.3 (-), 42.7 (-), 56.0 (+, \text{OCH}_3), 22.4 (-), 28.5 (-), 35.3 (-), 42.7 (-), 56.0 (+, \text{OCH}_3), 22.4 (-), 28.5 (-), 35.3 (-), 42.7 (-), 56.0 (+, \text{OCH}_3), 22.4 (-), 28.5 (-), 35.3 (-), 42.7 (-), 56.0 (+, \text{OCH}_3), 28.5 (-), 35.3 (-), 48.5 (-), 35.3 (-), 48.5 (-), 38.$ 56.2 (Couat, C-4), 61.8 (-, OCH2CH3), 70.4 (+, C-8), 80.6 (Couat), 82.5 (Couat), 122.4 (-, C-1), 125.8 (+), 126.4 (C_{quat}, C-2), 126.8 (+), 128.4 (+), 129.3 (+), 130.5 (+), 137.5 (C_{quat}, Ar-C), 168.9 (C_{quat}, C=O). - MS (70 eV), m/z (%): 492/490 (8/9) [M⁺], 411 (5) [M⁺ - Br], 337 (22), 305 (20), 295 (46), 235 (33), 207 (22), 129 (20), 295 (46), 235 (33), 207 (22), 129 (20), 295 (46), 205 (46) (30), 117 (95), 91 (100), 77 (62), 51 (28). $-C_{25}H_{31}BrO_5$: calcd 490.1354 (correct HRMS). -C₂₅H₃₁BrO₅ (491.4): C 61.10, H 6.36, Br 16.26; found: C 60.97, H 6.31, Br 16.01.

(E)-5-Methoxy-1-phenylhept-1-ene-6-yne (31): Analogously to GP 1b trimethylsilylacetylene (3.27 g, 33.3 mmol), (E)-5-phenyl-4-pentenal^[17] (5.34 g, 33.3 mmol), n-butyllithium (15.01 mL, 36.6 mmol, 2.44 N in n-hexane), and methyl iodide (5 mL) were reacted in THF (150 mL) and DMSO (150 mL). Work-up yielded (E)-5-methoxy-1-phenyl-7-trimethylsilylhept-1-ene-6-yne (30) (9.03 g, 100%) as a slightly yellow oil, that was used without further purification. - IR (film): v = 3082 cm⁻¹ (=CH), 3069, 3026, 2956 (CH), 2938, 2902, 2168 (C=C), 1652 (C=C), 1598, 1494, 1448, 1410, 1334, 1250, 1160, 1108, 1072, 966, 846, 760, 694. -¹H NMR (250 MHz, CDCl₃): $\delta = 0.24$ (s, 9 H, CH₃Si), 1.85–1.96 (m, 2 H, 4-H), 2.42 (q, ³J = 7 Hz, 2 H, 3-H), 3.45 (s, 3 H, OCH₃), 4.03 (t, ${}^{3}J$ = 7 Hz, 1 H, 5-H), 6.26 (dt, ${}^{3}J$ = 16, ${}^{3}J$ = 6 Hz, 1 H, 2-H), 6.45 (d, ${}^{3}J$ = 16 Hz, 1 H, 1-H), 7.20–7.39 (m, 5 H, Ph-H). - ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 0.06$ (SiCH₃), 28.67 (C-4), 35.05 (C-3), 56.33 (OCH₃), 70.89 (C-5), 90.88 (C-6*), 104.31 (C-7*), 125.95 (C-Ph), 126.92, 128.45 (C-Ph), 129.59, 130.58, 137.67 (C-Ph). - A solution of 30 (9.00 g, 33.1 mmol) in methanol (100 mL) was treated with sodium hydroxide solution (1 mL, 10% in water) and stirred for 15 h at room temperature, after which the reaction mixture was poured into water (100 mL) and extracted with Et₂O (3×40 mL). The combined organic layers were washed with brine (20 mL) and dried over magnesium sulfate. Removal of the solvents under vacuum and chromatography of the residue on silica gel (160 g, column 5×50 cm, PE/Et₂O 15 : 1) afforded 31 (5.28 g, 80%) as a colourless oil ($R_f = 0.67$ in PE/Et₂O 5 : 1). – IR (film): v = 3294 cm⁻¹ (\equiv CH), 3082 (=CH), 3058, 3026, 2988 (CH), 2934, 2824, 1598, 1494, 1448, 1336, 1196, 1162, 1108, 1072, 966, 742, 694, 638. – ¹H NMR (250 MHz, CDCl₃): δ = 1.92 (mc, 2 H, 4-H), 2.41 (q, ${}^{3}J$ = 7 Hz, 2 H, 3-H), 2.48 (d, ${}^{4}J$ = 2 Hz, 1 H, 7-H), 3.45 (s, 3 H, OCH₃), 4.01 (dt, ${}^{3}J$ = 7, ${}^{4}J$ = 2 Hz, 1 H, 5-H), 6.23 (dt, ${}^{3}J$ = 16, ${}^{3}J$ = 6 Hz, 1 H, 2-H), 6.45 (d, ${}^{3}J$ = 16 Hz, 1 H, 1-H), 7.19–7.40 (m, 5 H, Ph-H). – ${}^{13}C$ NMR (62.9 MHz, CDCl₃, plus DEPT):

δ = 28.53 (-, C-4), 35.06 (-, C-3), 56.43 (+, OCH₃), 70.30 (+, OCH), 74.02 (C_{quat}, C-6), 82.45 (+, C-7), 125.95 (+, C-Ph), 126.95 (+), 128.46 (+, C-Ph), 129.38 (+), 130.68 (+), 137.60 (C_{quat}, C-Ph). – MS (EI, 70 eV), *m*/z (%): 200 (2) [M⁺], 167 (100), 142 (64), 129 (40), 117 (35), 115 (56), 91 (42), 69 (20), 51 (7). – C₁₄H₁₆O: calcd 200.1201 (correct HRMS).

(E)-8-Bromo-5-methoxy-1-phenyloct-1-ene-6-yne (33): To a solution of (E)-5-methoxy-1-phenylhept-1-ene-6-yne (31) (5.27 g, 26.3 mmol) in THF (120 mL) was added n-butyllithium (11.9 mL, 29.0 mmol, 2.44 N in *n*-hexane) dropwise at -78 °C. After completion the red reaction mixture was stirred for further 15 min and paraformaldehyde (1.58 g, 52.6 mmol, 2 equiv.) added in one portion. The heterogeneous mixture was allowed to come to room temperature and stirring was continued for 10 h, during which it became yellow and homogeneous. The reaction mixture was poured into water (50 mL) and extracted with $E_{12}O(4 \times 30 \text{ mL})$. Washing of the combined organic extracts with brine (30 mL) and drying over magnesium sulfate was followed by concentration under vacuum. The crude product was purified on silica gel (70 g, column $4 \times$ 25 cm, PE/Et₂O 2 : 1) to give (E)-4-methoxy-8-phenyloct-7-ene-2-yne-1-ol (32) (5.23 g, 86%) as a colourless oil ($R_f = 0.58$ in PE/Et₂O 1 : 3). – IR (film): v = 3384 cm⁻¹ (OH), 3030 (arom. CH), 2982 (CH), 2936, 2862, 1856, 1494, 1448, 1338, 1128, 1102, 1054, 1022, 966, 746, 694, 616. $^{-1}$ H NMR (250 MHz, CDCl₃): $\delta = 1.92$ (mc, 2 H, 5-H), 2.10 (bs, 1 H, OH), 2.38 (q, ${}^{3}J$ = 7 Hz, 2 H, 6-H), 3.42 (s, 3 H, OCH₃), 4.04 (m, 1 H, 4-H), 4.33 (bs, 2 H, 1-H), 6.21 (dt, ${}^{3}J = 16$, ${}^{3}J = 6$ Hz, 1 H, 7-H), 6.44 (d, ${}^{3}J = 16$ Hz, 1 H, 8-H), 7.19–7.37 (m, 5 H, Ph-H), -1^{3} C-NMR (62.9 MHz, CDCl₂): $\delta = 25.54$ (C-5), 28.59 (C-6), 50.96 (C-1), 56.43 (OCH₂), 70.50 (OCH), 84.20 (C-2*), 84.43 (C-3*), 125.91 (C-Ph), 126.94, 128.45 (C-Ph), 129.34, 130.62, 137.59 (C-Ph), --MS (EI, 70 eV), m/z (%): 199 (9) [M⁺ – OCH₃], 182 (14), 179 (20), 167 (47), 154 (100), 141 (27), 129 (25), 117 (37), 115 (50), 91 (60), 77 (12), 71 (17), 41 (18). - C₁₅H₁₈O₂: calcd. 230.1307 (correct HRMS). - To a solution of 32 (4.73 g, 20.5 mmol) and carbon tetrabromide (10.2 g, 30.8 mmol, 1.5 equiv.) in acetonitrile (200 mL) triphenylphosphane (8.08 g, 30.8 mmol, 1.5 equiv.) was added portionwise at 0 °C and the reaction mixture stirred for 5 h. The solvent was partially removed under vacuum and the remaining residue (about 50 mL) filtered. The filtrate was further concentrated under vacuum and the crude product chromatographed on silica gel (60 g, column 4×20 cm, PE/Et₂O 10:1) to afford 33 (5.54 g, 92%) as a slightly vellowish oil $(R_f = 0.76 \text{ in PE/Et}_2 0.5:1)$, that must be stored at $-30 \,^{\circ}\text{C}$ to preserve it from decomposition. -1H-NMR $(250 \text{ MHz}, \text{CDCl}_3)$: $\delta = 1.78-2.00 \text{ (m, 2 H, 4-H)}, 2.38 \text{ (q, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{H}), 3.42 \text{ (s, 3 H, OCH}_3), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 2 \text{ H}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}, 3-\text{Hz}), 3.97 \text{ (d, }^{3}J = 7 \text{ Hz}), 3.97 \text{ ($ ${}^{5}J$ = 2 Hz, 2 H, 8-H), 4.06 (mc, 1 H, 5-H), 6.20 (dt, ${}^{3}J$ = 16, ${}^{3}J$ = 6 Hz, 1 H, 2-H), 6.43 (d, ${}^{3}J$ = 16 Hz, 1 H, 1-H), 7.17–7.38 (m, 5 H, Ph-H). – 13 C-NMR (62.9 MHz, CDCl₃): $\delta = 14.27$ (C-8), 28.56 (C-4), 34.89 (C-3), 56.61 (OCH₃), 70.51 (C-5), 81.23 (C-6*), 85.67 (C-7*), 125.95 (C-Ph), 126.98, 128.47 (C-Ph), 129.31, 130.73, 137.54 (C-Ph). - MS (EI, 70 eV), m/z (%): 261/259 (1/1), 236/234 (7/7), 181 (100), 155 (76), 121 (44), 117/115 (62/58), 91 (95), 77 (29), 71 (34), 65 (28).

Ethyl (*E*)-4-Bromo-2-ethoxycarbonyl-5-phenyl-4-pentenecarboxylate (*E*-36): To a solution of phenylpropadiene^[19d] (6.5 g, 56 mmol) in dichloromethane (200 mL) was added slowly at room temperature a solution of bromine (8.9 g, 56 mmol) in dichloromethane (100 mL). The solvent was immediately removed under vacuum and below 30 °C to give the crude (*E/Z*)-mixture of products, which was chromatographed on silica gel (200 g, column 6×50 cm, PE/Et₂O 20 : 1) to yield pure (*E*)-1,2-dibromo-3-phenyl-2-propene (*E*-35) (3.5 g, 23%, $R_f = 0.70$ in PE/Et₂O 2 : 1), accompanied by the (*Z*)-isomer (*Z*-35) (4.8 g, 32%, $R_f = 0.66$ in PE/Et₂O 2 : 1) and a fraction of both isomers (3.2 g, 21%), which was not further separated. *E*-35: ¹H NMR (250 MHz, CDCl₃): $\delta = 4.38$ (s, 2 H, 1-H), 7.08 (s, 1 H, 3-H), 7.28-7.40 (m, 5 H, Ph-H). - ¹³C-NMR (62.9 MHz, CDCl₃): $\delta = 35.16$ (C-1), 121.52, 127.89 (C-Ph), 128.63, 130.54 (C-Ph), 135.14 (C-Ph), 136.67 (C-3). The (*E*)-isomer was very prone to partial isomerisation into the (*Z*)-isomer and therefore used immediately after preparation. – According to GP 3 a suspension of sodium hydride (609 mg, 15.2 mmol, 1.2 equiv., 60% in mineral oil) in DME (50 mL) was treated with diethyl malonate (2.03 g, 12.7 mmol), a equiv.) dropwise at room temperature. After the formation of gas had finished, *E*-35 (3.5 g, 12.7 mmol) was added and stirring continued for 5 h. Standard work-up and purification by chromatography on silica gel (100 g, column 5 × 30 cm, PE/Et₂O 25 : 1) afforded *E*-36 (2.41 g, 53%) as a slightly yellow oil ($R_f = 0.61$ in

PE/Et₂O 2 : 1). – IR (film): $v = 3030 \text{ cm}^{-1}$ (=CH), 2980 (CH), 1730 (C=O), 1628 (C=C), 1446, 1370, 1240, 1183, 1160, 1100, 1040, 926, 865, 760, 705. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.19$ (t, ³*J* = 7 Hz, 6 H, CH₃), 3.27 (d, ³*J* = 8 Hz, 2 H, 3-H), 3.91 (t, ³*J* = 8 Hz, 1 H, 2-H), 4.03–4.23 (m, 4 H, OCH₂), 7.08 (s, 1 H, 5-H), 7.19–7.38 (m, 5 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 13.88$ (CH₃), 34.71 (C-3), 50.99 (C-2), 61.59 (OCH₂), 124.94 (C-4), 127.55 (C-Ph), 128.15 (C-Ph), 128.51 (C-Ph), 135.21, 135.68, 168.13 (C=O). – MS (EI, 70 eV), *m/z* (%): 356/354 (0.1/0.1) [M⁺], 311/309 (3/3), 275 (100) [M⁺ – Br], 247 (14), 201 (58), 173 (27), 128 (33), 115 (50), 91 (21), 69 (22), 43 (32). – Anal. Calcd for C₁₆H₁₉BrO₄ (355.2): C 54.10, H 5.39; found: C 54.06, H 5.24.

2-Bromo-4,4-bis(ethoxycarbonyl)-8-methoxy-1,12-diphenyldodeca-1(E),11(E)-diene-6-yne (E.E-37): According to GP 3 E-36 (1.09 g, 3.07 mmol), (E)-8-bromo-5-methoxy-1-phenyl-oct-1-ene-6-yne (33) (897 mg, 3.06 mmol), and sodium hydride (134 mg, 3.36 mmol, 1.1 equiv., 60% in mineral oil) were reacted in DME (40 mL). The crude product was chromatographed on silica gel (35 g, column 2×25 cm, PE/Et₂O 20: 1) to yield E, E-37 (777 mg, 45%) as a colourless oil ($R_f = 0.59$ in PE/Et₂O 2: 1). - IR (film): $v = 3078 \text{ cm}^{-1}$ (=CH), 2952 (CH), 2842, 1728 (C=O), 1438, 1376, 1242, 1228, 1182, 1092, 1066, 960, 788, 750, 700, 636. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.20$ (t, ³J = 7 Hz, 6 H, CH₃), 1.42–1.67 (m, 2 H, 9-H), 2.18 (q, ${}^{3}J = 7$ Hz, 2 H, 10-H), 2.99 (s, 2 H, 5-H), 3.15 (s, 3 H, OCH₃), 3.44 (m, 1 H, 8-H), 3.68 (s, 2 H, 3-H), 4.00-4.24 (mc, 4 H, OCH₂), 6.13 (dt, ${}^{3}J = 16$, ${}^{3}J = 7$ Hz, 1 H, 11-H), 6.38 (d, ${}^{3}J = 16$ Hz, 1 H, 12-H), 7.16 (s. 1 H, 1-H), 7.18–7.34 (m, 10 H, Ph-H). – 13 C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.69$ (+, CH₃), 22.44 (-, C-5), 28.37 (-, C-9), 34.94 (-, C-10), 36.62 (-, C-3), 55.90 (+, OCH₃), 57.01 (C_{guat}, C-4), 61.72 (-, OCH2), 69.86 (+, C-8), 80.40 (C_{quat}, C-6*), 81.79 (C_{quat}, C-7*), 122.38 (C_{quat}, C-2), 125.75 (+, C-Ph), 126.75 (+), 127.38 (+), 128.32 (+, C-Ph), 128.38 (+, 2 C-Ph), 129.51 (+), 130.28 (+), 135.77 (C_{auat}, C-Ph), 137.36 (+, C-Ph), 137.53 (C_{quat}, C-Ph), 169.07 (C_{quat}, C=O). - MS (EI, 70 eV), m/z (%): 568/566 (7/7) [M+], 488 (7), 455 (3), 413 (16), 371 (35), 307 (8), 265 (8), 209 (14), 199 (35), 165 (41), 117 (58), 115 (100), 91 (62), 77 (30). - C₃₁H₃₅BrO₅: calcd 566.1668; found: 566.1667 (HRMS).

Diethyl *trans*-3-Methoxy-7-phenyltricyclo[7.3.0.0^{2,6}]dodeca-1(9),2(6)-diene-11,11-dicarboxylate (28): According to GP 2b, to a solution of 27 (500 mg, 1.02 mmol) in acetonitrile (10 mL) were added palladium acetate (24 mg, 10 mol%), triphenylphosphane (53 mg, 20 mol%), and potassium carbonate (422 mg, 3 equiv.). The mixture was heated for 3 d at 60 °C. Standard work-up and chromatography on silica gel (10 g, column 1×15 cm, PE/Et₂O 8 : 1) gave 28 (347 mg, 83%, $R_f = 0.24$ in PE/Et₂O 4 : 1) as a colourless oil. – IR (film): v = 3080 cm⁻¹ (C=CH), 3050 (C=CH), 2930, 2245 (C=C), 1735 (C=O), 1600 (C=C), 1550, 1440, 1365, 1240, 1180, 1155, 910, 860, 770, 730, 705, 650. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.24$ (t, ³J = 7.1 Hz, 3 H, CH₂CH₃), 1.26 (t, ³J = 7.1 Hz, 3 H, CH₂CH₃), 1.78–1.89 (m, 1 H), 2.03–2.16 (m, 2 H), 2.28–2.41 (m, 2 H), 2.68–2.79 (m, 1 H, 8-H), 2.87 (d, ²J = 17.6 Hz, 1 H, 12-H), 3.13 (d, ²J = 17.7 Hz, 1 H, 12-H), 3.16–3.26 (m, 3 H, 10- and 7-H), 3.31 (s, 3 H, OCH₃), 3.66 (t, ³J = 9.1 Hz, 1 H, 3-H), 4.18 (q, ³J = 7.1 Hz, 2 H, OCH₂CH₃), 4.19 (q, ³J = 7.1 Hz, 2 H, OCH₂CH₃), 7.12–7.40 (m, 5 H, Ph-H). – ¹³C NMR (67.9 MHz, CDCl₃): $\delta = 14.0$ (CH₂CH₃), 28.8, 31.9, 33.2, 39.4, 42.3, 43.0, 55.3, 58.9, 61.4, 85.1, 126.3, 127.5, 128.4, 128.6, 131.2, 132.6, 142.6, 144.6, 171.9 (C=O), 172.3 (C=O). – MS (70 eV), *m/z* (%): 410 (2) [M+], 378 (8), 305 (20), 304 (14), 231 (18), 160 (15), 127 (40), 117 (60), 115 (70), 104 (100), 91 (86), 84 (88), 55 (31). – C₂₅H₃₀O₅: calcd 410.2093 (correct HRMS).

4,4-Bis(ethoxycarbonyl)-7,8-diphenyltricyclo[7.3.0^{1,9}.0^{2,6}]dodeca-1,6,8-triene (39) and 4,4-Bis-(ethoxycarbonyl)-12-methoxy-7,8-diphenyltricyclo[7.3.0^{1,9}.0^{2,6}]dodeca-1(9),2(6)-diene (38): According to GP 2b 2-bromo-4,4-bis(ethoxycarbonyl)-8-methoxy-1,12-diphenyldodeca-1(*E*),11(*E*)-diene-6-yne (*E,E*-37) (650 mg, 1.15 mmol), palladium acetate (26 mg, 10 mol%), triphenylphosphane (60 mg, 20 mol%), and potassium carbonate (320 mg, 2.32 mmol, 2 equiv.) were reacted in acetonitrile (20 mL) for 7 d at 80 °C. Chromatography of the filtered and concentrated reaction mixture on silica gel (20 g, column 1×30 cm, PE/Et₂O 10: 1) gave **39** (200 mg, 38 %, $R_f = 0.52$ in PE/Et₂O 2: 1) and **38** (151 mg, 27%, $R_f = 0.23$ in PE/Et₂O 2: 1) as colourless oils. **39**: IR (film): v = 3056 cm⁻¹ (=CH), 2978 (CH), 2960, 2938, 2906, 1732 (C=O), 1602 (C=C), 1444, 1366, 1296, 1264, 1240, 1188, 1158, 1098, 1070, 1030, 1014, 912, 862, 734, 706. -¹H NMR (250 MHz, CDCl₃): $\delta = 1.23$ (t, ³J = 7 Hz, 6 H, CH₃), 2.06 (quint, ³J = 7 Hz, 2 H, 11-H), 2.73 (t, ${}^{3}J = 7$ Hz, 2 H, 10-H*), 2.93 (t, ${}^{3}J = 7$ Hz, 2 H, 12-H*), 3.43 (s, 2 H, 3-H**), 3.63 (s, 2 H, 5-H**), 4.19 (a, ${}^{3}J = 7$ Hz, 4 H, OCH₂), 6.98–7.24 (m, 10 H, Ph-H). – ${}^{13}C$ NMR (62.9 MHz, CDCl₂, plus DEPT): $\delta = 13.99$ (+, CH₃), 25.28 (-, CH₂), 31.51 (-, CH₂), 32.92 (-, CH₂), 39.48 (-, CH₂), 40.55 (-, CH₂), 60.19 (C_{quat}, C-4), 61.61 (-, OCH₂), 125.91 (+, C-Ph), 126.03 (+, C-Ph), 127.39 (+, C-Ph), 127.59 (+, C-Ph), 130.02 (+, 2 C-Ph), 134.68 (C_{quat}), 135.36 (C_{quat}), 136.28 (C_{quat}), 137.28 (C_{quat}), 138.72 (C_{quat}), 139.86 (C_{quat}), 140.20 (C_{quat}), 142.55 (C_{quat}), 171.79 (C_{quat}, C=O). - MŠ (EI, 70 eV), m/z (%): 452 (13), 381 (68) [M⁺ - CO₂Et], 354 (10), 335 (15), 307 (62), 279 (33), 215 (16), 202 (11), 129 (17), 102 (18), 91 (35), 84 (100), 57 (36), 55 (27), 51 (26), 47 (49), 43 (56), 41 (40). $-C_{30}H_{30}O_4$: calcd 454.2144 (correct HRMS). - Anal. Calcd for $C_{30}H_{30}O_4$ (454.6): C 79.27, H 6.65; found: C 79.20, H 6.71. – **38**: IR (film): $v = 3084 \text{ cm}^{-1}$ (=CH), 3062, 3028, 2980 (CH), 2936, 2902, 2848, 1740 (C=O), 1730, 1660 (C=C), 1602, 1492, 1452, 1392, 1366, 1298, 1252, 1184, 1158, 1076, 1052, 1032, 1012, 942, 914, 778, 734, 704. -¹H NMR (250 MHz, CDCl₃): $\delta = 1.20$ (t, ${}^{3}J = 7$ Hz, 3 H, CH₃), 1.23 (t, ³J = 7 Hz, 3 H, CH₃), 1.85–1.95 (m, 1 H, CH₂), 2.05–2.19 (m, 2 H, CH₂), 2.22–2.41 (m, 1 H, CH₂), 2.85 (s, 2 H, 3-H), 3.36 (bs, 5 H, OCH₃, 5-H), 3.86 (d, ${}^{3}J$ = 9.8 Hz, 1 H, 7-H*), 4.00 (d, ${}^{3}J$ = 9.7 Hz, 1 H, 8-H*), 4.17 (q, ³J = 7 Hz, 2 H, OCH₂), 4.18 (q, ³J = 7 Hz, 2 H, OCH₂), 4.73 (mc, 1 H, 12-H), 6.58–6.67 (m, 4 H, Ph-H), 7.01–7.24 (m, 6 H, Ph-H). – 13 C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.92$ (+, 2 C, CH₃), 29.11 (-, CH₂), 32.10 (-, CH₂), 39.58 (-, CH₂), 41.72 (-, CH₂), 49.30 (+, C-7*), 49.81 (+, C-8*), 55.51 (+, OCH₃), 59.07 (C_{auat}, C-4), 61.40 (-, 2 C, OCH₂), 85.14 (+, C-12), 126.16 (+, C-Ph), 126.30 (+, C-Ph), 127.40 (+, 2 C-Ph), 129.51 (C_{auat}, C-Ph), 129.60 (+, C-Ph), 130.80 (+, C-Ph), 133.30 (C_{auat}), 134.41 (C_{quat}), 138.16 (C_{quat}), 138.55 (C_{quat}), 143.72 (C_{quat}), 171.78 (C_{quat}, C=O), 172.24 (C_{quat}, C=O). -MS (EI, 70 eV), m/z (%): 486 (2) [M+], 455 (13) [M+ - OCH₃], 382 (16), 307 (13), 84 (100), 47 (34). -C₃₁H₃₄O₅: calcd 486.2406 (correct HRMS).

Diethyl 2-(2-Bromocyclohex-2-enyl)malonate (41): According to GP 3 diethyl malonate (4.40 g, 27.5 mmol), 2,3-dibromocyclohexene (40) (6.0 g, 25 mmol), and sodium hydride (1.0 g, 25 mmol, 60% in mineral oil) were reacted in DME (50 mL) for 36 h. The crude product was purified on silica gel (250 g, column 6×40 cm, PE/Et₂O 15 : 1) to afford 41 (5.38 g, 67%) as a colourless oil ($R_f = 0.63$ in PE/Et₂O 2 : 1). – IR (Film): v = 2980 cm⁻¹ (CH), 2935, 1730 (C=O), 1642 (C=C), 1450, 1370, 1330, 1250, 1220, 1180, 1145, 1105, 1035, 980, 940, 895, 888, 875, 810, 740. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.19-1.26$ (m, 6 H, CH₃), 1.42–1.72 (m, 2 H, 5'-H), 1.79–2.07 (m, 4 H, 4'-H, 6'-H), 3.02–3.11 (m, 1 H, 1'-H), 3.95 (d, ³J = 5 Hz, 1 H, 2-H), 4.06–4.20 (m, 4 H, OCH₂), 6.12–6.17 (m, 1 H, 3'-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): $\delta = 13.92$ (+, CH₃), 20.08 (–, CH₂), 26.41 (–, CH₂), 27.39 (–, CH₂), 42.19 (+, C-1'), 54.09 (+, C-2), 60.98 (–, OCH₂), 61.40 (–, OCH₂), 123.67 (C_{quat}, C-2'), 132.72 (+, C-3'), 167.69 (C_{quat}, C=O), 168.51 (C_{quat}, C=O). – MS (EI, 70 eV), *m/z* (%): 320/318 (0.5/0.4) [M⁺], 275/273 (8/8) [M⁺ – OC₂H₅], 266/244 (7/7), 240 (22), 239 (100) [M⁺ – Br], 211 (12), 193 (8), 165 (68), 162/160 (30/30), 137 (38), 115 (40), 91 (18), 79 (28), 55 (10), 43 (6). – C₁₃H₁₉BrO₄: calcd 318.0467; found: 318.0466 (HRMS).

Ethyl (E)-2-(2-Bromocyclohex-2-enyl)-2-ethoxycarbonyl-6-methoxy-10-phenyldec-9-ene-4-ynecarboxylate (42): According to GP 3 **41** (858 mg, 2.69 mmol) was treated with sodium hydride (118 mg, 2.96 mmol, 1.1 equiv., 60%) in DME (30 mL) for 5 h, after which (*E*)-8-bromo-5-methoxy-1-phenyloct-1-ene-6-yne (**33**) (788 mg, 2.69 mmol, 1 equiv.) was added in one portion. Stirring was continued for 12 h. Standard work-up and chromatography on silica gel (15 g, column 1×25 cm, PE/Et₂O 10 : 1) yielded **42** (624 mg, 44%) as a colourless oil (R_f = 0.45 in PE/Et₂O 2 : 1). – IR (Film): v = 3030 cm⁻¹ (=CH), 2980 (CH), 2940, 1730 (C=O), 1450, 1371, 1340, 1306, 1270, 1235, 1200, 1108, 1045, 970, 750, 700. – ¹H NMR (250 MHz, CDCl₃): δ = 1.29 (t, ³J = 7 Hz, 6 H, CH₃), 1.58 (mc, 1 H, CH₂), 1.69–1.88 (m, 3 H, CH₂), 1.92–2.05 (m, 4 H, CH₂), 2.36 (q, ³J = 7 Hz, 2 H, 8-H), 2.94 (d, ²J = 17 Hz, 1 H, 3-H), 3.10 (d, ²J = 17 Hz, 1 H, 3-H), 3.38 (s, 3 H, OCH₃), 3.63 (mc, 1 H, 1'-H), 3.97 (mc, 1 H, 6-H), 4.22 (q, ³J = 7 Hz, 4 H, OCH₂), 6.20 (dt, ³J = 16, ³J = 7 Hz, 1 H, 9-H), 6.26 (m, 1 H, 3'-H), 6.41 (d, ³J = 16 Hz, 1 H, 10-H), 7.13–7.38 (m, 5 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₃, plus DEPT): δ = 13.78 (+, CH₃), 13.86 (+, CH₃), 20.44 (-, CH₂), 23.88 (-, CH₂), 27.26 (-, CH₂), 27.52 (-, CH₂), 28.62 (-, CH₂), 35.26 (-, CH₂), 45.46 (+, C-1'), 56.19 (+, C-6), 60.18 (C_{quat}, C-2), 61.66 (-, 2 C, OCH₂), 70.59 (+, OCH₃), 81.16 (C_{quat}, C-4*), 82.57 (C_{quat}, C-5*), 122.33 (C_{quat}, C-2'), 125.86 (+, C-Ph), 126.83 (+), 128.39 (+, C-Ph), 129.59 (+), 130.43 (+), 134.67 (+), 137.59 (C_{quat}, C-Ph), 169.27 (C_{quat}, C=O), 169.46 (C_{quat}, C=O). – MS (EI, 70 eV), m/z (%): 532/530 (13/12) [M+], 451 (11) [M+ – Br], 377 (21), 335 (72), 275 (41), 247 (36), 209 (30), 163 (30), 129 (37), 117 (100), 91 (78), 79 (63), 51 (17). – C₂₈H₃₅BrO₅: calcd 530.1668 (correct HRMS).

13,13-Bis(ethoxycarbonyl)-3-methoxy-7-phenyltetracyclo[6.6.1.0^{2,6},0^{12,15}]pentadeca-1(15).2(6)-diene (43): According to GP 2b 42 (418 mg, 0.786 mmol) was treated with palladium acetate (18 mg, 10 mol%), triphenylphosphane (41 mg, 20 mol%), and potassium carbonate (217 mg, 1.57 mmol, 2 equiv.) in acetonitrile (15 mL) at 80 °C for 3 d. The crude product mixture was chromatographed on silica gel (20 g. column 1×35 cm, PE/Et₂O 20: 1) to give 69 mg of a not securely identified compound [$R_f = 0.41$ in PE/Et₂O 2: 1, ¹H NMR (250 MHz, CDCl₃): $\delta = 1.24$ (t, ³J = 7 Hz, 3 H, CH₃), 1.32 (t, ³J = 7 Hz, 3 H, CH₃), 1.61–1.81 (m, 2 H), 1.96–2.06 (m, 2 H), 2.07–2.34 (m, 2 H), 2.36–2.52 (m, 2 H), 2.71–2.83 (m, 1 H), 3.29 (d, ${}^{2}J$ = 17 Hz, 1 H), 3.39 (s, 3 H, OCH₃), 3.41–3.49 (m, 1 H), 3.63 (d, ${}^{2}J$ = 17 Hz, 1 H), 3.78–3.84 (m, 1 H), 4.06–4.20 (m, 4 H, OCH₂), 4.94 (dd, ${}^{3}J$ = 6, ${}^{3}J$ = 4 Hz, 1 H, OCH), 7.17–7.41 (m, 5 H, Ph-H), probably the aromatic compound 44] and 43 (108 mg, 30%) as a colourless oil ($R_f = 0.30$ in PE/Et₂O 2 : 1). - IR (film): v = 3024 cm⁻¹, 2978 (CH), 2938, 2904, 1730 (C=O), 1600 (C=C), 1492, 1452, 1388, 1366, 1298, 1252, 1182, 1092, 1036, 914, 732, 704, 646, -¹H NMR (250 MHz, CDCl₃): $\delta = 1.22$ (t, ³J = 7 Hz, 3 H, CH₃), 1.27 (t, ${}^{3}J = 7$ Hz, 3 H, CH₂), 1.33–1.41 (m, 2 H), 1.65–1.74 (m, 3 H), 1.88–1.94 (m, 3 H), 2.04–2.11 (m, 2 H), 2.43– 2.52 (m, 1 H), 2.79-2.88 (m, 1 H), 3.05 (m, 1 H), 3.35-3.45 (m, 2 H), 3.37 (s, 3 H, OCH₃), 4.18 (m, 4 H, OCH₂), 4.64 (bs, 1 H, 3-H), 6.95–6.99 (m, 2 H, Ph-H), 7.18–7.22 (m, 3 H, Ph-H). – ¹³C NMR (62.9 MHz, CDCl₂, plus DEPT): $\delta = 14.00$ (+, CH₃), 14.10 (+, CH₃), 20.44 (-, CH₂), 21.47 (-, CH₂), 23.12 (-, CH₂), 29.35 (-, CH₂), 31.69 (-, CH₂), 37.08 (+, CH), 39.75 (-, CH₂), 45.85 (+, CH), 46.84 (+, CH), 54.55 (+, C-3), 60.77 (-, OCH₂), 61.10 (-, OCH₂), 64.36 (C_{quat}, C-13), 84.11 (+, OCH₃), 125.66 (C_{quat}), 126.58 (+, C-Ph), 128.07 (+, C-Ph), 128.44 (+, C-Ph), 132.93 (C_{auat}), 137.69 (C_{auat}), 138.45 (C_{auat}), 145.32 (C_{auat}), 170.40 (C_{quat}, C=O), 172.04 (C_{quat}, C=O). - MS (EI, 70 eV), m/z (%): 450 (1) [M+], 377 (11), 275 (32), 247 (26), $129(29), 117(54), 79(43), 51(100) - C_{28}H_{34}O_5$; calcd 450.2406 (correct HRMS).

Diethyl 2-Bromo-8-methoxy-12-methyltrideca-1,11-diene-6-yne-4,4-dicarboxylate (46): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (2.00 g, 6.31 mmol) was treated with nbutyllithium (2.80 mL, 6.61 mmol, 2.36 M in *n*-hexane), and 5-methyl-4-hexenal^[24] (708 mg, 6.31 mmol) in THF (30 mL). Purification of the crude product on silica gel (50 g, column 2.5×20 cm, PE/Et₂O 4 : 1) afforded diethyl 2-bromo-8-hydroxy-12-methyltridec-1,11-diene-6-yne-4,4-dicarboxylate (45) (2.18 g, 81%) as a colourless oil ($R_f = 0.31$ in PE/Et₂O 1 : 1). - IR (Film): $v = 3400 \text{ cm}^{-1}$ (OH), 2920, 1740 (C=O), 1640 (C=C), 1425, 1365, 1270, 1065, 900, 860. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.26$ (t, ³J = 7.1 Hz, 6 H, CH_2CH_3 , 1.61 (bs, 3 H, 12- CH_3), 1.67 (bs, 3 H, 12- CH_3), 1.67 (m, 2 H, 9-H), 1.94 (d, ${}^{3}J = 5.7$ Hz, 1 H, OH), 2.09 (m, 2 H, 10-H), 2.94 (d, ${}^{5}J$ = 1.9 Hz, 2 H, 5-H), 3.16 (s, 2 H, 3-H), 4.20 (m, 4 H, OCH₂CH₃), 4.29 (m, 1 H, 8-H), 5.09 (qt, ${}^{4}J$ = 1.3, ${}^{3}J$ = 7.2 Hz, 1 H, 11-H), 5.60 (d, J = 1.5 Hz, 1 H, 1-H), 5.79 (bs, 1 H, 1-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 13.9 (+, CH₂CH₃), 17.7 (+, CH₃), 22.4 (-), 23.7 (-), 25.7 (+, CH₃), 37.9 (-), 42.7 (-), 56.1 (C_{quat}, C-4), 61.9 (-, OCH₂CH₃), 62.1 (+, C-8), 79.6 (C_{quat}), 85.2 (C_{quat}), 122.5 (-, C-1), 123.2 (+, C-11), 126.4 (C_{quat}, C-2), 132.6 (C_{quat}, C-12), 169.1 (C_{quat}, C=O). - MS (70 eV), m/z (%): 237 (31), 220 (15), 205 (51), 143 (23), 111 (27), 95 (37), 81 (43), 69 (79), 55 (100), 41 (84). - To a solution of 45 (1.88 g, 4.4 mmol) in THF (20 mL) n-butyllithium (1.95 mL, 4.6 mmol, 2.36 M in n-hexane) was added at -78 °C and the reaction mixture slowly warmed to 0 °C. DMSO (20 mL) and methyl iodide (1 mL) were added dropwise and stirring was continued at 10 °C for 3 h. The reaction mixture was poured into water (50 mL) and extracted with Et₂O (3×50 mL). The combined organic layers were washed with water (3×50 mL) and brine (50 mL), dried over magnesium sulfate and concentrated in a rotary evaporator under vacuum. The residue was chromatographed on silica gel (40 g, column 2.5×20 cm, PE/Et₂O 16:1) to afford 46 (1.78 g, 92%) as a colourless oil ($R_f = 0.47$ in PE/Et₂O 4 : 1). – IR (film): v = 2960 cm⁻¹, 2920, 1740 (C=O), 1650 (C=C), 1445, 1430, 1370, 1290, 1215, 1190, 1100, 1070, 1045, 1015, 900, 860. $^{-1}$ H NMR (250 MHz, CDCl₃): $\delta = 1.23$ (t, $^{3}J = 7.1$ Hz, 6 H, CH₂CH₃), 1.57 (bs, 3 H, 12-CH₃), 1.60 (m, 2 H, 9-H), 1.65 (bs, 3 H, 12-CH₃), 2.04 (m, 2 H, 10-H), 2.94 (d, $^{5}J = 1.8$ Hz, 2 H, 5-H), 3.25 (s, 2 H, 3-H), 3.31 (s, 3 H, OCH₃), 3.83 (tt, $^{5}J = 1.9$, $^{3}J = 6.6$ Hz, 1 H, 8-H), 4.18 (m, 4 H, OCH₂CH₃), 5.05 (t, $^{3}J = 7.3$ Hz, 1 H, 11-H), 5.57 (bs, 1 H, 1-H), 5.76 (bs, 1 H, 1-H). $^{-13}$ C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.9$ (+, CH₂CH₃), 17.5 (+, CH₃), 22.4 (-), 23.7 (-), 25.6 (+, CH₃), 35.8 (-), 42.7 (-, C-3), 56.1 (C_{quat}, C-4), 56.1 (+, OCH₃), 61.8 (-, OCH₂CH₃), 70.5 (+, C-8), 80.3 (C_{quat}), 82.8 (C_{quat}), 122.4 (-, C-1), 123.1 (+, C-11), 126.5 (C_{quat}, C-2), 132.3 (C_{quat}, C-12), 169.0 (C_{quat}, C=O). - MS (70 eV), *m*/z (%): 444/442 [M⁺], 427 (3), 402 (11), 361 (60), 329 (51), 287 (84), 255 (57), 227 (36), 207 (72), 178 (62), 134 (56), 91 (59), 55 (100). - C₂₁H₃₁BrO₅: calcd 442.1354 (correct HRMS). - Anal. Calcd for C₂₁H₃₁BrO₅ (443.4): C 56.89, H 7.05, Br 18.02; found: C 56.92, H 6.88, Br 18.33.

Diethyl cis/trans-2'-Isopropenyl-5'-methoxy-5-methylenebicyclopentylidene-3,3-dicarboxylate (cis/ trans-51); According to GP 2a 46 (400 mg, 0.90 mmol), palladium acetate (11 mg, 5 mol%), triphenylphosphane (24 mg, 10 mol%), and potassium carbonate (249 mg, 2 equiv.) were reacted in acetonitrile (10 mL) for 8 h at 80 °C. The crude product was purified on silica gel (10 g, column 1×15 cm, PE/Et₂O 16:1) to yield *cis/trans*-51 (213 mg, 65%) as a colourless mixture of diastereomers (2:1), - IR (film): y = 3080 cm⁻¹ (C=CH), 2970, 2820, 1730 (C=O), 1645 (C=C), 1625 (C=C), 1600 (C=C), 1450, 1370, 1350, 1250, 1190, 1165, 1075, 1025, 895, 870, 740. – ¹H NMR (250 MHz, CDCl₂): $\delta = 1.20$ (m, 6 H, CH₂CH₂), 1.50–2.10 (m, 4 H), 1.69 (bs, 3 H, CH₂), 2.85–3.20 (m, 5 H), 3.28 (s, 2 H, OCH₂), 3.30 (s, 1 H, OCH₃), 4.10-4.22 (m, 5 H, OCH₂CH₃), 4.41 (bs, 0.67 H), 4.61 (bs, 0.67 H), 4.68 (bs, 0.67 H), 4.87 (bs, 0.67 H), 4.99 (bs, 0.33 H), 5.05 (bs, 1 H). -13C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.9$ (+, CH₂CH₃), 21.2 (+, CH₂), 21.9 (+, CH₂), 27.2 (-), 29.9 (-), 40.1 (-), 40.3 (-), 42.1 (-), 42.8 (-), 49.4 (+, C-2'), 49.8 (+, C-2'), 2'), 56.2 (+, OCH₃), 57.5 (C_{out}, C-3), 61.3 (-, OCH₂CH₃), 83.8 (+, C-5'), 84.2 (+, C-5'), 110.5 (-), 110.9 (-), 111.1 (-), 111.2 (-), 134.9 (Couat), 135.6 (Couat), 140.4 (Couat), 140.8 (Couat), 143.6 (Couat), 144.0 (Couat), 144.1 (Couat), 145.2 (Couat), 171.3 (Couat, C=O). - MS (70 eV), m/z (%): 362 (4) (M+), 330 (19), 315 (23), 257 (26), 256 (30), 239 (30), 183 (38), 119 (28), 59 (86), 60 (100), 46 (50), 45 (53), 43 (78). - Anal. Calcd for C₂₁H₃₀O₅ (362.5): C 69.59, H 8.34; found: C 69.42, H 8.32.

The more polar isomer was enriched by chromatography on silica gel (20 g, column 2.5 × 20 cm, PE/Et₂O 16 : 1): IR (film): v = 3080 cm⁻¹ (C=CH), 2970, 2820, 1730 (C=O), 1645 (C=C), 1625 (C=C), 1600 (C=C), 1450, 1350, 1190, 1165, 1075, 1025, 895, 870, 740. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.24$ (m, ³*J* = 7.1 Hz, 6 H, CH₂CH₃), 1.54–1.85 (m, 4 H), 1.69 (s, 3 H, CH₃), 1.90–2.05 (m, 1 H, 2'-H), 2.90 (d, ²*J* = 17.1 Hz, 1 H), 3.07 (dt, ⁴*J* = 1.5, ²*J* = 17.1 Hz, 1 H), 3.14 (bs, 2 H), 3.30 (s, 3 H, OCH₃), 4.08–4.25 (m, 5 H, OCH₂CH₃ und 5'-H), 4.42 (bs, 1 H), 4.62 (bs, 1 H), 4.88 (bs, 1 H), 5.06 (bs, 1 H). – ¹³C NMR (67.9 MHz, CDCl₃), plus DEPT): 13.9 (+, CH₂CH₃), 21.9 (+, CH₃), 27.3 (–), 30.0 (–), 40.3 (–), 42.8 (–), 49.8 (+, C-2'), 56.2 (+, OCH₃), 57.6 (C_{quat}), 61.3 (–, OCH₂CH₃), 84.3 (+, C-5'), 110.5 (–), 111.2 (–), 135.6 (C_{quat}), 140.8 (C_{quat}), 143.6 (C_{quat}), 144.0 (C_{quat}), 171.2 (C_{quat}, C=O).

Diethyl 2-Bromo-8-hydroxy-11-(tetrahydropyranyl-2-oxy)-1-undecene-6-yne-4,4-dicarboxylate (48): According to GP 1a diethyl 2-bromohept-1-ene-6-yne-4,4-dicarboxylate (2.50 g, 7.9 mmol) in THF (20 mL) was treated with *n*-butyllithium (3.67 mL, 8.7 mmol, 2.36 M in *n*-hexane) and 4-(tetrahydropyranyl-2-oxy)-butanal^[25] (1.43 g, 8.3 mmol). Work-up and purification of the crude product on silica gel (90 g, column 2.5 × 35 cm, Et₂O) afforded a diastereomeric mixture of **48** (3.62 g, 93%) as a colourless oil (R_f = 0.55 in PE/Et₂O 1 : 3). – IR (film): v = 3420 cm⁻¹ (OH), 2950, 2860, 1730 (C=O), 1635 (C=C), 1430, 1370, 910, 865, 815. – ¹H NMR (250 MHz, CDCl₃): δ = 1.23 (t, ³J = 7.2 Hz, 6 H, CH₂CH₃), 1.48–1.81 (m, 10 H, THP-, 9- and 10-H), 2.90 (d, ⁵J = 1.7 Hz, 2 H, 5-H), 2.94 (bs, 1 H, OH), 3.23 (s, 2 H, 3-H), 3.37–3.49 (m, 2 H, OCH₂ and 11-H), 3.71–3.85 (m, 2 H, OCH₂ and 11-H), 4.18 (mc, 4 H, OCH₂CH₃), 4.34 (bs, 1 H, 8-H), 4.56 (bs, 1 H, OCHO), 5.57 (d, J = 1.4 Hz, 1 H, 1-H), 5.79 (bs, 1 H, 1-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 13.9 (+, CH₂CH₃), 19.3 (-), 22.3 (-), 25.4 (-), 30.5 (-), 35.2 (-), 42.7 (-), 56.0 (C_{quat}, C- 4), 61.9 (-, OCH₂), 61.9 (+, C-8), 62.0 (-, OCH₂), 62.1 (-, OCH₂), 67.0 (-, OCH₂), 67.1 (-, OCH₂), 79.2 (C_{quat}), 85.1 (C_{quat}), 98.6 (+, OCHO), 122.5 (-, C-1), 126.1 (C_{quat}), 169.1 (C_{quat}, C=O). - MS (70 eV), *m/z* (%): 387 (2), 307 (4), 279 (3), 190 (6), 153 (24), 97 (17), 85 (100), 71 (48), 41 (17).

Diethyl 2-Bromo-8-methoxy-1-undecene-6-yne-11-ol-4,4-dicarboxylate (49): According to the preparation of 14-Me, a solution of 48 (7.03 g, 14.4 mmol) in THF (80 mL) was treated with *n*-butyllithium (6.7 mL, 15.8 mmol, 2.36 M in n-hexane), methyl iodide (5.0 mL), and DMSO (80 mL). Standard work-up gave the crude product, which was dissolved in wet methanol (300 mL). Hydrochloric acid (4 mL, 2 N) was added and the reaction mixture stirred for 2 h at room temperature. It was poured into water (200 mL) and extracted with dichloromethane (3×100 mL). Washing of the combined organic layers with brine (100 mL), drving over magnesium sulfate, removal of the solvents and chromatography on silica gel (95 g, column $2.5 \times$ 35 cm, Et₂O) gave **49** (4.84 g, 81%) as a colourless oil ($R_f = 0.18$ in PE/Et₂O 1 : 3). – IR (film): v =3400 cm⁻¹ (OH), 2900, 1720 (C=O), 1625 (C=C), 1430, 1370, 1285, 945, 905, 860, -1H NMR (250 MHz, $CDCl_3$: $\delta = 1.19$ (t, ${}^{3}J = 7.2$ Hz, 6 H, CH_2CH_3), 1.56–1.73 (m, 4 H, 9- and 10-H), 2.49 (bs, 1 H, OH), 2.88 $(d, {}^{5}J = 1.7 \text{ Hz}, 2 \text{ H}, 5 \text{-H}), 3.19 \text{ (bs, } 2 \text{ H}, 3 \text{-H}), 3.28 \text{ (s, } 3 \text{ H}, \text{ OCH}_{2}), 3.56 \text{ (t, } {}^{3}J = 5.8 \text{ Hz}, 2 \text{ H}, 11 \text{-H}), 3.88 \text{ (tt, } 3 \text{ H}, 3 \text{-H}), 3.56 \text{ (tr, } {}^{3}J = 5.8 \text{ Hz}, 2 \text{ H}, 11 \text{-H}), 3.88 \text{ (tt, } 3 \text{ H}, 3 \text{-H}), 3.58 \text{ (tt, } 3 \text{-H}$ ${}^{5}J$ = 1.6, ${}^{3}J$ = 5.9 Hz, 1 H, 8-H), 4.14 (mc, 4 H, OCH₂CH₂), 5.53 (d, J = 1.5 Hz, 1 H, 1-H), 5.71 (bs, 1 H, 1-H) H). -13C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.7$ (+, CH₂CH₃), 22.3 (-), 28.3 (-), 32.2 (-), 42.6 (-, C-3), 56.0 (+, OCH₃), 56.1 (C_{quat}, C-4), 61.8 (-, OCH₂), 62.0 (-, OCH₂), 70.9 (+, C-8), 80.6 (C_{quat}), 82.3 (C_{guat}), 122.3 (-, C-1), 126.3 (C_{guat}, C-2), 169.0 (C_{guat}, C=O). - MS (70 eV), m/z (%): 361/359 (19/19), 339 (63), 307 (89), 285 (29), 279 (30), 233 (100), 206 (35), 205 (53), 178 (35), 161 (32), 140 (67), 117 (41), 109 (68), 91 (65), 85 (61), 71 (89), 55 (63), 41 (67). - Anal. Calcd for C₁₈H₂₇BrO₆ (419.3): C 51.56, H 6.49, Br 19.06; found: C 51.75, H 6.59, Br 17.80.

Diethyl 2-Bromo-8-methoxy-1-undecene-6-yne-11-al-4.4-dicarboxylate (50): To a solution of oxalyl chloride (0.36 mL, 4.2 mmol) in dichloromethane (10 mL) DMSO (0.61 mL, 7.8 mmol) was added dropwise at -60 °C and stirring was continued until the evolution of gas was finished. Then 49 (1.50 g, 3.6 mmol) was added slowly, during which a colourless precipitate was formed, and further stirred for additional 15 min at -60 °C, after which triethylamine (2.51 mL, 17.8 mmol) was added in one portion. The reaction mixture was warmed to room temperature and the resulting suspension poured into water (15 mL) and extracted with Et₂O $(3 \times 15 \text{ mL})$. Washing of the combined organic extracts with water $(2 \times 10 \text{ mL})$ and brine (10 mL), drying over magnesium sulfate and concentration under vacuum gave the crude product. It was purified by chromatography on silica gel (50 g, column 2.5×20 cm, PE/Et₂O 1 : 1) to yield 50 (1.46 g, 98%), which became brownish after a few hours ($R_f = 0.59$ in Et₂O). – IR (film): v = 2950 cm⁻¹, 2710, 2210 (C=C), 1700 (C=O), 1620 (C=C), 900, 850, 760, 705. -¹H NMR (250 MHz, CDCl₃): $\delta = 1.22$ (t, ³J = 7.2 Hz, 6 H, CH_2CH_3 , 1.93 (mc, 2 H, 9-H), 2.53 (t, ${}^{3}J$ = 7.1 Hz, 2 H, 10-H), 2.91 (d, ${}^{5}J$ = 1.9 Hz, 2 H, 5-H), 3.21 (s, 2 3-H), 3.28 (s, 3 H, OCH₂), 3.94 (tt, ${}^{5}J$ = 1.8, ${}^{3}J$ = 6.0 Hz, 1 H, 8-H), 4.15 (mc, 4 H, OCH₂CH₂), 5.56 (d, J = 1.6 Hz, 1 H, 1-H), 5.72 (bs, 1 H, 1-H), 9.71 (t, ${}^{3}J$ = 1.4 Hz, 1 H, 11-H). – ${}^{13}C$ NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 13.8$ (+, CH₂CH₃), 22.3 (-), 28.2 (-), 39.4 (-), 42.6 (-, C-3), 55.9 (+, OCH₃), 56.2 (C_{quat}, C-4), 61.8 (-, OCH₂), 69.8 (+, C-8), 81.1 (C_{quat}), 81.7 (C_{quat}), 122.3 (-, C-1), 126.3 (C_{quat}, C-2), 168.9 (C_{quat}, C=O), 201.4 (+, C-11). - MS (70 eV), m/z (%): 418/416 (1/1) [M+], 389/387 (4/4), 367 (9), 337 (26), 285 (20), 254 (21), 231 (30), 205 (37), 178 (36), 161 (39), 153 (44), 125 (47), 115 (57), 107 (63), 91 (89), 71 (74), 55 (76), 41 (100). $-C_{18}H_{25}BrO_6$: calcd 416.0834 (correct HRMS).

Methyl (*E*,*Z*)-12-Bromo-10,10-bis(ethoxycarbonyl)-6-methoxy-2-methyl-2,12-tridecadiene-7-ynecarboxylate (*E*/*Z*-54): To a solution of diethyl 1-(methoxycarbonyl)ethylphosphonate^[27] (500 mg, 2.23 mmol) in THF (20 mL) was given potassium *tert*-butoxide (251 mg, 2.24 mmol) and stirred for 1 h. Compound 50 (886 mg, 2.12 mmol) was added and the reaction mixture heated under reflux for 1 h, after which it was poured into water (100 mL) and extracted with Et₂O (3×100 mL). The combined organic layers were washed with brine (50 mL), dried over magnesium sulfate and concentrated under vacuum. The residue was purified on silica gel (40 g, column 2.5 × 20 cm, gradient PE/Et₂O 10 : 1 to 5 : 1) to give *E*/*Z*-54 (785 mg, 76%) as a mixture of *EZ*-isomers (ratio 1.67 : 1, $R_f = 0.25$ and 0.26 in PE/Et₂O 5 : 2). – IR (film): v = 2930 cm⁻¹, 1710 (C=O), 1620 (C=C), 1420, 890, 850, 740. – ¹H NMR (250 MHz, CDCl₃): $\delta = 1.22$ (t, ³*J* = 7.1 Hz, 6 H, CH₂CH₃), 1.65–1.84 (m, 5 H, 2-CH₃ and 5-H), 2.25 (mc, ³*J* = 7.5 Hz, 1.25 H, 4-H), 2.51 (m, ³*J* = 7.4 Hz, 0.75 H, 4-H), 2.93 (bs, 2 H, 9-H), 3.23 (bs, 2 H, 11-H), 3.29 (s, 3 H, OCH₃), 3.68 (s, 3 H, CO₂CH₃), 3.85 (t, ³*J* = 6.3 Hz, 1 H, 6-H), 4.17 (mc, 4 H, OCH₂CH₃), 5.56 (bs, 1 H, 13-H), 5.74 (bs, 0.6 H, 13-H), 5.75 (bs, 0.4 H, 13-H), 5.87 (t, ³*J* = 7.4 Hz, 0.4 H, 3-H), 6.68 (t, ³*J* = 7.4 Hz, 0.6 H, 3-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): $\delta = 12.2$ (+, 2-CH₃), 13.8 (+, CH₂CH₃), 20.5 (+, 2-CH₃), 22.3 (-), 24.2 (-), 25.5 (-), 34.4 (-), 35.3 (-), 42.7 (-), 51.1 (+, OCH₃), 51.6 (+, OCH₃), 56.0 (+, CO₂CH₃), 56.1 (+, CO₂CH₃), 56.2 (C_{quat}, C-10), 61.8 (-, OCH₂CH₃), 70.2 (+, C-6), 70.6 (+, C-6), 80.5 (C_{quat}), 80.8 (C_{quat}), 82.2 (C_{quat}), 82.4 (C_{quat}), 122.3 (-, C-13), 122.4 (-, C-13), 126.4 (C_{quat}, C-10), 168.9 (C_{quat}, C-2), 128.3 (C_{quat}, C-2), 140.9 (+, C-3), 141.7 (+, C-3), 168.1 (C_{quat}, C=O), 168.4 (C_{quat}, C=O), 168.9 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 488/486 (6/5) [M+], 457 (10), 407 (85), 367 (30), 347 (30), 315 (42), 301 (46), 287 (36), 269 (47), 255 (63), 161 (70), 141 (67), 115 (100), 98 (62), 65 (80). – C₂₂H₃₁BrO₇: calcd 486.1253 (correct HRMS).

After second chromatography on silica gel (40 g, column 2.5×20 cm, PE/Et₂O 10 : 1), pure (*E*)-isomer was obtained ($R_f = 0.25$ in PE/Et₂O 5 : 2). - ¹H NMR (250 MHz, CDCl₃): $\delta = 1.25$ (t, ³J = 7.0 Hz, 6 H, CH₂CH₃), 1.74–1.78 (m, 2 H, 5-H), 1.82 (bs, 3 H, 2-CH₃), 2.28 (mc, 2 H, 4-H), 2.96 (d, ⁵J = 1.7 Hz, 2 H, 9-H), 3.26 (s, 2 H, 11-H), 3.33 (s, 3 H, OCH₃), 3.71 (s, 3 H, CO₂CH₃), 3.87 (mc, 1 H, 6-H), 4.20 (mc, 4 H, OCH₂CH₃), 5.59 (d, J = 1.4 Hz, 1 H, 13-H), 5.76 (bs, 1 H, 13-H), 6.71 (t, ³J = 7.5 Hz, 1 H, 3-H).

Diethyl *cis/trans-2*'-(1-Methoxycarbonylvinyl)-5'-methoxy-5-methylenebicyclopentylidene-3,3-dicarboxylate (*cis/trans-53*): According to GP 2a *E/Z-54* (250 mg, 0.51 mmol), palladium acetate (4 mg, 3 mol%), triphenylphosphane (16 mg, 12 mol%), and silver(I) carbonate (279 mg, 2 equiv.) were reacted in acetonitrile (10 mL) at 80 °C for 8 h. Work-up and purification of the crude product on silica gel (18 g, column 2.5 × 20 cm, PE/Et₂O 4 : 1) afforded *cis/trans-53* (150 mg, 72%, ratio 1.2 : 1) as a colourless oil (R_f = 0.27 in PE/Et₂O 1 : 1). – IR (film): v = 2990 cm⁻¹, 2880, 1730 (C=O), 1630 (C=C), 1445, 1375, 1260, 1190, 1105, 870. – ¹H NMR (250 MHz, CDCl₃): δ = 1.19–1.26 (m, 6 H, CH₂CH₃), 1.53–2.40 (m, 4 H, 3'- and 4'-H), 2.91–3.27 (m, 4 H, 2- and 4-H), 3.32 (bs, 3 H, OCH₃), 3.64–3.71 (m, 1 H, 2'-H), 3.75 (bs, 3 H, CO₂CH₃), 3.85 (d, ³J = 7.5 Hz, 0.59 H, 5'-H), 4.05 (d, ³J = 7.5 Hz, 0.41 H, 5'-H), 4.14–4.26 (m, 4 H, OCH₂CH₃), 4.88 (bs, 1 H), 5.04 (bs, 0.59 H), 5.07 (bs, 0.41 H), 5.22 (bs, 0.41 H), 5.58 (bs, 0.59 H), 6.02 (bs, 0.59 H), 6.11 (bs, 0.41 H). – ¹³C NMR (67.9 MHz, CDCl₃): δ = 14.0, 26.7, 29.3, 40.0, 40.7, 42.2, 42.8, 43.9, 44.1, 51.8 (2 signals), 56.3, 56.4, 57.5 (2 signals), 61.5, 83.7, 84.3, 111.0, 112.0, 124.0, 125.3, 135.3, 136.5, 139.1, 139.2, 139.5, 140.6, 143.5, 143.9, 167.5 (2 signals), 171.0, 171.3, 171.4. – MS (70 eV), *m/z* (%): 406 (2) [M⁺], 374 (6), 315 (8), 300 (29), 241 (38), 221 (22), 220 (18), 169 (18), 167 (28), 141 (14), 85 (100), 71 (44). – C₂₂H₃₀O₇: calcd 406.1991 (correct HRMS).

Diethyl cis-2'-(1-Methoxycarbonylvinyl)-5'-methoxy-5-methylenebicyclopentylidene-3,3-dicarboxylate (*cis-53*) **and Diethyl 13-Methoxy-9-methoxycarbonyltetracyclo**[7.4.0.0^{1,10}.0^{2,6}]tridec-2(6)-ene-4,4-dicarboxylate (52): According to GP 1a *E/Z*-54 (400 mg, 0.82 mmol), palladium acetate (20 mg, 11 mol%), triphenylphosphane (43 mg, 20 mol%), and potassium carbonate (340 mg, 3 equiv.) were reacted in acetonitrile (10 mL) at 130 °C for 14 h. The crude product mixture was chromatographed on silica gel (40 g, column 2.5 × 20 cm, PE/Et₂O 8 : 1) to give *cis*-53 (103 mg, 31%, $R_f = 0.40$ in PE/Et₂O 1 : 1) and 52 (158 mg, 47%, $R_f = 0.35$ in PE/Et₂O 1 : 1) as colourless oils. *cis*-53: IR (film): v = 2990 cm⁻¹, 2880, 1730 (C=O), 1630 (C=C), 1445, 1375, 1260, 1190, 1105, 870. - ¹H NMR (250 MHz, CDCl₃): $\delta = 1.25$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.53-2.00 (m, 4 H, 3'- and 4'-H), 2.99 (bs, 2 H, 4-H), 3.03 (d, ²J = 17.5 Hz, 1 H, 2-H), 3.22 (d, ²J = 17.6 Hz, 1 H, 2-H), 3.32 (s, 3 H, OCH₃), 3.71 (bs, 1 H, 2'-H), 3.75 (s, 3 H, CO₂CH₃), 3.85 (d, ³J = 7.5 Hz, 1 H, 5'-H), 4.15-4.26 (m, 4 H, OCH₂CH₃), 4.89 (bs, 1 H, 5-CH₂), 5.04 (bs, 1 H, 5-CH₂), 5.58 (bs, 1 H), 6.02 (bs, 1 H). - MS (70 eV), *m/z* (%): 406 (2) [M⁺], 374 (6), 315 (8), 300 (29), 241 (38), 221 (22), 220 (18), 169 (18), 167 (28), 141 (14), 85 (100), 71 (44). - C₂₂H₃₀O₇: calcd 406.1991 (correct HRMS). - Anal. Calcd for C₂₂H₃₀O₇ (406.5): C 65.01, H 7.44; found: C 65.05, H 7.46. - **52**: IR (film): v = 2920 cm⁻¹, 1730 (C=O),

1435, 1367, 1240, 860. – ¹H NMR (500 MHz, CDCl₃): $\delta = 0.93$ –1.00 (m, 1 H, 10-H), 1.23 (t, ³*J* = 7.1 Hz, 3 H, CH₂CH₃), 1.26 (t, ³*J* = 7.1 Hz, 3 H, CH₂CH₃), 1.73–1.87 (m, 4 H), 1.92 (d, *J* = 4.8 Hz, 1 H), 1.97–2.05 (m, 3 H), 2.79 (d, ²*J* = 17.0 Hz, 1 H, 5-H), 3.00 (d, ²*J* = 17.0 Hz, 1 H, 5-H), 3.26 (d, ²*J* = 17.5 Hz, 1 H, 3-H), 3.27 (s, 3 H, OCH₃), 3.34 (d, ²*J* = 17.5 Hz, 1 H, 3-H), 3.64 (s, 3 H, CO₂CH₃), 3.75 (d, ³*J* = 4.5 Hz, 1 H, 13-H), 4.18 (mc, ³*J* = 7.1 Hz, 4 H, OCH₂CH₃). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 14.0 (+, CH₂CH₃), 21.9 (–), 23.8 (–), 27.1 (–), 28.1 (–), 33.6 (+, C-10), 35.1 (C_{quat}), 37.6 (C_{quat}), 43.2 (–), 43.4 (–), 52.0 (+, OCH₃), 55.8 (+, OCH₃), 58.0 (C_{quat}, C=4), 61.25 (–, OCH₂), 61.29 (–, OCH₂), 84.0 (+, C-13), 129.7 (C_{quat}), 131.3 (C_{quat}), 172.4 (C_{quat}, C=O), 172.6 (C_{quat}, C=O), 173.5 (C_{quat}, C=O). – MS (70 eV), *m/z* (%): 406 (3) [M⁺], 300 (2), 241 (7), 195 (1), 167 (3), 97 (3), 57 (10), 43 (100), 41 (25). – C₂₂H₃₀O₇: calcd. 406.1991 (correct HRMS). – Anal. Calcd for C₂₂H₃₀O₇ (406.5): C 65.01, H 7.44; found: C 65.17, H 7.47.

7-Methyl-7-octene-2-yne-1-ol (56): To 2-methallylmagnesium chloride (23 mL, 32.7 mmol, 1.42 M in THF) a solution of 4-bromo-1-butyne (**55**) (2.00 g, 15.0 mmol) in THF (100 mL) was added at -10 °C, at which temperature stirring was continued for 14 h. After addition of paraformaldehyde (1.35 g, 45.0 mmol), the reaction mixture was heated under reflux for 14 h, cooled down to room temperature and poured into ice water (100 mL). The organic layer was washed with hydrochloric acid and the aqueous phase extracted with Et₂O (3 × 100 mL). Washing of the combined organic layers with sat. potassium hydrogen carbonate solution (100 mL) and brine (100 mL) yielded after drying over magnesium sulfate and concentration under vacuum the crude product. It was chromatographed on silica gel (40 g, column 2.5 × 20 cm, PE/Et₂O 8 : 1) to yield **56** (1.52 g, 73%) as a colourless oil. – IR (film): v = 3340 cm⁻¹ (OH), 3090 (C=CH), 2950, 2240, 1655 (C=C), 1430, 1140, 1020, 890. – ¹H NMR (200 MHz, CDCl₃): δ = 1.54 (m, 2 H, 5-H), 1.60 (s, 3 H, 7-CH₃), 1.99 (t, ³J = 7.3 Hz, 2 H, 6-H), 2.10 (tt, ⁵J = 2.4, ³J = 7.3 Hz, 2 H, 4-H), 2.53 (bs, 1 H, OH), 4.13 (t, ⁵J = 2.4 Hz, 2 H, 1-H), 4.58 (bs, 1 H, 8-H), 4.60 (bs, 1 H, 8-H). – ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 18.3 (+, 7-CH₃), 22.3 (-), 26.5 (-), 36.8 (-), 51.4 (-, C-1), 86.3 (C_{quat}), 78.5 (C_{quat}), 110.4 (-, C-8), 144.9 (C_{quat}, C-7). – MS (70 eV), *m/z* (%): 137 (1) [M⁺ - H], 123 (35), 119 (17), 109 (24), 105 (100), 95 (42), 91 (56), 79 (55), 67 (56), 53 (42), 41 (97). – Anal. Calcd for C₉H₁₄O (138.2): C 78.21, H 10.21; found: C 78.08, H 10.12.

Diethyl 7-Methyl-7-octene-2-ynylmalonate (**57**): To a solution of **56** (1.50 g, 10.9 mmol) and triethylamine (2.60 mL, 18.4 mmol) in dichloromethane (20 mL) was added dropwise at -50 °C methane-sulfonyl chloride (0.9 mL, 11 mmol), after which the reaction mixture was warmed up to 0 °C and poured into ice water (20 mL). The aqueous phase was extracted with dichloromethane (3 × 20 mL) and the combined organic layers washed with brine (50 mL), dried over magnesium sulfate and concentrated under reduced pressure. The residue was diluted with DME (10 mL) and added dropwise to a solution of diethyl malonate sodium salt, prepared from diethyl malonate (1.88 g, 11.7 mmol) and sodium hydride (336 mg, 11.2 mmol, 80% in mineral oil) in DME. The reaction mixture was stirred for 14 h at room temperature, poured into water (20 mL) and extracted with Et₂O (3 × 50 mL). The combined organic extracts were washed with brine (50 mL), dried over magnesium sulfate and concentrated under vacuum. The residue was chromatographed on silica gel (150 g, column 2.5 × 79 cm, PE/Et₂O 25 :1) to yield **57** (1.74 g, 57%) as a colourless oil ($R_f = 0.36$ in PE/Et₂O 4 : 1). – IR (film): v = 3090 cm⁻¹ (C=CH), 2950, 1740 (C=O), 1655 (C=C), 1450, 1240, 1040, 900. – ¹H NMR (200 MHz, CDCl₃): $\delta = 1.26$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.57 (mc, 2 H, 5'-H), 1.69 (s, 3 H, 7'-CH₃), 2.01–2.14 (m, 4 H, 4'- and 6'-H), 2.73 (dt, ⁵J = 2.2, ³J = 7.8 Hz, 2 H, 1'-H), 3.50 (t, ³J = 7.8 Hz, 1 H, 2-H), 4.20 (q, ³J = 7.0 Hz, 4 H, OCH₂CH₃), 4.66 (bs, 1 H, 8'-H), 4.69 (bs, 1 H, 8'-H).

Diethyl 2-Bromo-11-methyl-1,11-dodecadiene-6-yne-4,4-dicarboxylate (58): Variant A: To a suspension of sodium hydride (184 mg, 6.13 mmol, 80% in mineral oil) in DME (20 mL) 57 (1.64 g, 5.8 mmol) was added slowly at -10 °C, at which temperature stirring was continued until the formation of gas was nearly finished (~30 min). 2,3-Dibromopropene (1.29 g, 6.45 mmol) was added and the reaction mixture stirred over night at room temperature. The suspension was poured into water (20 mL) and extracted with Et₂O (3 × 50 mL). The combined organic layers were washed with brine (20 mL), dried over magnesium sulfate and concentrated under vacuum. The crude product was purified by chromatography on silica gel (30 g, column

 2.5×20 cm, PE/Et₂O 32:1) to give 58 (1.80 g, 77%) as a colourless oil, which became brownish upon standing.

Variant B: To a solution of 56 (750 mg, 5.43 mmol) and triethylamine (1.28 mL, 9.22 mmol) in dichloromethane (10 mL) methanesulfonyl chloride (0.45 mL, 5.8 mmol) was added at -60 °C. The reaction mixture was allowed to warm up to 0 °C slowly and was poured into ice water (20 mL) and extracted with dichloromethane $(3 \times 50 \text{ mL})$. The combined organic layers were washed with brine (50 mL), dried over magnesium sulfate and concentrated under vacuum (water bath temperature < 40 °C). The crude product was diluted with DME (3 mL) and quickly given to a solution of diethyl malonate sodium salt in DME, prepared from diethyl malonate (0.913 g, 5.70 mmol) and sodium hydride (173 mg, 5.77 mmol, 80% in white oil) in DME. Stirring was continued for 2 h at room temperature, the reaction mixture was cooled to 0 °C and sodium hydride (173 mg, 5.77 mmol, 80% in mineral oil) was added. After the evolution of gas was finished, 2.3dibromopropene (1.09 g, 5.45 mmol) was added and the mixture stirred further for 2 h. The reaction mixture was given into water (50 mL), extracted with Et₂O (3×50 mL) and washed with brine (50 mL). Drying over magnesium sulfate and removal of the solvents under vacuum gave the crude product, which was purified by chromatography on silica gel (100 g, column 2.5×35 cm, PE/Et₂O 32: 1) to yield 58 (1.65 g, 76%) as a colourless oil ($R_f = 0.48$ in PE/Et₂O 4 : 1). – IR (film): v = 3080 cm⁻¹ (C=CH), 2980, 2950, 1735 (C=O), 1650 (C=C), 1635 (C=C), 1440, 1375, 1330, 1295, 1260, 1220, 1195, 1160, 1075, 1050, 1020, 900, 860. -¹H NMR (200 MHz, CDCl₃): $\delta = 1.26$ (t, ³J = 7.1 Hz, 6 H, CH₂CH₃), 1.59 (mc, 2 H, 9-H), 1.71 (s, 3 H, 11-CH₃), 2.04–2.18 (m, 4 H, 8- and 10-H), 2.88 (t, ${}^{5}J$ = 2.2 Hz, 2 H, 5-H), 3.28 (s, 2 H, 3-H), 4.20 (m, 4 H, OCH_2CH_3 , 4.71 (bs, 1 H, 12-H), 4.72 (bs, 1 H, 12-H), 5.61 (d, J = 1.5 Hz, 1 H, 1-H), 5.80 (bs, 1 H, 1-H), -¹³C NMR (50.3 MHz, CDCl₃, plus APT): $\delta = 14.0$ (+, CH₂CH₃), 18.2 (-), 22.3 (+, 11-CH₃), 22.5 (-), 26.9 (-), 36.7 (-), 42.8 (-), 56.3 (-, C-4), 61.8 (-, OCH₂CH₃), 74.6 (-, C-6*), 83.9 (-, C-7*), 110.5 (-, C-12), 122.3 (-, C-1), 126.8 (-, C-2), 144.8 (-, C-11), 169.3 (-, C=O). - MS (70 eV), m/z (%): 371/369 (2/1.9), 319 (21), 245 (83), 199 (35), 171 (41), 123 (57), 121 (47), 105 (33), 95 (100), 91 (37), 81 (43), 69 (40), 55 (59), 41 (75). - Anal. Calcd for C₁₀H₂₇BrO₄ (399.3): C 57.15, H 6.82, Br 20.01; found: C 57.32, H 6.74, Br 19.92.

4,4-Bis(ethoxycarbonyl)-8-methyltetracyclo[6.3.0,1^{2.6},0^{2,6}]-1(11)-dodecene (60) and 1-[3-Bis(ethoxycarbonyl)-5-methylenecyclopent-1-ene-1-yl]-5-methylbicyclo[3,1,0]hexane (63): According to GP 2a, to a solution of 58 (584 mg, 1.46 mmol) in acetonitrile (10 mL) and dimethoxyethane (10 mL) were added palladium acetate (10 mg, 3 mol%), triphenylphosphane (46 mg, 12 mol%), and silver(I) carbonate (806 mg, 2 equiv.). The mixture was heated for 2 d at 60 °C. Standard work-up and chromatography on silica gel (40 g, column 2.5 × 20 cm, PE/Et₂O 30:1) gave 60 (142 mg, 30%, $R_f = 0.45$ in PE/Et₂O 4:1) and 63 (165 mg, 35%, $R_f = 0.42$ in PE/Et₂O 4 : 1), both as colourless oils. **60**: IR (film): $v = 3060 \text{ cm}^{-1}$ (C=CH), 2990, 2860, 1738 (C=O), 1662 (C=C), 1450, 1377, 1250, 1190, 1085, 1022, 920, 870, 800, 740. - ¹H NMR (500 MHz, $CDCl_3$: $\delta = 0.87$ (d, $^2J = 6.3$ Hz, 1 H, 12-H), 1.04 (s, 3 H, 8-CH₃), 1.24 (m, 6 H, CH₂CH₃), 1.31 (d, $^2J = 6.3$ Hz, 1 H, 12-H), 1.67 (d, ${}^{2}J$ = 12.0 Hz, 1 H, 7-H), 1.80 (m, 3 H, 7- and 9-H), 2.31 (ddd, ${}^{3}J$ = 3.8 and 7.8, ${}^{2}J$ = 15.0 Hz, 1 H, 10-H), 2.36 (dd, ${}^{5}J$ = 1.4, ${}^{2}J$ = 13.7 Hz, 1 H, 3-H), 2.47 (dd, ${}^{5}J$ = 1.5, ${}^{2}J$ = 13.6 Hz, 1 H, 3-H), 2.51 (d, ${}^{2}J$ = 13.5 Hz, 1 H, 5-H), 2.58 (d, ${}^{2}J$ = 13.5 Hz, 1 H, 5-H), 2.65 (dddd, ${}^{3}J$ = 1.5, 6.0 and 9.5, ${}^{2}J$ = 15.1 Hz, 1 H, 10-H), 4.15 (m, 4 H, OCH₂CH₃), 5.31 (dd, ${}^{3}J$ = 1.5, ${}^{3}J$ = 3.8 Hz, 1 H, 11-H). - ${}^{13}C$ NMR $(125.7 \text{ MHz}, \text{CDCl}_3, \text{plus APT}): \delta = 14.0 (+, \text{CH}_2\text{CH}_3), 23.3 (-), 25.9 (+, 8-\text{CH}_3), 35.0 (-), 37.6 (-), 38.4 (-), 38$ 40.5 (-), 44.6 (-), 45.1 (-), 47.1 (-), 59.7 (-, C-4), 61.5 (-, OCH₂CH₃), 61.6 (-, OCH₂CH₃), 67.5 (-), 116.4 (+, C-11), 159.0 (-, C-1), 171.6 (-, C=O), 172.3 (-, C=O). - MS (70 eV), m/z (%): 318 (58) [M+], 246 (31), 245 (39), 244 (41), 173 (35), 171 (100), 129 (30), 95 (60), 91 (23), 81 (20), 55 (13), 41 (16). - Anal. Calcd for $C_{19}H_{26}O_4$ (318.4): C 71.67, H 8.23; found: C 71.55, H 8.33. - 63: IR (film): v = 3095 cm⁻¹ (C=CH), 3060 (C=CH), 2945, 2860, 1735 (C=O), 1640 (C=C), 1450, 1390, 1375, 1295, 1250, 1180, 1100, 1075, 1050, 880, 860. - ¹H NMR (200 MHz, CDCl₃): δ = 0.41 (d, ²J = 4.3 Hz, 1 H, 6-H), 0.75 (d, ²J = 4.4 Hz, 1 H, 6-H), 1.03 (s, 3 H, 5-CH₃), 1.24 (m, 6 H, CH₂CH₃), 1.54–2.07 (m, 6 H, 2-, 3- and 4-H), 3.19 (dd, $^{4}J = 1.7$ Hz, $^{4}J =$ 1.7 Hz, 2 H, 4'-H), 4.19 (m, 4 H, OCH₂CH₃), 4.87 (d, ⁴J = 1.9 Hz, 1 H, 5'-CH₂), 4.95 (d, ⁴J = 1.5 Hz, 1 H, 5'-CH₂) CH₂), 5.93 (s, 1 H, 2'-H). - ¹³C NMR (67.9 MHz, CDCl₃, plus DEPT): δ = 14.0 (+, CH₂CH₃), 17.9 (+), 18.7

(-), 21.9 (-), 29.9 (C_{quat}), 31.0 (C_{quat}), 32.9 (-), 34.9 (-), 38.7 (-), 61.5 (-, OCH₂CH₃), 63.4 (C_{quat}, C-3'), 104.9 (-, 5'-CH₂), 133.5 (+, C-2'), 149.3 (C_{quat}), 150.4 (C_{quat}), 170.7 (C_{quat}, C=O). – MS (70 eV), m/z (%): 318 (11) [M⁺], 272 (7), 246 (22), 245 (100), 199 (22), 171 (48), 129 (12), 81 (14). – Anal. Calcd for C₁₉H₂₆O₄ (318.4): C 71.67, H 8.23; found: C 71.55, H 8.33.

Acknowledgements

This work was supported by the *Fonds der Chemischen Industrie*, as well as BASF, Bayer, Degussa, Hoechst and Hüls AG through generous gifts of chemicals. H. H. thanks the *Fonds der Chemischen Industrie*, F. E. M. the *Studienstiftung des deutschen Volkes* for a graduate fellowship. The collaboration between the groups in Germany and in England was made possible by a grant within the Academic Research Collaboration (ARC) Programme administered by the *British Council* and the *Deutscher Akademischer Austauschdienst* (DAAD). The authors acknowledge the careful proofreading of the manuscript by Dr. B. Knieriem, Göttingen.

References and Notes

- Part V in the series "Palladium-Catalysed Polycyclisations". For part IV see: (a) Meyer, F. E.; Henniges, H.; de Meijere, A. *Tetrahedron Lett.* 1992, 33, 8039-8042. – For preliminary results of this report see also: (b) Meyer, F. E.; Parsons, P. J.; de Meijere, A. J. Org. Chem. 1991, 56, 6487-6488. – (c) Meyer, F. E.; Brandenburg, J.; Parsons, P. J.; de Meijere, A. J. Chem. Soc., Chem. Commun. 1992, 390-392. – (d) Henniges, H.; Meyer, F. E.; Parsons, P. J.; de Meijere, A. Seventh IUPAC Symposium on Organo-Metallic Chemistry directed towards Organic Synthesis (OMCOS 7), Kobe, Japan, September 19-23, 1993. – See also: (e) Meyer, F. E.; Ang, K.-H.; Steinig, A. G.; de Meijere, A. Synlett 1994, 191-193.
- 2. For a recent review on sequential reactions in general see: Tietze, L.-F.; Beifuss, U. Angew. Chem. 1993, 105, 137-170; Angew. Chem. Int. Ed. Engl. 1993, 32, 131-164.
- (a) Hillard III, R. L.; Parnell, C. A.; Vollhardt, K. P. C. Tetrahedron 1983, 39, 905-911. (b) Dötz, K. H. Angew. Chem. 1984, 96, 573-594; Angew. Chem. Int. Ed. Engl. 1984, 23, 587. (c) Llebaria, A.; Camps, F.; Moretó, J. M. Tetrahedron 1993, 49, 1283-1296. (d) For a recent review on catalytic methods in organic synthesis see: Trost, B. M. Angew. Chem. 1995, 107, 285-307; Angew. Chem. Int. Ed. Engl. 1995, 34, 259-281.
- (a) Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518-5526, 5526-5531, 5531-5534, 5535-5538, 5538-5542, 5542-5546, 5546-5548. (b) Heck, R. F. Acc. Chem. Res. 1979, 12, 146-151. (c) Collman, J. P.; Hegedus, L. S. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, 1980. (d) Palladium Reagents in Organic Synthesis, Academic Press: London, 1985. (e) Tsuji, J. Organic Synthesis with Palladium Compounds, Springer: Berlin, 1980. (f) Mulzer, J.; Altenback, H.-J.; Braun, M.; Krohn, K.; Reissig, H.-U. Organic Synthesis Highlights, VCH: Weinheim, 1991, pp. 174ff. (g) Hegedus, L. S. in Organometallics in Synthesis, Schlosser, M. Ed.; Wiley: Chichester, 1994; pp. 383-459. (h) For a recent review on Heck type reactions see: de Meijere, A.; Meyer, F. E. Angew. Chem. 1994, 106, 2473-2506; Angew. Chem. Int. Ed. Engl. 1994, 33, 2379-2411.
- 5. The dimethyl ester analogous to compound **1** was used in a related cascade to react with alkenes leading to aromatized products: Negishi, E.-i.; Ay, M.; Sugihara, T. *Tetrahedron*, **1993**, *49*, 5471–5482.
- (a) Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52, 4130–4133. (b) Abelman, M. M.; Overman, L. E. J. Am. Chem. Soc. 1988, 110, 2328–2329.
- (a) Parsons, P. J.; Stefinovic, M.; Willis, P.; Meyer, F. E. Synlett 1992, 864–866. (b) For a related approach see: Trost, B. M.; Pfrengle, W.; Urabe, H.; Dumas, J. J. Am. Chem. Soc. 1992, 114, 1923–1924.
- 8. The utility of suitable 2-bromo-1-enediynes with a triple bond instead of the second double bond in a related approach has also been described: (a) Meyer, F. E.; de Meijere, A. Synlett **1991**, 777–778. (b)

Negishi, E.; Harring, L. S.; Owczarczyk, Z.; Mohamud, M. M.; Ay, M. Tetrahedron Lett. 1992, 33, 3253-3256. – (c) Meyer, F. E. Dissertation, Universität Göttingen 1993.

- 9. The preparation and palladium-catalysed transformation of higher homologous 2-bromodienynes will be described in a separate paper. Cf. also ref. [8c].
- 10. The stereochemical descriptors *cis* and *trans* for compounds 7 are applied to designate the relative positions of the two side chains on the cyclohexane ring. The CA nomenclature (*cf. Chem. Abstr. Guide Appendices*) would be $1\alpha,2\beta-7$ (for *trans-7*).
- 11. (a) Storck, G.; Brizzolara, A.; Landesman, H.; Smuszkovicz, J.; Terrel, R. J. Am. Chem. Soc. 1963, 85, 207-222. (b) Murahashi, S.-I.; Makabe, Y.; Kunita, K. J. Org. Chem. 1988, 53, 4489-4495.
- 12. Brannock, K. C. J. Am. Chem. Soc. 1959, 81, 3379-3383.
- 13. Falbe, J. Methoden der Organischen Chemie (Houben-Weyl); Bd. E3, Thieme-Verlag: Stuttgart, 1983; p. 538ff.
- 14. The assumed 93% yield from ¹H NMR spectra was significantly higher, a typical observation for the described reaction.
- 15. Such an approach to ring-annelated furan derivatives could be useful in the synthesis of certain natural products, e. g. furantriol, furoscrobiculine, furosordonine, *Cf.*: Connolly, J. D.; Hill, R. A. *Dictionary of Terpenoids*, Vol. 1, Chapman & Hall: New York, 1991.
- (a) Gajewski, J. J. Hydrocarbon Thermal Isomerizations, Academic Press: New York, 1981. (b) Marvell, E. N. Thermal Electrocyclic Reactions, Academic Press: New York, 1980. - (c) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry, Academic Press: New York, 1970.
- 17. Nonoshita, K.; Banno, H.; Maruoka, K.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 316-322.
- 18. Appel, R. Angew. Chem. 1975, 87, 863-874; Angew. Chem. Int. Ed. Engl. 1975, 14, 801-811.
- 19. (a) Tsuji, J.; Sugiura, T.; Minami, I. Synthesis 1987, 603–606. (b) Peer, H. G. Rec. Trav. Chim. Pays-Bas 1962, 81, 113–123.
- For related observations see: (a) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1992, 114, 791-792. (b) Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. J. Am. Chem. Soc. 1994, 116, 4255-4267. – (c) Trost, B. M.; Yanai, M.; Hoogsteen, K. J. Am. Chem. Soc. 1993, 115, 5294-5295. – (c) Trost, B. M.; Romero, D. L.; Rise, F. J. Am. Chem. Soc. 1994, 116, 4268-4278. – (d) Trost, B. M. Acc. Chem. Res. 1990, 23, 34-42. – (e) Trost, B. M.; Zhi, L.; Imi, K. Tetrahedron Lett. 1994, 35, 1361– 1364.
- For a discussion regarding rotaselectivity in 4-electron cyclisations see: (a) Trost, B. M.; McDougal, P. G. J. Org. Chem. 1984, 49, 458-468. (b) Kallel, E. A.; Wang, Y.; Spellmeyer, D. C.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 6759-6763.
- 22. With a methoxycarbonyl or cyano instead of a phenyl group on the cyclisation precursor, epimerisation of the newly formed stereocenters was observed. *Cf.* ref. [8c].
- 23. A *n*-butyl and even a methyl group *cis* to the bromine prevents the anticipated 6π-electrocyclisation completely. (a) Henniges, H. *Dissertation*, Universität Göttingen 1994. (b) Cf. ref. [1a].
- 24. Tietze, L. F.; Eicher, T. Reaktionen und Synthesen, Thieme-Verlag: Stuttgart, 1981.
- 25. Parker, K. A.; Farmar, J. G. J. Org. Chem. 1986, 51, 4023-4028.
- 26. Mancuso, A. J.; Swern, D. Synthesis 1981, 165-185.
- 27. Ueda, K.; Matsui, M. Agric. Biol. Chem. 1970, 34, 1119-1125.
- 28. The authors are indebted to Dr. Matthias Noltemeyer, Institut für Anorganische Chemie, Universität Göttingen, for carrying out this structure analysis. (a) Further details of this crystal structure investigation are available on request from the Fachinformationszentrum Energie Physik Mathematik GmbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-405246, the names of the authors, and the journal citation. (b) Sheldrick, G. M., SHELXTL-PLUS: Program for Crystal Structure Determination, University of Göttingen, 1986.