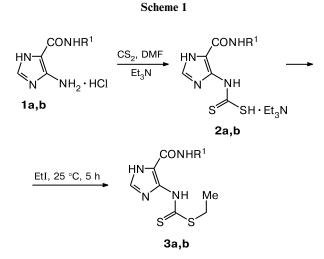
Synthesis of imidazolyl dithiocarbamates and their reactions with phenacyl bromides*


O. S. El'tsov, * V. S. Mokrushin, M. V. Smirnova, and M. Z. Shafikov

Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 ul. Mira, 620002 Ekaterinburg, Russian Federation. Fax: +7 (343) 374 5483. E-mail: oleg-eltsov@yandex.ru

The reactions of ethyl (5-carbamoyl-3H-imidazol-4-yl)dithiocarbamate with phenacyl bromides afford the S-alkylation products as a mixture of E/Z-isomers, which undergo cyclization to 5-(2-oxo-4-arylthiazol-3-yl)-1H-imidazole-4-carboxamides under the action of a base.

Key words: imidazolyldithiocarbamates, alkylation, intramolecular heterocyclization, 5-(2-oxo-4-arylthiazol-3-yl)-1*H*-imidazole-4-carboxamides.

Earlier, we have shown that 5-aminoimidazole amides **1a,b** afford *S*-ethyldithiocarbamates **3a,b** in high yields upon sequential treatment with carbon disulfide and ethyl iodide without isolation of the intermediate imidazolyl-5-dithiocarbamic acid salt **2** (Scheme 1). The latter transform easily into the corresponding thioureas under the action of amines and results in imidazo[1,5-*c*][1,3,5]-thiadiazines in the reactions with dimethyl acetylenedicarboxylate.^{1,2}

R¹ = H (**a**), Me (**b**)

It is known that the reaction of 5-amino-4-imidazole(pyrazole)carboxamides with carbon disulfide results in the mercaptopurine³ and pyrazolopyrimidine derivatives,⁴ respectively, or pyrazolyldithiocarbamic acids,

* Dedicated to Academician V. N. Charushin on the occasion of his 60th birthday.

which undergo subsequently heterocyclization without their isolation.⁵

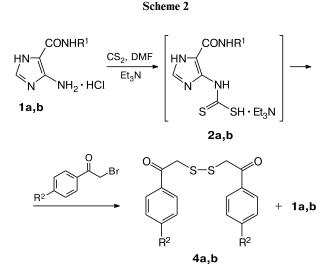
The present work is aimed at the synthesis and study of the reactions of 1H-imidazol-4-yldithiocarbamate **2a** and esters **3a,b** with phenacyl bromides.

Results and Discussion

Performing the reaction of 5-aminoimidazoles 1a,b with carbon disulfide under mild conditions allowed isolation of triethylammonium 5-carbamoyl-1*H*-imidazol-4-yldithiocarbamate (2a) in a high yield (see Scheme 1), whose alkylation with ethyl iodide resulted in *S*-ethyl dithiocarbamate 3a. We synthesized also the analogous methylamide derivative 3b, but without isolation of the intermediate salt of imidazolyldithiocarbamic acid 2b.

The presence of several nucleophilic centers in the molecule of substrate 2a contemplates ambiguousness of the reaction pathway with aromatic haloketones.

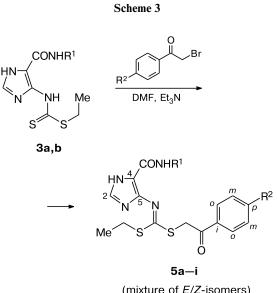
In the reaction of triethylammonium 5-imidazolyldithiocarbamate 2a with bromoacetophenones, the formation of several products with close chromatographic mobilities was observed, which made impossible the use of chromatography for separation and purification of substances. In attempting to crystallize compounds, they decomposed.


The reactions of 5-aminoimidazoles 1a,b with carbon disulfide and aromatic haloketones as alkylating agents were performed analogously to the reaction with ethyl iodide.

However, these reactions resulted in no alkylation products or subsequent cyclization products; after dilution of the reaction mixture with water, the symmetric aromatic disulfides **4a**,**b** (according to the data from ¹H, ¹³C NMR, and mass spectrometry and elemental analy-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 862-868, May, 2011.

1066-5285/11/6005-882 © 2011 Springer Science+Business Media, Inc.


sis) were isolated (Scheme 2). In addition, the starting aminoimidazoles 1a,b were fixed chromatographically.

4: R² = Cl (a), NO₂ (b)

The ¹H NMR spectra of the isolated products **4a**,**b** contain no signals for the imidazole ring and its substituents and contain signals for the aromatic protons and CH₂ group. The peak values of molecular ion and fragment ions in the mass spectrum suggest also the formation of disulfides 4a,b.

Further, we studied the reactions of ethyl imidazolyldithiocarbamates **3a,b** with bromoacetophenones. When performing this reaction in DMF in the presence of triethylamine, dialkylated imidazolyldithiocarbamates 5a—i were produced (Scheme 3, Tables 1 and 2).

				(mix	ture of	f E/Z-iso	omers	5)
	R ¹	R ²		R ¹	R ²		R ¹	R ²
а	н	Н	d	Н	NO_2	g	Me	OMe
b	Н	Cl	е	Me	Н	h	Me	NO_2
С	Н	OMe	f	Me	Cl	i	Me	Me

Table 1. Yields, melting points, data from elemental analysis, ¹H NMR spectroscopy and mass spectrometry of compounds 2a, 4a,b, 5a-i, and 6a-h

Com- Yield pound (%)		M.p. ∕°C	Found Calculated (%)			Molecular formula	¹ H NMR, δ (<i>J</i> /Hz)	
			С	Н	N			
2a	91	120	<u>43.76</u> 43.56	<u>7.50</u> 6.93	<u>23.52</u> 23.10	$C_{11}H_{21}N_5OS_2$	13.54, 11.02 (both s, 1 H each, NH); 7.19 (s, 1 H, CH_{Im}); 7.10 (br.s, 2 H, $CONH_2$); 3.06 (q, 6 H, $C\underline{H}_2CH_3$, $J = 7.6$); 1.18 (t, 9 H, $CH_2C\underline{H}_3$, $J = 7.6$)	303
4 a	70	141	<u>51.90</u> 51.76	<u>3.40</u> 3.26	—	$C_{16}H_{12}O_2S_2Cl_2$	7.98–7.59 (AA´BB´ system, 4 H, H _{Ar}); 4.41 (s, 2 H, CH ₂)	371
4b	75	122	<u>48.65</u> 48.97	<u>2.75</u> 3.08	<u>7.55</u> 7.14	$C_{16}H_{12}N_2O_6S_2$	8.35–8.17 (AA´BB´ system, 4 H, H _{Ar}); 4.50 (s, 2 H, CH ₂)	392
5a	75	188	<u>52.20</u> 51.72	<u>4.55</u> 4.60	<u>16.15</u> 16.09	$C_{15}H_{16}N_4O_2S_2$	12.92, 12.76 (s, 1 H, NH _{Im}); 8.02–7.60 (m, 5 H, H _{Ar}); 7.69, 7.28 (br.s, 2 H, CONH ₂); 7.32 (s, 1 H, CH _{Im}); 4.86 (s, 2 H, CH ₂); 3.13, 3.08 (q, C <u>H</u> ₂ CH ₃ , 2 H, J = 7.0); 1.29, 1.23 (t, 3 H, CH ₂ C <u>H</u> ₃ , J = 7.0)	348
5b	81	231	<u>46.83</u> 47.05	<u>4.25</u> 3.95	<u>14.21</u> 14.63	C ₁₅ H ₁₅ ClN ₄ O ₂ S ₂	12.80, 12.66 (s, 1 H, NH _{Im}); 8.03–7.36 (AA'BB' system, 4 H, H _{Ar} , $J = 8.5$); 7.32 (s, 1 H, CH _{Im}); 7.29, 6.99 (br.s, 2 H, CONH ₂); 4.79, 4.73 (s, 2 H, CH ₂); 3.15, 3.08 (q, 2 H, C <u>H</u> ₂ CH ₃ , $J = 7.2$); 1.38, 1.34 (t, 3 H, CH ₂ C <u>H</u> ₃ , $J = 7.2$)	382

(to be continued)

Table 1 (continued)

Com- Yield pound (%)		M.p. ∕°C	Found Calculated (%)		(%)	Molecular formula	¹ H NMR, δ (<i>J</i> /Hz)	$[M^+],$ m/z
			С	Н	N			
5c	71	219	<u>51.05</u> 50.79	<u>4.65</u> 4.79	<u>14.55</u> 14.81	$C_{16}H_{18}N_4O_3S_2$	12.70, 12.65 (s, 1 H, NH _{Im}); 7.97–6.99 (AA'BB' system, 4 H, H _{Ar} , $J = 9.0$); 7.52, 7.44 (s, 1 H, CH _{Im}); 7.34, 6.88 (br.s, 2 H, CONH ₂); 4.69, 4.67 (s, 2 H, CH ₂); 3.87 (s, 3 H, OCH ₃); 3.14, 3.05 (q, 2 H, C <u>H</u> ₂ CH ₃ , J = 7.5); 1.35, 1.33 (t, 3 H, CH ₂ C <u>H</u> ₃ , $J = 7.5$)	378
5d	59	242	<u>45.99</u> 45.79	<u>4.05</u> 3.84	<u>17.33</u> 17.80	$C_{15}H_{15}N_5O_4S_2$	12.77, 12.65 (s, 1 H, NH _{Im}); 8.40–8.32 (AA'BB' system, 4 H, H _{Ar} , $J = 9.0$); 7.52, 7.43 (br.s, 1 H, CH _{Im}); 7.23, 6.81 (br.s, 2 H, CONH ₂); 4.85 (s, 2 H, CH ₂); 3.06 (q, 2 H, CH ₂ CH ₃ , $J = 7.5$); 1.37 (t, 3 H, CH ₂ CH ₃ , $J = 7.5$)	393
5e	55	171	<u>53.20</u> 53.04	<u>5.34</u> 5.01	<u>15.20</u> 15.46	$C_{16}H_{18}N_4O_2S_2$	12.84, 12.68 (br.s, 1 H, NH _{Im}); 8.02–7.62 (m, 5 H, Ph); 7.78, 7.24 (q, 1 H, NH, J = 4.6); 7.61, 7.41 (s, 1 H, CH _{Im}); 4.77, 4.75 (s, 2 H, CH ₂); 3.14, 3.10 (q, 2 H, CH ₂ CH ₃ , J = 7.2); 2.88, 2.68 (d, 3 H, NHCH ₃ , J = 4.6); 1.35 (t, 3 H, CH ₂ CH ₃ , J = 7.2)	362
5f	70	175	<u>48.05</u> 48.42	<u>4.01</u> 4.32	<u>14.10</u> 14.12	C ₁₆ H ₁₇ ClN ₄ O ₂ S ₂	12.51, 12.34 (br.s, 1 H, NH _{Im}); 7.71–7.19 (AA'BB' system, 4 H, H _{Ar} , $J = 8.7$); 7.43, 6.91 (q, 1 H, NH, J = 4.3); 4.42, 4.40 (s, 2 H, CH ₂); 2.80, 2.70 (q, 2 H, CH ₂ CH ₃ , $J = 7.3$); 2.54, 2.39 (d, 3 H, NHCH ₃ , $J = 4.3$); 1.01 (t, 3 H, CH ₂ CH ₃ , $J = 7.3$)	396
5g	65	188	<u>52.19</u> 52.04	<u>5.02</u> 5.14	<u>14.13</u> 14.27	$C_{17}H_{20}N_4O_3S_2$	12.84, 12.68 (br.s, 1 H, NH _{Im}); 8.02–7.00 (AA'BB' system, 4 H, H _{Ar} , $J = 8.8$); 7.78, 7.30 (q, 1 H, NH, J = 4.5); 7.51, 7.42 (s, 1 H, CH _{Im}); 4.70, 4.68 (s, 2 H, CH ₂); 3.88 (s, 3 H, OCH ₃); 3.16, 3.10 (q, 2 H, CH ₂ CH ₃ , J = 7.3); 2.88, 2.72 (d, 3 H, NHCH ₃ , $J = 4.5$); 1.35 (t, 3 H, CH ₂ CH ₃ , $J = 7.3$)	392
5h	51	183	<u>47.50</u> 47.16	<u>4.01</u> 4.21	<u>17.00</u> 17.19	$C_{16}H_{17}N_5O_4S_2$	12.86, 12.70 (s, 1 H, NH _{Im}); 8.35–8.24 (AA'BB' system, 4 H, H _{Ar} , $J = 8.5$); 7.75, 7.23 (q, 1 H, NH, $J = 5.5$); 7.51, 7.42 (s, 1 H, CH _{Im}); 4.84, 4.82 (s, 2 H, CH ₂); 3.14, 3.11 (q, 2 H, CH ₂ CH ₃ , $J = 7.5$); 2.87, 2.73 (d, 3 H, NHCH ₃ , $J = 5.5$); 1.35 (t, 3 H, CH ₂ CH ₃ , $J = 7.5$)	407
5i	40	168	53.98 54.23	<u>5.21</u> 5.35	<u>14.97</u> 14.89	$C_{17}H_{20}N_4O_2S_2$	12.84, 12.68 (s, 1 H, NH _{Im}); 7.93–7.31 (AA'BB' system, 4 H, H _{Ar} , $J = 9.5$); 7.77, 7.26 (q, 1 H, NH, J = 4.3); 7.51, 7.42 (s, 1 H, CH _{Im}); 4.73 (br.s, 2 H, CH ₂); 3.16, 3.12 (q, 2 H, CH ₂ C <u>H₃</u> , $J = 7.3$); 2.87, 2.69 (d, 3 H, NHC <u>H₃</u> , $J = 4.3$); 2.43 (s, 3 H, CH ₃); 1.39 (t, 3 H, CH ₂ C <u>H₃</u> , $J = 7.3$)	376
6a	38	189	<u>54.30</u> 54.55	<u>3.55</u> 3.52	<u>20.20</u> 19.57	$C_{13}H_{10}N_4O_2S$	12.81 (s, 1 H, NH _{Im}); 7.74 (m, 2 H, Ph); 7.58 (s, 1 H, CH _{Im}); 7.44–7.33 (m, 5 H, Ph, CONH ₂); 7.22 (s, 1 H, CH)	286
6b	46	200	<u>48.32</u> 48.67	<u>3.02</u> 2.83	<u>17.13</u> 17.47	C ₁₃ H ₉ ClN ₄ O ₂ S		
6c	51	242	<u>47.38</u> 47.13	<u>3.10</u> 2.74	<u>20.85</u> 21.14	$C_{13}H_9N_5O_4S$	12.85 (s, 1 H, NH _{Im}); 8.30–8.00 (AA'BB' system, 4 H, H _{Ar} , $J = 8.8$); 7.73 (s, 1 H, CH _{Im}); 7.60 (s, 1 H, CH); 7.35, 7.32 (br.s, 2 H, CONH ₂)	331
6d	38	177	<u>55.80</u> 56.00	<u>4.32</u> 4.03	<u>18.35</u> 18.65	$C_{14}H_{12}N_4O_2S$	12.85 (s, 1 H, NH _{Im}); 7.76 (m, 2 H, Ph); 7.70 (q, 1 H, NH, $J = 4.3$); 7.55 (s, 1 H, CH _{Im}); 7.44 (m, 3 H, Ph); 7.24 (s, 1 H, CH); 2.95 (d, 3 H, NHC <u>H</u> ₃ , $J = 4.3$)	300

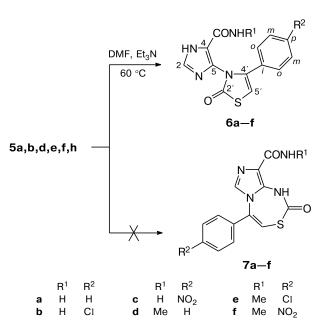
(to be continued)

885

Com- Yield pound (%)		M.p. /°C	Found Calculated (%)			Molecular formula	¹ H NMR, δ (<i>J</i> /Hz)	[M ⁺], <i>m/z</i>
			С	Н	N			
6e	45	165	<u>50.10</u> 50.23	<u>3.65</u> 3.31	<u>16.82</u> 16.74	$C_{14}H_{11}ClN_4O_2S$	12.86 (s, 1 H, NH _{Im}); 7.79–7.44 (AA'BB' system, 4 H, H _{Ar} , $J = 8.8$); 7.67 (q, 1 H, NH, $J = 4.7$); 7.55 (s, 1 H, CH _{Im}); 7.33 (s, 1 H, CH); 2.95 (d, 3 H, NHC <u>H</u> ₃ , $J = 4.7$)	334
6f	65	250	<u>49.01</u> 48.70	<u>3.03</u> 3.21	<u>20.01</u> 20.29	$C_{14}H_{11}N_5O_4S$	12.90 (s, 1 H, NH _{Im}); 8.31–8.02 (AA'BB' system, 4 H, H _{Ar} , $J = 8.8$); 7.74 (s, 1 H, CH _{Im}); 7.65 (q, 1 H, NH, J = 5.0); 7.57 (s, 1 H, CH); 2.96 (d, 3 H, NHC <u>H</u> ₃ , $J = 5.0$)	345
6g	59	205	<u>53.02</u> 53.16	<u>3.56</u> 3.82	<u>18.08</u> 17.71	$C_{14}H_{12}N_4O_3S$	12.92 (s, 1 H, NH _{Im}); 7.75 (s, 1 H, CH _{Im}); 7.65–7.27 (AA'BB' system, 4 H, H _{Ar} , $J = 8.3$); 7.49, 7.36 (s, 2 H, CONH ₂); 7.18 (s, 1 H, CH); 3.80 (s, 3 H, OCH ₃)	316
6h	68	215	<u>55.86</u> 56.00	<u>4.00</u> 4.03	<u>18.90</u> 18.65	$C_{14}H_{12}N_4O_2S$	12.92 (s, 1 H, NH _{Im}); 7.75 (s, 1 H, CH _{Im}); 7.69–7.01 (AA'BB' system, 4 H, H _{Ar} , $J = 9.5$); 7.49, 7.38 (s, 2 H, CONH ₂); 7.12 (s, 1 H, CH); 3.33 (s, 3 H, CH ₃)	300

 Table 1 (continued)

Table 2. ¹³C NMR spectral data for compounds 4a,b, 5a-i, and 6a-h


Compound	¹³ C NMR, δ
4 a	193.00 (CO); 138.84, 133.68, 130.33, 128.53 (all C _{Ar}); 95.77 (CH ₂)
4b	193.98 (CO); 150.40, 140.22, 130.06, 124.01 (all C_{Ar}); 44.50 (CH ₂)
5a	193.81 (CO); 164.12 (CS); 163.33 (CONH ₂); 145.05 (C(5)); 135.78 (C _i); 134.19 (C(2)); 130.12, 128.89,
	128.86 (C _o , C _p , C _m); 115.91 (C(4)); 39.90 (CH ₂); 26.91 (<u>C</u> H ₂ CH ₃); 14.47 (CH ₂ <u>C</u> H ₃)
5b	192.74 (CO); 163.87 (CS); 160.67 (CONH ₂); 145.05 (C(5)); 135.69 (C(2)); 134.74 (C _p); 134.19 (C _m);
	128.63 (C _o); 120.28 (C _i); 115.91 (C(4)); 39.90 (CH ₂); 26.91 (<u>C</u> H ₂ CH ₃); 14.67 (CH ₂ <u>C</u> H ₃)
5c	191.25 (CO); 163.69 (CS); 160.24 (CONH ₂); 145.15 (C(5)); 138.19 (C _i); 135.37 (C _p); 134.03 (C(2));
	123.89 (C _o , C _m); 115.48 (C(4)); 55.35 (OCH ₃); 39.19 (CH ₂); 26.47 (<u>C</u> H ₂ CH ₃); 14.30 (CH ₂ <u>C</u> H ₃)
5d	192.17 (CO); 160.54 (CS); 160.63 (CONH ₂); 144.9 (C(5)); 140.18 (C _{<i>i</i>}); 130.71 (C(2)); 129.63, 125.98,
	123.80 (C_m , C_o , C_p); 95.80 ($C(4)$); 39.99 ($\underline{C}H_2CH_3$); 26.72 ($\underline{C}H_2CH_3$); 14.36 ($CH_2\underline{C}H_3$)
5e	194.06 (CO); 163.87 (CS); 159.62 (CONH ₂); 144.79 (C(5)); 135.53 (C _i); 134.19 (C(2)); 133.22 (C _p);
	128.89, 127.58 (C _o , C _m); 115.91 (C(4)); 39.90 (<u>C</u> H ₂ CH ₃); 26.91 (CH ₂ <u>C</u> H ₃); 25.31 (CH ₃)
5f	193.05 (CO); 163.60 (CS); 159.62 (CONH ₂); 144.80 (C(5)); 138.97 (C _i); 134.47 (C _p); 130.48 (C(2));
_	128.85 (C_o , C_m); 116.18 ($C(4)$); 39.90 (\underline{CH}_2CH_3); 26.91 ($CH_2\underline{CH}_3$); 25.31 (CH_3)
5g	192.20 (CO); 164.12 (CS); 159.62 (CONH ₂); 145.05 (C(5)); 144.19 (C _p); 131.28 (C(2)); 128.37 (C _i);
5 1	$127.60, 124.62 (C_o, C_m); 115.91 (C(4)); 55.79 (OCH_3); 39.62 (\underline{CH}_2CH_3); 26.91 (CH_2\underline{CH}_3); 25.06 (CH_3)$
5h	193.26 (CO); 163.60 (CS); 159.89 (CONH ₂); 150.61 (C(5)); 142.79 (C _p); 140.55 (C _i); 129.69 (C(2)); 125.55 (24.12) (C ₁) (24.12) (C ₁) (24.12) (C ₁) (24.12) (C ₁) (24.12) (25.21) (C ₁) (24.12) (25.21) (24.12) (24
	125.55, 124.12 (C_0 , C_m); 116.18 ($C(4)$); 39.90 (\underline{CH}_2CH_3); 26.91 ($CH_2\underline{CH}_3$); 25.31 (CH_3) 122.84 ($C(2)$): 144.22 ($C(7)$): 142.59 ($C(2)$): 145.85 ($C(5)$): 125.80 (C_2): 124.19 ($C(2)$): 129.22 (C_3):
5i	193.84 (C(9)); 164.23 (C(7)); 163.59 (C(6)); 145.85 (C(5)); 135.80 (C _i); 134.19 (C(2)); 130.22 (C _p); 128.80, 128.86 (C ₁ , C ₁); 115.01 (C(4)); 20.00 (CH, CH,); 26.01 (CH, CH,); 14.47 (CH,); 27.00 (CH, CH,); 26.01 (CH, CH,); 26.01 (CH, CH,); 27.00 (CH,
6a	128.89, 128.86 (C_o , C_m); 115.91 (C(4)); 39.90 (<u>CH₂CH₃</u>); 26.91 (CH ₂ <u>CH₃</u>); 14.47 (CH ₃) 164.46 (C(2 ['])); 161.22 (CONH ₂); 146.69 (C(4 ['])); 143.76 (C(5)); 134.32 (C(2)); 130.42, 129.34, 125.05
Ua	(C_0, C_m, C_p) ; 127.45 (C_i) ; 115.45 $(C(4))$; 102.35 $(C(5'))$
6b	$(C_o, C_m, C_p), 127.45 (C_i), 113.45 (C(4)), 102.55 (C(5)))$ 164.26 (C(2')); 161.22 (CONH ₂); 145.17 (C(4')); 143.43 (C(5)); 134.54 (C(2)); 134.11 (C _p); 129.55,
00	$126.95 (C_m, C_o); 126.90 (C_i); 115.45 (C(4)); 102.87 (C(5'))$
6c	$163.33 (C(2')); 160.95 (CONH_2); 147.18 (C(4')); 144.53 (C(5)); 142.67 (C_p); 134.72 (C(2));$
	$133.39 (C_i); 125.72, 124.12 (C_m, C_o); 115.12 (C(4)); 106.38 (C(5'))$
6d	$164.12 (C(2')); 159.89 (CONHCH_3); 146.11 (C(4')); 142.40 (C(5)); 129.42 (C(2)); 130.55, 129.50,$
	$124.66 (C_o, C_m, C_o); 127.83 (C_i); 115.12 (C(4)); 101.08 (C(5')); 25.85 (CH_3)$
6e	$164.21 (C(2')); 158.14 (CONHCH_3); 148.00 (C(4')); 144.33 (C(5)); 140.52 (C_n); 135.40 (C(2));$
	133.37 (C_i); 123.12, 121.88 (C_m , C_o); 115.03 ($C(4)$); 103.15 ($C(5')$); 25.75 (CH_3)
6f	163.60 (C(2')); 160.16 (CONHCH ₃); 147.70 (C(4')); 144.53 (C(5)); 142.14 (C _n); 134.47 (C(2));
	133.39 (C _i); 125.72 (C _m); 124.12 (C _o); 115.66 (C(4)); 106.65 (C(5')); 25.31 (CH ₃)
6g	$163.92 (C(2')); 160.59 (CONHCH_3); 145.95 (C(4')); 143.03 (C_p); 138.85 (C_i); 129.66, 125.06 (C_o, C_m);$
	115.03 (C(4)); 99.57 (C(5 ['])); 55.32 (OCH ₃)
6h	164.53 (C(2 ['])); 160.95 (CONH ₂); 146.11 (C(4 ['])); 140.04 (C _p); 125.91, 124.66 (C _o , C _m); 120.54 (C _i);
	115.17 (C(4)); 98.29 (C(5')); 20.60 (CH ₃)

It should be noted that, due to the presence of the -C=N bond, products **5** form as a mixture of E/Z-isomers, which is evidenced by the ¹H NMR spectral data where all signals are either broadened or appear as a double set of signals (in a ration of 1 : 2). Compared to the ¹H NMR spectra of the starting ethyl thioesters **3a**,**b**, the ¹H NMR spectra of compounds **5a**—**i** display the signals for the CH₂ groups and aromatic protons in the absence of the downfield signals for the NH group.

Taking into account the possibility of intramolecular cyclization involving the electrophilic carbonyl carbon atom and one of the nucleophilic centers in the molecules of imidazolyldithiocarbamates **5a,b,d,e,f,h**, we treated them with triethylamine in DMF at 60 °C.

Based on the data from ¹H, ¹³C NMR, and mass spectrometry of isolated individual compounds, it was established that either imidazolylthiazolines 6a-f or condensed seven-membered imidazothiadiazines 7a-f can form as a result of heterocyclization (Scheme 4).

However, the compounds **6** and **7** have identical molecular formulas, molecular weights, and the number of proton and carbon atoms with a low-informative multiplicity in the ¹H and ¹³C NMR spectra, which makes difficult to assign the structures of isolated compounds by the above-mentioned methods.

To establish exactly the structures of compound obtained, the HMBC spectra were recorded, which allowed us unambiguously to make choice in favor of imidazolylthiazolidines 6a-f. The presence of the cross peaks between the C(2) atom of the imidazole ring and the NH proton, which is typical of compounds 6, as well as the absence of the proposed cross peaks between the signals for the carbon atom bound to the aromatic substituent and two heterocyclic CH protons (of the imidazole and thiadiazepine rings) for the condensed imidazothiadiazepines 7 are the most informative data.

The peak values of molecular ions in the mass spectra of compounds 6a-f corresponds to the calculated ones. One can note an identical type of fragmentation: four most intensive fragment ions caused by destruction of the thiazolidine ring are distinguished in all mass spectra with the exception of nitro derivatives (Scheme 5, Table 3).

Scheme 5

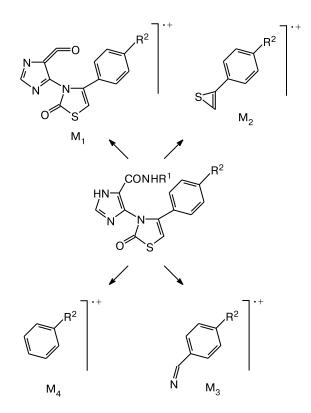
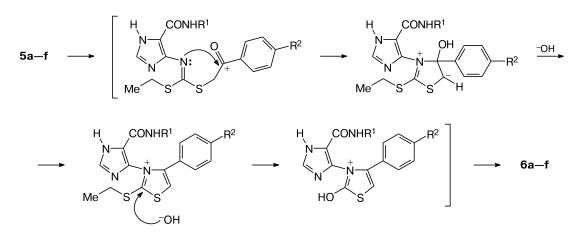



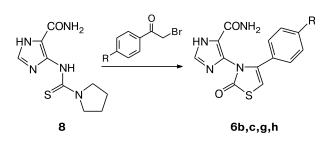
Table 3. Peaks of the main fragment ions in the mass spectra of compounds 6a-h

Com-	$m/z (I_{\rm rel}(\%))$									
pound	M ₁	M ₂	M ₃	M ₄						
6a	269 (44.87)	134 (47.22)	105 (100)	77 (53.47)						
6b	303 (19.86)	168 (23.07)	139 (100)	111 (34.46)						
6c	314 (61.63)	179 (8.73)	150 (65.30)	_						
6d	269 (12.42)	134 (40.06)	105 (100)	77 (36.54)						
6e	303 (12.35)	168 (36.20)	139 (100)	111 (28.78)						
6f	314 (25.89)	179 (12.08)	150 (86.16)	_						
6g	299 (4.40)	168 (11.31)	135 (100)	107 (6.78)						
6h	283 (8.52)	152 (14.33)	116 (89.63)	91 (7.89)						

Scheme 6

Note that cyclization found proceeded only in the case where the aromatic ring is unsubstituted or contains electron-withdrawing substituents ($R^2 = Cl$, NO_2). In the case where the substituent R^2 is electron-donating ($R^2 = OMe$, Me), the reaction did not proceed under the analogous conditions. Application of more severe conditions (temperature increase, use of stronger bases) resulted in resinification of the reaction mixture.

Such a behavior can be explained by the mechanism proposed for the synthesis of products 6a-f (Scheme 6).


At the first step, the electron lone pair of the nitrogen atom of the dithiocarbamate fragment, which is most likely activated by triethylamine, attacks the positively charged carbon atom of the carbonyl group to form the thiazole ring. The readiness of this reaction depends on the nature of the substituent in the *para*-position of the phenyl ring. When the substituent is electron-donating (methyl or methoxy) group, the positive charge is insufficitent for the closure of a novel ring.

In the case when the phenyl ring is unsubstituted ($R^2 = H$) or substituted with electron-withdrawing groups (R = Cl, NO₂), the positive charge on the carbon atom increases, which promotes the reaction. The addition of the hydroxyl group to a new ring is possible only where there is a charge in the structure. This causes subsequent elimination of the S-ethyl fragment and proton, which form leaving ethanethiol.

To prove the above-given cyclization pathway, the trisubstituted thiourea **8** was chosen as the starting substrate.^{1,2} It was assumed that the presence of the pyrrolidine fragment would considerably activate the electron lone pair of the nitrogen atom, which, in turn, would facilitate heterocyclization and the formation of the thiazole ring. In this case, the nature of the substituent in the aromatic ring will not influence the course of the reaction.

The reactions of imidazolylthiourea **8** with phenacyl bromides afforded compounds identical to the earlier synthesized imidazolylthiazolines **6b**,**c** by their physicochemical parameters, as well as compounds **6g,h**. Consequently, the formation of the thiazole ring was observed in the case of both electron-withdrawing and electron-donating substituents in the aromatic ring (Scheme 7).

Scheme 7

6: R = Cl(b), $NO_2(c)$, OMe(g), Me(h)

Thus, we found that alkylation of ethyl imidazolyldithiocarbamates 3a,b with aromatic haloketones resulted in the dialkylated imidazolyldithiocarbamates 5a-i as a mixture of E/Z-isomers, which can undergo intramolecular cyclization in the presence of base to form imidazolylthiazolidines 6a-f. The latter are produced only in the presence of electron-withdrawing substituents in the aromatic ring. The analogous compounds can be obtained from the substituted imidazolylthiourea 8 by the reactions with bromoacetophenones containing both electron-withdrawing and electron-donating substituents in the aromatic ring.

Experimental

¹H and ¹³C NMR spectra were obtained on a Bruker AVANCE II 400 (400.00 and 100.00 MHz, respectively) instrument in DMSO-d₆ using Me₄Si as the internal standard. Mass spectra were recorded on a Varian MAT-311A instrument (EI, the energy of ionizing electrons is 70 eV). IR spectra were recorded on a Bruker Alpha FT-IR spectrometer with an ATR adapter (ZnSe crystal). TLC was performed on Silufol UV-254 plates in the chloroform—ethanol (3 : 1) system, compounds on TLC were visualized using UV light or iodine vapor.

Triethylammonium (5-carbamoyl-3*H***-imidazol-4-yl)dithiocarbamate (2a).** To a solution of 5-aminoimidazole **1a** (2.83 mmol) in DMF (3 mL) and Et₃N (0.83 mL, 0.60 g, 5.95 mmol), carbon disulfide (0.2 mL, 0.25 g, 3.34 mmol) was added and the reaction mixture was kept for 24 h with stirring at room temperature. The mixture was diluted with chloroform (10 mL). The precipitate that formed was filtered off and purified by recrystallization from ethanol.

Ethyl (5-carbamoyl-3H-imidazol-4-yl)dithiocarbamate (3a). To a solution of dithiocarbamate 2a (0.495 mmol) in DMF (1 mL), ethyl iodide (0.1 g, 0.641 mmol) was added and the reaction mixture was kept for 5 h at room temperature. The mixture was diluted with chloroform (25 mL). The precipitate that formed was filtered off and purified by recrystallization from ethanol.

Bis(4-chlorophenacyl) disulfide (4a), bis(4-nitrophenacyl) disulfide (4b) (general procedure). To a solution of 5-aminoimidazole 1a,b (1.23 mmol) in DMF (1 mL) and Et_3N (0.4 mL), carbon disulfide (0.11 mL) was added and the reaction was kept for 24 h with stirring at room temperature. Bromoacetophenone (0.302 g, 1.29 mmol) was added. The mixture was kept for additional 1–2 h at room temperature and diluted with ice water (25 mL). The precipitate that formed was filtered off and purified by recrystallization from ethanol.

5-{[Ethylsulfanyl(phenacylsulfanyl)methylidene]amino}-1Himidazole-4-carboxamide (5a), 5-{[ethylsulfanyl-(4-chlorophenacylsulfanyl)methylidene]amino}-1H-imidazole-4-carboxamide (5b), 5-{[ethylsulfanyl-(4-methoxyphenacylsulfanyl)methylidene]amino}-1H-imidazole-4-carboxamide (5c), 5-{[ethylsulfanyl-(4nitrophenacylsulfanyl)methylidene]amino}-1H-imidazole-4-carboxamide (5d), 5-{[ethylsulfanyl(phenacylsulfanyl)methylidene]amino}-1H-imidazole-4-(N-methyl)carboxamide (5e), 5-{[ethylsulfanyl-(4-chlorophenacylsulfanyl)methylidene]amino}-1H-imidazole-4-(N-methyl)carboxamide (5f), 5-{[ethylsulfanyl-(4-methoxyphenacylsulfanyl)methylidene]amino}-1H-imidazole-4-(Nmethyl)carboxamide (5g), 5-{[ethylsulfanyl-(4-nitrophenacylsulfanyl)methylidene]amino}-1H-imidazole-4-(N-methyl)carboxamide (5h), 5-{[ethylsulfanyl-(4-methylphenacylsulfanyl)methylidene]amino}-1H-imidazole-4-(N-methyl)carboxamide (5i) (general procedure). To a solution of ethyl dithiocarbamate 3a,b (0.65 mmol) and haloketone (0.68 mmol) in DMF (1.5 mL).

 Et_3N (0.14 mL) was added and the reaction mixture was kept for 2 h with stirring at room temperature. The mixture was diluted with water (15 mL). The precipitate that formed was filtered off and purified by recrystallization from ethanol.

5-[2-Oxo-4-phenylthiazol-3-yl]-1H-imidazole-4-carboxamide (6a), 5-[2-oxo-4-(4-chlorophenyl)thiazol-3-yl]-1H-imidazole-4-carboxamide (6b), 5-[4-(4-nitrophenyl)-2-oxothiazol-3yl]-1H-imidazole-4-carboxamide (6c), 5-[2-oxo-4-phenylthiazol-3-yl]-1H-imidazole-4-(N-methyl)carboxamide (6d), 5-[2-oxo-4-(4-chlorophenyl)thiazol-3-yl]-1H-imidazole-4-(N-methyl)carboxamide (6e), 5-[4-(4-nitrophenyl)-2-oxothiazol-3-yl]-1H-imidazole-4-(N-methyl)carboxamide (6f), 5-[4-(4-methoxyphenyl)-2oxothiazol-3-yl]-1H-imidazole-4-carboxamide (6g), 5-[2-oxo-4-(p-tolyl)thiazol-3-yl]-1H-imidazole-4-carboxamide (6h) (general procedure A). To a solution of imidazolylthiazoline 5a,b,d,e,f,h (0.28 mmol) in DMF (1 mL), Et₃N (0.2 mL) was added and the reaction mixture was kept for 5 (6c, f), 10 (6b, e), or 12 h (6a, d) at 60 °C. In the case of compounds **6c**, **f**, the mixture was diluted with water (20 mL). The precipitate that formed was filtered off. In the case of compounds **6a,b,d,e**, the reaction mixture was concentrated and the products were purified by recrystallization from an ethanol-acetonitrile (1:3) mixture.

Synthesis of compounds 6b,c,g,h (general procedure *B*). A solution of compound 8 (0.42 mmol) and haloketone (0.44 mmol) in acetonitrile (10 mL) was refluxed for 2 h. The precipitate that formed was filtered off and recrystallized from ethanol.

References

- 1. O. S. Eltsov, E. A. Kamalova, V. S. Mokrushin, *Mendeleev Commun.*, 2006, 32.
- O. S. Eltsov, M. V. Smirnova, Yu. Yu. Morzherin, N. P. Belskaiya, V. S. Mokrushin, *ARKIVOC*, 2008, XVII, 306.
- 3. A. H. Cook, E. Smith, J. Chem. Soc., 1949, 2329.
- L. N. Sobenina, A. P. Demenev, A. I. Mikhaleva, O. V. Petrova, L. I. Larina, G. P. Chernykh, D. S. D. Toryashinova, A. V. Vashchenko, B. A. Trofimov, *Sulfur Lett.*, 2000, 24, 1.
- 5. R. M. Mohareb, H. F. Zohdi, W. W. Wardakhan, *Monatsh. Chem.*, 1995, **126**, 1391.

Received February 3, 2011; in revised form March 30, 2011