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Abstract

The unprecedented reaction of tertiary amines with 2(3H)-benzoxazolones has been
investigated. In the presence of Ph;P-I, reagent system, the reaction of both acyclic and cyclic
aliphatic tertiary amines led to the formation of 2-N,N-dialkylaminobenzoxazoles with the
selective cleavage of an alkyl group. Especially, N-(2-iodoethyl)piperazinyl derivatives were
rapidly produced in good yields when using DABCO as the nitrogen source. Only in the cases
when the nucleophilicity of the substrates exceeds that of the amine, competitive self-
condensation of benzoxazolones then proceeds preferentially. 3'P{1H}-NMR study suggested
the involvement of an aryloxyphosphonium intermediate and/or possibly 2-iodobenzoxazole

which activates the C-2 position of benzoxazolones toward nucleophilic aromatic substitution.

Keywords Tertiary amines; Benzoxazolones; Aminobenzoxazoles; Triphenylphosphine;

Todine
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Tertiary amines are commonly used as base in organic reactions due to their solubility in
several organic solvents, stability, and inertness. Nevertheless, the unusual role of tertiary
amine as a secondary amine surrogate has already been observed under appropriate reaction
conditions. While a number of metal-catalyzed aminations toward N, N-disubstituted products
reported to date have been carried out with several substrates such as carboxylic acids, esters,
sulfonyl chlorides, alkenes, alkynes, benzynes, and benzoxazoles,! the metal-free reaction of
tertiary amines has rarely been explored. Most of which requires highly reactive substrates
including anhydrides,? acyl chloride,’ acyl iodide* and heteroaromatic halides (X = CI),’

otherwise harsh reaction conditions are strictly required.®

2-Aminobenzoxazoles are interesting structural motifs often found to be incorporated
in a number of therapeutically important molecules.” A wide range of biological activities have
already been observed. Particularly, 2-(N-alkylpiperazyl)benzoxazoles were described as
potent 5-HT3-receptor agonists.”® Owing to their pharmaceutical importance, several
approaches toward the synthesis of 2-aminobenzoxazoles have been introduced including SyAr
displacement of 2-substituted benzoxazoles (Cl®and CCl;®), metal-catalyzed oxidative C—H
bond amination of benzoxazoles'® condensation of 2-aminophenol with iso(thio)cyanate,!!
isocyanide,'? or dithiocarbamates,'> as well as microwave-assisted direct amination of

2-mercaptobenzoxazoles. '

Despite numerous studies on the application of primary and secondary amines as the
common nucleophile, there are only three reports on the synthesis of 2-aminobenzoxazoles
using tertiary amines. Two of these studies involve SyAr reaction of 2-chlorobenzoxazoles
with N-alkyl tertiary amines (Scheme 1a).’4% Another study relies on Cu-catalyzed oxidative
amination of benzoxazoles (Scheme 1b).!® Nevertheless, harsh conditions, long reaction times,
and narrow substrate scope remain the major issues to be overcome. While the synthesis

starting from 2-chlorobenzoxazoles requires extra preparation step toward the reactive
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precursors using highly toxic POCl; or PCls,'> the costs associated with residual catalyst
removal in the metal—catalyzed reaction have prompted a great interest in developing metal-
free reaction that enables the use of simple reagents as well as relatively low cost and highly

abundant tertiary amines as the nitrogen source.

Scheme 1. Tertiary Amine as Nitrogen Source in the Synthesis of 2-Aminobenzoxazoles
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In our continuing work with Ph;P-I,-mediated synthesis,'® we have unexpectedly
isolated N,N-diethylsubstituted benzoxazole while performing amination reaction of 2(3H)-
benzoxazolone using triethylamine as base. To the best of our knowledge, the direct amination
of heterocyclic carbamate with tertiary amines has never been previously explored. This result
thus encourages us to further investigate the scope and generality of the reaction of

benzoxazolones with tertiary amines as shown in Scheme 1(c).

To establish the optimum conditions, amination of benzoxazolone 1la with
triethylamine (Et;N) was chosen as a model reaction. Various set of reaction conditions were

screened as summarized in Table 1. Using three equivalents of Et;N in the presence of a 1:1
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mixture of iodine and Ph;P (1.5 equiv) in dichloromethane gave the corresponding diethyl
substituted product 2aa in 35% together with recovered starting material (entry 1). When the
reaction was performed with 1.2 equivalents of Et;N in the presence of other commonly used
bases such as N,N-diisopropylethylamine (i-Pr,NEt) and N,N-dimethylaminopyridine
(DMAP), only low yield or trace amount of the desired product was obtained (entries 2-3).
Interestingly, using imidazole led to a competitive formation of 2ab in high yield indicating
the greater nucleophilicity of this base relative to Et;N (entry 4). To our delight, the yield of
the respective product was improved when increasing the amount of Et;N (entry 5).
Unfortunately, longer reaction times, raising the temperature, or increasing the equivalents of

the reagents did not further improve the product yield (entries 6-9).

Table 1. Optimization of the Reaction Conditions?*

H

N PhsP, I, Et;N N/ N
(Lo blB (O S

o CH,Cl,, 25 °C o g =N

1a 2aa 2ab
entry  Ph;P:l, Et;N base conditions Yoyield
(equiv) (equiv) (equiv)

1 1.5:1.5 3 - CH,Cl,, 25°C, 8 h 35

2 1.5:1.5 1.2 i-PrNEt (3) CH,Cl,, 25°C,8h 19

3 1.5:1.5 1.2 DMAP (3) CH,Cl,, 25°C, 8 h trace
4 1.5:1.5 1.2 imidazole (3) CH,Cl,, 25°C, 8 h trace (72)P
5 1.5:1.5 5 - CHCL,, 25°C,8h 52

6 1.5:1.5 5 - CH,Cl,, 25°C, 16 h 48

7 1.5:1.5 5 - toluene, 110°C, 8 h 15

8 1.5:1.5 5 - 1,2-dichloroethane, 80 °C, 8 h 38

9 2.5:2.5 6 - CH,Cl,, 25°C, 8 h 44

aReaction conditions: 1a (0.37 mmol) in 2 mL of solvent. *Yield of 2ab.

Since both electronic nature of the substrate, basicity and nucleophilicity of tertiary

amine are important factors determining the product yield and reaction rate, we next explored
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the scope and limitations of the process with respect to substituted benzoxazolones and types
of tertiary amines using the partially optimized reaction conditions (Table 1, entry 5).
According to Scheme 2, benzoxazolones having different substituents, especially those bearing
electron-withdrawing group, could be involved in the amination reaction. The reaction of
triethylamine with electron-deficient substrates such as those containing chloro or nitro
substituent proceeds in a faster rate and produces the corresponding diethylamino derivatives
in higher yields when comparing with those without substituent or having bromo group. The
ease of substitution could be attributed to the increase in electrophilicity of the benzoxazolone
ring. Unfortunately, electron-rich substrates such as those having -Me or -OMe group failed
to react with triethylamine under the applied reaction conditions. Instead, only self-condensed
products 3g and 3h were isolated in high yields, respectively, indicating that these substrates
once converted to the more reactive intermediates could undergo hydrolysis and coupling with
each other. It should be noted that similar coupling product has been reported in the reaction

involving 2-chlorobenzoxazole.!”

The reaction of 1a was further investigated with a variety of tertiary amines and the
results were summarized in Table 2. Other aliphatic amines were found to behave similarly to
triethylamine which provided the corresponding 2-dialkylaminobenzoxazoles in moderate to
good yields. For symmetrical substituted amines, the deoxygenative amination was found to
be dependent on the alkyl chain lengths as the reaction with trimethylamine proceeded more
readily than that using tributylamine (entry 1 vs entry 2). Surprisingly, despite the ease of
removal of the tentative benzyl iodide, tribenzylamine failed to react under the applied
conditions (entry 3) or even upon prolong heating at 80 °C in 1,2-dichloroethane. These results
suggested that either its weak basicity or the steric hindrance of the three benzyl groups may

be responsible for the lack of reactivity of this amine.
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Scheme 2. Scope of Reaction of 2(3H)-Benzoxazolones with Triethylamine?
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aReaction conditions: 1 (0.74 mmol), Et;N (3.70 mmol), Ph;P (1.11 mmol), I, (1.11 mmol) in

5 mL CH2C12, 0-25 °C.

When using mixed tertiary acyclic amine such as N, N-diethylbenzylamine,
debenzylation proceeded exclusively to give product 2aa in moderate yield (entry 4).
However, no reaction was observed with the more sterically hindered dibenzylethylamine
(entry 5). The reaction with various N-substituted cyclic amines was also investigated and the
expected products was obtained without detectable endocyclic C—N bond cleavage (see entries
6-10). Unfortunately, arylamines failed to undergo deoxygenative amination suggesting that

the reaction is incompatible with amines having the C(sp?)-N bond (entries 11-13).
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Table 2. Amination of 1a with Various Tertiary Amines?
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aReaction conditions: 1 (0.74 mmol), amine (3.70 mmol), Ph3P (1.11 mmol), I (1.11 mmol) in
5 mL CH,Cl,, 0-25 °C. bamine (2.22 mmol).

Further studies with tertiary amines containing two nitrogen atoms such as N,N,N’,N -
tetramethylethylenediamine (TMEDA) and 1,4-dimethylpiperazine revealed another problem
involving insoluble salt formation. Thus, to improve the product yields, it is necessary to
decrease the amount of the amines used in the reaction. According to Table 2 (entries 14 and
15), an interesting selectivity was observed. Among the two possible N-dealkylation, the
demethylated product 2ak was isolated as a major product when 1a was treated with TMEDA
(entry 14). Monosubstituted product 2al was also obtained exclusively when using 1,4-

dimethylpiperazine as a nucleophile (entry 15).

With the success in the use of both acyclic and cyclic amines, we next explore the
reaction with bicyclic amine using DABCO as the representative. Again, it was found that
reducing the amount of DABCO leads to better yields as the formation of the tentative
quaternary ammonium salts comprising substituted N-ethylpiperazinyl moiety!® was
minimized. According to Scheme 3, a range of benzoxazolones either those containing
electron-withdrawing group or donating group underwent rapid amination with DABCO
leading to the desired products 2am-2hm in good yields under short reaction times. Notably,
in the cases of using 1g or 1h, no trace of self-condensed product was detected indicating that
DABCO is highly reactive as base and nucleophile. The scope of the reaction could also be
extended to the synthesis of N-(2-iodoethyl)piperazinylbenzothiazoles using 2(3H)-
benzothiazolones as the substrates (see compounds 2im and 2jm). The practical utility of the
method was further demonstrated in a gram-scale synthesis of 2em. In this case, no significant

deteriorated effect on the product yield was observed when using only 1.2 equivalents of
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DABCO with the addition of Et;N as base. It is worth mentioning that this observation is
highly useful since the monoarylated piperazines are promising candidates for the treatment of
irritable bowel syndrome (IBS), dyspepsia, pain, anxiety, and psychosis.”®!? Additionally, the
reported SyAr-based approach using DABCO still suffers from very high temperature, long

reaction times which is restricted to only electron-poor substrates.>¢6¢:18.20

Scheme 3. Reaction of 2(3H)-Benzoxazolones with DABCO?
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aReaction conditions: 1 (0.74 mmol), DABCO (2.22 mmol), Ph;P (1.11 mmol), I, (1.11 mmol)

in 5 mL CH,Cl,, 0-25 °C. "Yield using 7.4 mmol of 1e.

Based on the results obtained and previous reports by other related studies, d¢>2! the
reaction presumably proceeds via SyAr process involving the initial formation of the activated
aryloxyphosphonium intermediate I or possibly 2-iodobenzoxazole Il generated in-situ
(Scheme 4). Subsequent attacks by tertiary amine then gives rise to the formation of quaternary
ammonium salts III (route a). Final, N-dealkylation by the action of iodide at the least steric
C-N bond then provides the N, N-disubstituted products 2. Provided that nucleophilicity of 1

is greater than that of the amine, competitive formation of 3 would be feasible (route b). To
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gain insight into the role of phosphonium intermediates, 3'P-NMR study on the progress of the
reaction between 1a and Et;N was carried out. According to Figure S1, addition of 1a to the
mixture of Ph;P-I, containing Et;N showed an appearance of a high intensity signal at 5, 38.68
ppm suggesting the formation of I. An increase in the intensity of the triphenylphosphine oxide
signal at &, -28.96 ppm with a simultaneous decrease of the phosphonium’s signal upon
prolonged reaction time indicated further reaction of I with nucleophiles which could be iodide
or the remaining amine. It should be noted that no significant change in the phosphorous
signals was observed when adding Et;N to the Ph;P/I, mixture suggesting that the possibility
for the initial formation of diethylaminophosphonium iodide could be ruled out (see Figures

S2 and S3 in ESI).

Scheme 4. Proposed Mechanism for the Reaction of Benzoxazolones with Tertiary

Amine
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In summary, we have disclosed for the first time an efficient metal-free procedure for
the synthesis of 2-N,N-dialkylaminobenzoxazoles through the Ph;P-I, activation of
benzoxazolones toward SyAr reaction with tertiary amines. The method is compatible with a
broad range of substrates which enables rapid access to various 2-aminobenzoxazoles under

mild conditions. Given the abundance, low cost, and relatively low toxicity of the tertiary
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amines, the developed protocol is potentially useful as an alternative process toward interesti
ng synthetic targets where other known amination methods are limited or ineffective. The ease
of introducing of the N-(2-iodoethyl)piperazinyl group could also lead to further development
toward more structural diversity and interesting bioactivity. Studies to expand the scope of
reaction and to understand the mechanism underlying the Ph;P-I, mediated reaction of
heterocyclic amides, ureas, and other alicyclic carbamates are underway which will be reported

in due course.

EXPERIMENTAL SECTION

Material and methods

All reagents including most of the 2(3H)-benzoxazolone precurors 1 (1a, 1¢c-1g, 1i and
1j) were purchased from Sigma-Aldrich or TCI and used without further purification.
Compound 1b?? and 1h?? were synthesized according to the reported procedures. The reaction
was monitored by thin-layer chromatography carried out on silica gel plates (60F,s4, MERCK,
Germany) and visualized under UV light (254 nm). Column chromatography was performed
over silica gel 60 (70-230 mesh, MERCK, Germany). Melting points were determined using
Mettler Toledo DSC equipment at a heating rate of 6 °C/min and were uncorrected. NMR
spectra were recorded using a Bruker AVANCE™ (400 and 500 MHz for 'H). Chemical shifts
were reported in parts per million (ppm, 6) downfield from tetramethylsilane (TMS). Splitting
patterns are described as singlet (s), doublet (d), triplet (), quartet (g), quintet (qui), sextet
(sex), multiplet (m), broad (br), doublet of doublets (dd), triplet of doublets (td) and doublet of
doublet of doublets (ddd). High-resolution mass spectra (HRMS) were recorded using time-
of-flight (TOF) via the atmospheric pressure chemical ionization (APCI) or electrospray

ionization (ESI).
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General procedure for the synthesis of 2-N,N-Dialkylaminobenzoxazoles 2

To a solution of iodine (280 mg, 1.11 mmol) in freshly distilled dichloromethane (5
mL) was added triphenylphosphine (288 mg, 1.11 mmol) at 0 °C under N,. After that, amine
(3.70 mmol) was added, followed by the addition of benzoxazolone 1 (0.74 mmol). The
mixture was stirred at 0 °C for 5 min before warming up to room temperature. Upon
completion of the reaction, the crude mixture was concentrated under reduced pressure then

purified by column chromatography (CC) using ethyl acetate/hexanes as the eluent.

N,N-Diethylbenzo[d]oxazol-2-amine (2aa).>* Colorless oil; (0.0734 g, 52% yield); R, 0.35
(10% EtOAc/hexanes); 'H NMR (400 MHz, CDCLy) 8 7.37 (d, J = 7.2 Hz, 1H), 7.26 (d, J =
7.6 Hz, 1H), 7.16 (td, J = 7.6, 1.2 Hz, 1H), 7.00 (td, J = 7.6, 1.2 Hz, 1H), 3.61 (q,J = 7.2 Hz,
4H), 1.30 (t, J = 7.2 Hz, 6H); 3C{!H} NMR (100 MHz, CDCl3) 6 162.3, 148.9, 143.7, 123.8,

120.0, 115.8, 108.5, 43.0, 13.5.

2-(1H-Imidazol-1-yl)benzo|d]oxazole (2ab).>> Yellow solid; (0.0992 g, 72% yield); mp 110-
112 °C (lit.  mp 112°C); Ry 0.26 (30% EtOAc/hexanes); 'H NMR (500 MHz, CDCls) 6 8.40
(s, 1H), 7.73 (t, J= 1.5 Hz, 1H), 7.69 (dd, J= 7.5, 2.0 Hz, 1H), 7.55 (dd, J= 7.5, 2.0 Hz, 2H),
7.39 (td, J=17.5, 2.0 Hz, 1H), 7.36 (td, J= 7.5, 2.0 Hz, 1H), 7.25 (d, J = 1.5 Hz, 1H); C{'H}
NMR (125 MHz, CDCl;) 6 152.0, 149.0, 140.5, 135.9,131.4,125.5,125.1,119.7, 116.8, 110.5.
N,N-Diethyl-4,6-dinitrobenzo|d]oxazol-2-amine (2ba). Yellow oil; (0.1635 g, 79% yield);
R/ 0.44 (20% EtOAc/hexanes); 'H NMR (500 MHz, CDCls) & 8.98 (d, J = 2.0 Hz, 1H), 8.28
(d, J= 2.0 Hz, 1H), 3.84 (br s, 2H), 3.70 (br s, 2H), 1.38 (t, /= 7.2 Hz, 6H); *C{'H} NMR
(125 MHz, CDCl;) 6 166.8, 150.7, 146.3, 138.9, 133.3, 117.7, 107.8, 44.6, 43.1, 13.6, 12.9;

TOF-HRMS caled for C;;H,,N4NaOs (M+Na)" 303.0705, found 303.0709.

N,N-Diethyl-6-nitrobenzo|d]oxazol-2-amine (2ca).?® Yellow solid; (0.1309 g, 75% yield);

mp 110-112 °C (lit.26 mp 112-114°C); R, 0.43 (20% EtOAc/hexanes); 'H NMR (400 MHz,
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CDCl3) 5 8.16 (dd, J = 8.8, 2.4 Hz, 1H), 8.12 (d, J= 2.4 Hz, 1H), 7.30 (d, /= 8.8 Hz, 1H), 3.64
(q,J=7.2 Hz, 4H), 1.33 (t, J= 7.2 Hz, 6H); *C{'H} NMR (100 MHz, CDCl;) § 164.9, 150.6,

147.9, 140.9, 121.4, 114.4, 104.8, 43.4, 13 .4.

6-Chloro-N,N-diethylbenzo[d]oxazol-2-amine (2da).'" Off-white solid; (0.1021 g, 61%
yield); mp 60-62 °C; R,0.35 (10% EtOAc/hexanes); 'H NMR (400 MHz, CDCl;) 8 7.22 (d, J
= 2.0 Hz, 1H), 7.21 (d, J= 8.4 Hz, 1H), 7.10 (dd, J= 8.4, 2.0 Hz, 1H), 3.55 (q, J = 7.2 Hz, 4H),
1.26 (t,J= 7.2 Hz, 6H); 3C{!H} NMR (100 MHz, CDCls) 6 162.5, 148.9, 142.5, 124.9, 124.0,

116.0, 109.3,43.0, 13.4.

5-chloro-N, N-diethylbenzo[d]oxazol-2-amine (2ea).'" White solid; (0.1078 g, 65% yield);
mp 60-62 °C; R, 0.35 (10% EtOAc/hexanes); 'H NMR (500 MHz, CDCl3) 6 7.22 (d, J=2.0
Hz, 1H), 7.21 (d, /= 8.4 Hz, 1H), 7.10 (dd, J = 8.4, 2.0 Hz, 1H), 3.55 (q, J = 7.2 Hz, 4H),
1.26 (t,J= 7.2 Hz, 6H); BC{'H} NMR (125 MHz, CDCl;) 8 162.5, 148.9, 142.5, 124.9,

124.0, 116.0, 109.3,43.0, 13.4.

5-Bromo-N,N-diethylbenzo|d]isoxazol-3-amine (2fa). Colorless solid; (0.1073 g, 54%
yield); mp 54-56 °C; R;0.27 (10% EtOAc/hexanes); 'H NMR (400 MHz, CDCl;) 6 7.38 (d, J
=2.0 Hz, 1H), 7.25 (dd, J= 8.4, 2.0 Hz, 1H), 7.18 (d, /= 8.4 Hz, 1H), 3.56 (q, /= 7.2 Hz,
4H), 1.27 (t, J= 7.6 Hz, 6H); *C{'H} NMR (100 MHz, CDCl3) & 162.4, 149.3, 143.0, 126.8,
116.6, 112.0, 111.8 ,43.0, 13.4; TOF-HRMS calcd for C;;H;4N,O3'Br (M+H)*, 271.0270,

found 271.0286, for C;1H4N,O”Br (M+H)", 269.0290, found 269.0301.

5,5'-Dimethyl-2'H-[2,3'-bibenzo[d]oxazol]-2'-one (3g). White solid; (0.0832 g, 80% yield);
mp 156-157 °C; R;0.35 (5% EtOAc/hexanes); 'H NMR (500 MHz, CDCls) 3 7.94 (s, 1H),
7.56 (s, 1H), 7.51 (d, /= 8.4 Hz, 1H), 7.19 (dd, J = 8.2, 1.0 Hz, 1H), 7.10 (d, /= 8.4 Hz, 1H),

7.10 (dd, J = 8.2, 1.0 Hz, 1H) 2.50 (s, 3H), 2.49 (s, 3H); 3C{'H} NMR (125 MHz, CDCl;) §
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151.2, 149.5, 146.9, 140.4, 140.1, 135.2, 135.0, 127.2, 126.0, 125.5, 119.7, 114.2, 110.2,

109.9, 21.7, 21.6; TOF-HRMS calcd for C;sH,N;NaO3; (M+Na)" 303.0746, found 303.0743.

5,5'-Dimethoxy-2'H-[2,3'-bibenzo[d]oxazol]-2'-one (3h). White solid; (0.1148 g, 76%
yield); mp 160-162 °C; R;0.41 (20% EtOAc/hexanes); 'H NMR (500 MHz, CDCls) § 7.75
(d, J=2.5Hz, 1H), 7.52 (d, J=9.0 Hz, 1H), 7.25 (d, /= 2.5 Hz, 1H), 7.20 (d, J= 9.0 Hz,
1H), 6.96 (dd, J=9.0, 2.5 Hz, 1H), 6.82 (dd, /= 9.0, 2.5 Hz, 1H), 3.90 (s, 3H), 3.88 (s, 3H);
BC{'H} NMR (125 MHz, CDCl;) § 157.8, 157.2, 151.6, 149.6, 143.2, 140.8, 136.4, 127.9,
113.1,111.0, 110.7, 110.3, 103.2, 100.6, 56.2 56.0; TOF-HRMS calcd for C,cH;,N,NaOs
(M+Na)* 335.0644, found 335.0647.

N,N-Dimethylbenzo[d]oxazol-2-amine (2ac).?” White solid; (0.0842 g, 70% yield); mp 89-
90 °C (lit. 27 mp 90-91°C); R, 0.46 (20% EtOAc/hexanes); 'H NMR (500 MHz, CDCl;) § 7.35
(d, J= 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H), 7.15 (td, J = 8.0, 1.0 Hz, 1H), 7.00 (td, J = 8.0,
1.0 Hz, 1H), 3.20 (s, 6H). 3C{'H} NMR (125 MHz, CDCl;) & 163.1, 149.1, 143.5, 123.9,
120.3, 116.0, 108.6, 37.7.

N,N-dibutylbenzo[d]oxazol-2-amine (2ad).!% Yellow oil; (0.0540 g, 45% yield); R;0.36 (5%
EtOAc/hexanes); 'H NMR (400 MHz, CDCl;) 4 7.36 (d, J= 7.6 Hz, 1H), 7.25 (d, /= 7.6 Hz,
1H), 7.15 (td, J=7.6, 1.2 Hz, 1H), 6.99 (td, /= 7.6, 1.2 Hz, 1H), 3.53 (t,J= 7.6 Hz, 4H), 1.68
(quin, J = 7.6 Hz, 4H), 1.40 (sex, J = 7.6 Hz, 4H), 0.98 (t, /= 7.6 Hz, 6H); 3C {'H} NMR (100
MHz, CDCl;) 0 162.6, 148.7, 143.7, 123.7, 119.8, 115.8, 108.4, 48.3, 30.1, 20.0, 13.9.
2-(Piperidin-1-yl)benzo[d]oxazole (2af).>* Pale yellow solid; (0.0994 g, 66% yield); mp 70-

73 °C (lit.2* mp 72-75°C); Ry0.35 (low EtOAc/hexanes); 'H NMR (500 MHz, CDCls) 8 7.34

(d,J=7.5Hz, 1H), 7.23 (d,J="7.5Hz, 1H), 7.14 (t, J="7.5 Hz, 1H), 6.98 (td, /= 7.5 Hz, 1H),
3.66 (s, 4H), 1.68 (s, 6H); 3C{'H} NMR (125 MHz, CDCl;) ¢ 162.5, 148.7, 143.4, 123.8,

120.3, 116.0, 108.6, 46.6, 25.3, 24.1.
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2-Morpholinobenzo[d]oxazole (2ag).>* White solid; (0.0951 g, 63% yield); mp 90-92 °C
(lit.2* mp 90-94°C); R;0.20 (50% EtOAc/hexanes); 'H NMR (500 MHz, CDCl3) ¢ 7.37 (d,
J=8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 7.04 (t, J = 8.0 Hz, 1H),
3.82 (t,J = 4.5 Hz, 4H), 3.70 (t, J = 4.5 Hz, 4H); 13C {{H} NMR (125 MHz, CDCl;) d 162.1,

148.8, 142.9, 124.1, 121.0, 116.5, 108.8, 66.2, 45.7.

2-(Pyrrolidin-1-yl)benzo[d]oxazole (2ah).?® White solid; (0.0795 g, 57% yield); mp 135-137
°C (1it.2$ mp 136-137°C); R;0.30 (30% EtOAc/hexanes); 'H NMR (500 MHz, CDCl3) & 7.35
(d, J=8.0 Hz, 1H), 7.26 (d, J = 8.0 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 6.9 (t, J = 8.0 Hz, 1H),
3.65 (s, 4H), 2.03 (s, 4H); 3C{'H} NMR (125 MHz, CDCl;) §) & 161.0, 148.9, 143.4, 123.9,
120.2, 115.8, 108.7, 47.4, 25.6.

N'-(Benzo[d]oxazol-2-yl)-N!,N?, N*-trimethylethane-1,2-diamine (2ak).?® Yellow solid;
(0.1167 g, 72% yield); mp 110-111 °C; R, 0.28 (10% MeOH/EtOAc); 'H NMR (500 MHz,
DMSO-d) 8 7.42 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.16 (td, J= 7.8, 1.2 Hz, 1H),
7.03 (td, J= 7.8, 1.2 Hz, 1H), 3.87 (t, J = 6.2 Hz, 2H), 3.33 (t, J = 6.2 Hz, 2H), 3.16 (s, 3H),
2.82 (s, 6H); 3C{'H} NMR (125 MHz, DMSO-d;) & 162.8, 149.0, 143.5, 124.5, 120.8, 116.2,

109.4, 54.5, 45.8,43.5, 35.6.

2-(4-Methylpiperazin-1-yl)benzo[d]oxazole (2al).2* White solid; (0.1085 g, 67% yield); mp
36-38 °C (lit.2* mp 36-38 °C); R, 0.26 (10% MeOH/EtOAc); 'H NMR (500 MHz, CDCl;) 3
7.36 (dd, J= 8.0, 1.0 Hz, 1H), 7.25 (d, /= 8.0 Hz, 1H), 7.16 (td, J= 8.0, 1.0 Hz, 1H), 7.02 (td,
J=28.0, 1.5 Hz, 1H), 3.74 (t, J = 5.0 Hz, 4H), 2.54 (t, J = 5.0 Hz, 4H), 2.36 (s, 3H); 3C{'H}

NMR (125 MHz, , CDCly) & 162.2, 148.8, 143.1, 124.0, 120.7, 116.3, 108.7, 54.2, 46.2, 45.5.

2-(4-(2-1odoethyl)piperazin-1-yl)benzo[d]oxazole (2am). Pale yellow oil; (0.1966 g, 74%
yield); Ry 0.23 (20% EtOAc/hexane); 'H NMR (500 MHz, CDCls) 8 7.30 (d, /= 7.8 Hz, 1H),

7.24 (d,J="7.8 Hz, 1H), 7.15 (t, J= 7.8 Hz, 1H), 7.02 (t, J = 7.8 Hz, 1H), 3.70 (br s, 4H), 3.23
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(t,J=17.5 Hz, 2H), 2.80 (t, J = 7.5 Hz, 3H), 2.63 (br s, 4H); *C{'H} NMR (125 MHz, CDCl5)
§ 165.9, 152.4, 146.3 , 128.1, 125.0 , 124.9, 119.9, 112.8, 64.4, 55.6, 49.2, 33.6; TOF-HRMS

caled for C3H7IN;O (M+H)* 358.0416, found 358.0419.

2-(4-(2-Iodoethyl)piperazin-1-yl)-5,7-dinitrobenzo[d]oxazole (2bm). Yellow oil; (0.2870
g, 87% yield); R, 0.28 (30% EtOAc/Hexane); 'H NMR (500 MHz, CDCl;) 6 9.01 (d, J=2.0
Hz, 1H), 8.30 (d, J=2.0 Hz, 1H), 3.95 (br's, 4H), 3.25 (t, /= 7.5 Hz, 2H), 2.83 (t, /= 7.5 Hz,
2H), 2.70 (t, J = 5.0 Hz, 4H); BC{'H} NMR (125 MHz, CDCl3) 5 164.8 , 149.1, 144.4, 138.1,
132.2, 116.4, 107.0, 58.7, 50.2, 29.5; TOF-HRMS calcd for Ci3H;4INsNaOs (M-+Na)"

469.9937, found 469.9935.

5-Chloro-2-(4-(2-iodoethyl)piperazin-1-yl)benzo[d]oxazole (2em). Pale yellow solid,;
(0.2253 g, 78% yield); mp 109-110 °C; R, 0.31 (30% EtOAc/Hexane); 'H NMR (500 MHz,
CDCl;) 6 7.30 (d,J=2.0 Hz, 1H), 7.14 (d, /= 8.4 Hz, 1H), 6.98 (dd, /= 8.4,2.0 Hz, 1H), 3.72
(t, J=5.0 Hz, 4H), 3.23 (t, J = 8.0 Hz, 2H), 2.79 (t, J = 8.0 Hz, 2H), 2.62 (t, J = 5.0 Hz, 4H);
BC{H} NMR (125 MHz, CDCl;) 8 161.0, 145.6, 142.7, 127.6, 118.7, 114.6, 107.5, 58.7, 49.9,
43.7; TOF-HRMS calcd for Cj3H;¢*’CIIN;O (M+H)* 393.9997, found 393.9993, for

C3H6*>CIIN;O (M+H)* 392.0027, found 392.0024.
Gram-scale synthesis of 5-Chloro-2-(4-(2-iodoethyl)piperazin-1-yl)benzo[d]oxazole (2em)

To a solution of iodine (2.80 g, 11.1 mmol) in freshly distilled dichloromethane (25 mL) was
added triphenylphosphine (2.88 g, 11.1 mmol) at 0 °C under N,. After that, DABCO (0.9961
g, 8.8 mmol) and triethylamine (3.00 mL, 22.2 mmol) were sequentially added, followed by
the addition of chlorzoxazone (1e, 1.2540 g, 7.4 mmol). The mixture was stirred at 0 °C for 5
min before warming up to room temperature. After completion of the reaction, the reaction

was filtered and washed with ethyl acetate. The concentrated crude product was then purified
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by CC on silica gel (0-30% ethyl acetate/hexane) to afford 5-chloro-2-(4-(2-

iodoethyl)piperazin-1-yl)benzo[d]oxazole (2em, 2.0267 g, 70% yield) as a pale yellow solid.

2-(4-(2-Iodoethyl)piperazin-1-yl)-5-methylbenzo[d]oxazol (2gm). Pale yellow solid;
(0.1957 g, 71% yield); mp 110-112 °C; R, 0.33 (30% EtOAc/Hexane); 'H NMR (500 MHz,
CDCl3) 6 7.15(d,J=1.5Hz, 1H), 7.11 (d, J= 8.0 Hz, 1H), 6.82 (dd, /= 8.0, 1.5 Hz, 1H), 3.71
(t,J=5.0 Hz, 4H), 3.24 (t, J = 8.0 Hz, 2H), 2.78 (t, J = 8.0 Hz, 2H), 2.62 (t, J = 5.0 Hz, 4H),
2.39 (s, 3H); BC{'H} NMR (125 MHz, CDCl;) 6 160.5, 145.1, 141.3, 131.9, 119.6, 114.9,
106.3, 58.7, 50.0, 43.7, 19.7; TOF-HRMS calcd for C14H;9IN;O (M+H)* 372.0573, found

372.0572.

2-(4-(2-iodoethyl)piperazin-1-yl)-5-methoxybenzo|d]oxazole (2hm). White solid; (0.1042
g, 69% yield); mp 105 -106 °C; R,0.38 (30% EtOAc/hexanes); 'H NMR (500 MHz, CDCls)
07.12(d, J=8.6 Hz, 1H), 6.93 (d, /= 2.4 Hz, 1H), 6.59 (dd, J= 8.6, 2.4 Hz, 1H), 3.81 (s, 3H),
3.73 (t, J= 5.0 Hz, 4H), 3.25 (t, /= 7.5 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.64 (t, /= 5.0 Hz,
4H); BC{'H} NMR (125 MHz, CDCl3) 6 162.8, 157.1, 144.0, 143.3, 108.6, 107.3, 101.4, 60.5,

55.9, 51.8, 45.4; TOF-HRMS calcd for C;4H9IN;O, (M+H)" 388.0522, found 388.0521.

2-(4-(2-1odoethyl)piperazin-1-yl)benzo[d]|thiazole (2im). Pale purple solid; (0.1993 g, 72%
yield); mp 159-160 °C; R,0.32 (20% EtOAc/hexanes); 'H NMR (500 MHz, CDCls) 6 7.60 (d,
J=28.0 Hz, 1H), 7.55 (d, J=8.0 Hz, 1H), 7.29 (t,J = 8.0 Hz, 1H), 7.08 (t, /= 8.0 Hz, 1H), 3.66
(t,J=5.5Hz, 4H),3.22 (t,J= 7.5 Hz, 2H), 2.79 (t,J = 7.5 Hz, 2H), 2.62 (t, /= 5.5 Hz,, 4H);
BC{'H} NMR (125 MHz, CDCl3) 4 166.8, 150.8, 128.9, 124.2,119.6, 118.9, 117.3, 58.6, 50.0,

46.4; TOF-HRMS calcd for C;3H7IN;S (M+H)" 374.0188, found 374.0185.

5-Chloro-2-(4-(2-iodoethyl)piperazin-1-yl)benzo[d]|thiazole (2jm). Pale yellow solid;
(0.2294 g, 76% yield); mp 133-135 °C; R;0.35 (20% EtOAc/hexanes); 'H NMR (500 MHz,

CDCl3) §7.52 (d,J=2.0 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.04 (dd, J= 8.4, 2.0 Hz, 1H),
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3.65 (t,J= 5.0 Hz, 4H), 3.23 (t, J= 7.5 Hz, 2H), 2.79 (t, J = 7.5 Hz, 2H), 2.63 (t, J= 5.0 Hz,
4H); 3C{'H} NMR (125 MHz, CDCl;) § 167.8, 152.0, 130.1, 127.2, 119.8, 119.5, 117.3,
58.6, 50.0, 46.5; TOF-HRMS calcd for C13H;¢37CIN;S (M+H)* 409.9768, found 409.9763,

for C13H,6*>CI N3S (M+H)* 407.9798, found 407.9796.
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