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Abstract
Myricetin derivatives containing sulfonylpiperazine were synthesized and their structures were confirmed by NMR and 
HRMS. The antibacterial activity results indicated that some compounds showed good antibacterial activity against Xan-
thomonas oryzaepv. oryzae (Xoo), Xanthomonas axonopodispv. citri (Xac) and Ralstonia solanacearum (Rs). Among them, 
compounds 4m and 4p revealed excellent antibacterial activities against Rs with a concentration for 50% of maximal effect 
(EC50) value of 4 and 4 μg/mL, which were better than the control drugs bismerthiazol (13 μg/mL) and thiodiazole-copper 
(185 μg/mL). As observed using scanning electron microscope (SEM), these compounds act by causing folding and defor-
mation of the bacterial surface, resulting in incomplete bacterial structure, so as to achieve the goal of bacteriostasis. The 
myricetin derivatives synthesized are expected to guide the research direction of new antibacterial agents.
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Introduction

Plant diseases have always been a headache in agricultural 
production. The plant bacterial diseases are extremely dif-
ficult to control in agricultural production, such as rice 
bacterial blight, tobacco bacterial wilt, citrus canker and 
so on (Zou et al. 2011; Li et al. 2017). Since the earliest 
fungicide bordeaux liquid, a lot of agricultural fungicides 
have been developed successively. With the development of 
chemistry, new types of nano-antibacterial agents have also 
come into the sight of chemists (Khatoon et al. 2017, 2018). 
Until today, there have been many commercial antibacte-
rial agents with good activity, such as bismerthiazol and 
thiodiazole-copper etc. However, with the increase in the 

use of traditional fungicides, the resistance of plant bacteria 
to them has gradually increases (Yan et al. 2016; Jiang et al. 
2020a, b). Therefore, the development of new antibacterial 
agents is of great significance.

Flavonoids are widely existed in plants in nature, and 
belong to the secondary metabolites of plants (Manthey and 
Guthrie 2002). It plays an important role in plant growth, 
development, flowering, fruiting, antibacterial and dis-
ease prevention. Moreover, many studies in recent years 
have shown that flavonoid-based scaffolds as multi-target-
directed ligands (MTDLs) have shown an important role 
in the treatment of Alzheimer’s disease (Jalili-Baleh et al. 
2018). Therefore flavonoids have become a research hot-
spot in the pharmaceutical and pesticide industries due to 
their extensive biological activities. Myricetin is a common 
plant-derived flavonol derived from fruits, vegetables, ber-
ries, nuts, tea, etc. (Zhang et al. 2020). Research over the 
years has shown that myricetin has a wide range of bio-
logical activities. Such as antibacterial (Mo et al. 2020), 
anticancer (Sun et al. 2012), anti-inflammatory (Wang et al. 
2010), antiviral (Yu et al. 2012) and antioxidant activities 
(Guitard et al. 2016). Studies have found that myricetin has 
the least cytotoxicity to TZM-bl, HeLa, PBMC and H9 cells 
at a concentration of 100 μM, with cell viability above 85%, 
which is better than quercetin and pinocembrin (Pasetto et al. 
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2014). Piperazine is an important intermediate in medicine, 
pesticide and dye. Due to the special chemical structure 
of piperazine. Piperazine and its series of compounds are 
important products connecting the chemical industry and the 
pharmaceutical industry (Suleman et al. 2020), widely used 
in medicine (Alina et al. 2020), pesticides (Peng and Wang 
2018) and other fields. As a kind of pharmacophore group 
with extensive biological activities in antibacterial (Nadia 
and Mona 2020), weeding (Chen et al. 2018), anticancer 
(Štěpánková et al. 2020), antioxidant (Soliman et al. 2020) 
etc., sulfonamide group has shown excellent activity and 
great value in the field of medicine and pesticides. There-
fore, the structure of sulfonylpiperazine is often used in new 
drug design and development (Xu et al. 2015).

As a flavonoid with good biological activity, the applica-
tion of myricetin derivatives have become more and more 
extensively. For example, some of the myricetin derivatives 
containing acylhydrazone showed excellent anticancer activ-
ity (Xue et al. 2015). Meanwile, some myricetin derivatives 
containing piperazine amide also showed good anticancer 
activity (Ruan et al. 2018a, b). And there were also reported 
some agricultural antibacterial activities of myricetin deriva-
tives (Li et al. 2019; Chen et al. 2019; Jiang et al. 2020a, b). 
At the cellular level, chalcone containing myricetin can be 
influenced by inhibiting the differentiation of Gaoyou duck 
embryonic osteoclasts in vitro (Fu et al. 2019). Tobacco 
mosaic virus has a great harm to plant growth and develop-
ment. Some of the myricetin derivatives containing oxadia-
zole (Zhang et al. 2019) or ferulic acid (Tang et al. 2020) 
showed good anti-TMV activity.

In summary, we hope to develop a fast and efficient 
method for constructing the partial skeleton of piperazine 
and sulfonamides structure with the lead of myricetin by 
consulting a large number of literatures and combining our 
previous work of research group, so as to synthesize the 
new myricetin derivatives containing both piperazine and 
sulfonyl structure (Fig. 1), and investigated their antibacte-
rial efficacy against Xoo, Xac and Rs in vitro. The antibacte-
rial mechanism of compounds 4 were preliminarily studied 

by SEM. Compared with the previous work of research 
group, the inhibitory activity of this series of compounds 
4 on Rs has been greatly improved. This article attempts 
to optimize the superposition of these active fragments to 
find drugs with high antibacterial activity, and provide a 
reliable research direction for the screening of new antibac-
terial drugs.

Experimental

Materials

piperazine and arylsulfonyl chloride were obtained from 
Shanghai Titanchem Co., Ltd., and all other reagents were 
analytical grade. A Bruker Ascend 400 NMR spectrom-
eter (Bruker Optics, Switzerland) was used to record the 
1H, 13C and 19F nuclear magnetic resonance (NMR), with 
tetramethylsilane (TMS) as the internal standard, and CDCl3 
as solvent. The melting point tests were conducted in an 
XT-4 binocular microscope (Beijing Tech Instrument Co., 
Ltd.). A WFH-203B with three UV analyzer (Shanghai Jin-
gke Industrial Co., Ltd.) was used for thin-layer chromatog-
raphy (TLC). Deionizing water purifier (Hokee). Vertical 
High-Pressure Steam Sterilization Pot (Shanghai ShenAn 
Medical instrument Factory). Multiskan FC (Thermo Fisher 
Scientific (Shanghai) Co., Ltd.).

Chemicals

General procedure for preparing the intermediates 1, 2 
and 3

As shown in Scheme 1, intermediate 1 and 2 were pre-
pared via the reported methods (Chen et al. 2019). Myri-
cetrin (1 mmol) and methyl iodide (15 mmol) were stirred 
43 °C for 48 h, and then suction filtration and the filter was 
extracted with CH2Cl2, most of the solvent in the filtrate 
was removed by spin evaporation and hydrochloric acid 
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Fig. 1   Design route of the target compounds 4a–4y 
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(10 mL) was added under reflux in the ethanol to obtain 
the intermediate 1. Finally, the intermediate 1 (10 mmol) 
was stirred in DMF at room temperature for 1  h and 
dibromoalkane (30 mmol) was added; this reaction was 
allowed to continue for 12 h and pour into water to obtain 
the intermediate 2. And the intermediate 3 was prepared 
by known methods (Henderson et al. 2011). Arylsulfonyl 
chloride (10 mmol) was added in one portion to a solution 
of piperazine (60 mmol) in CH2Cl2 at 0 °C. The reac-
tion mixture was stirred at 0 °C for 30 min, diluted with 
CH2Cl2, quenched by the addition of saturated NaHCO3 
(aq), washed with brine, and concentrated in vacuo to 
obtain the intermediate 3.

Synthesis of the target compounds 4a–4y

The synthetic route to the title compounds, the myrice-
tin derivatives containing sulfonylpiperazine (4a–4y) are 
shown in Scheme 1. The intermediate 3 (2.4 mmol) and 
potassium carbonate (3.0 mmol) were stirred in 30 mL 
acetonitrile for 30 min, then the intermediate 2 (2.0 mmol) 
was added, the temperature was increased to 90 °C for 5 h, 
the potassium carbonate was removed by filtration, and the 
acetonitrile was removed by spin evaporation. The target 
compounds 4a–4y were obtained by column chromatog-
raphy (ethyl acetate:petroleum ether = 1:2–2:1), with dif-
ferent yields. Their physical properties and spectral data 
are listed in the Supporting Information, and the 1H NMR, 
13C NMR, 19F NMR and HRMS spectra attached in the 
Supporting Information.

Results and discussion

Chemistry

Twenty-five myricetin derivative containing sulfonylpiper-
azine were obtained in this study, all their structures were 
identified via 1H NMR, 13C NMR, 19F NMR and HRMS. 
The data of 4a was shown and discussed below. In the 
1H NMR spectrum, multiplet signals at δ 7.68–6.28 ppm 
revealed the presence of aromatic nuclei, and a tri-
plet peak at δ 3.91–3.94 ppm indicated the presence of 
O–CH2–C group. In addition, the high-frequency single 
peaks at δ 3.89–3.83 ppm revealed the presence of five 
–OCH3. The nuclear magnetic signal at δ 2.93–2.38 ppm 
revealed the presence of nuclear magnetic signal peak of 
piperazine’s hydrogen proton. Finally, and three absorp-
tion signals at δ 2.28–1.40 ppm indicated the presence 
of C–CH2CH2CH2–N group. The absorption signals at 
δ 174.02 and 72.12 ppm in 13C NMR spectra confirmed 
the presence of –C=O and –OCH2– groups, respectively. 
When fluorine is substituted on the benzene ring, carbon 
atoms attached to fluorine will migrate to the low field and 
the fluorine atom will split the two adjacent carbon atoms 
in 13C NMR spectra. For example, compound 4b had an 
absorption peak at δ 163.99 ppm, which represented the 
nuclear magnetic peak of C–F. The absorption peak of 
the carbon atom at the same position in 4a was shown at 
δ 132.83 ppm. In addition, two adjacent carbon atoms of 
a carbon atom substituted by fluorine split into two adja-
cent absorption peaks at δ 116.42 and 116.19 ppm. The 

Scheme 1   Synthetic route of the target compounds 4a–4y 
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two carbons at the same position in 4a showed a single 
absorption peak at δ 132.83 ppm. The high resolution mass 
spectrometry (HRMS) spectra of title compounds show 
characteristic absorption signals of [M + H]+ ions, which 
are consistent with their molecular weight.

Antibacterial activity examination of the title 
compounds against Xoo, Xac and Rs in vitro

The bacteriostatic activity of the compounds were measured 
by turbidimetric method (Zhong et al. 2017; Li et al. 2013), 
using Xac, Xoo and Rs as test strains, while using the com-
mercial antibacterial agents bismerthiazol and thiodiazole-
copper as control drugs. Some of the target compounds 
exhibited better antibacterial activities against Xac, Xoo and 
Rs in vitro at 100 and 50 μg/mL, and the observed results 
would be shown in Table 1. For example, the myricetin 

has no obvious antibacterial activity, but most of the tar-
get compounds showed better antimicrobial activity than 
the lead compound myricetin. Compounds 4a, 4c and 4d 
were exhibited favorable antibacterial activity against Xoo 
at 100 μg/mL, with the inhibition rates of 72, 77 and 75%, 
which gained an advantage over that of bismerthiazol (55%) 
and thiodiazole-copper (62%). The inhibition rates of com-
pounds 4a, 4c and 4d against Xoo at 50 μg/mL were 52, 53 
and 43%, which were better than that of bismerthiazol (39%) 
and thiadiazole-copper (36%). Similarly, compounds 4h 
and 4p showed higher antibacterial activity against Xac at 
100 μg/mL, the calculated inhibition of 74 and 87%, which 
exceeded that of bismerthiazol (63%) and thiodiazole-copper 
(51%). Compounds 4h and 4p revealed superior antibacte-
rial activities against Xac at 50 μg/mL with the inhibition 
rates of 42 and 41%, respectively, which were also higher 
compared to bismerthiazol (19%) and thiadiazole-copper 

Table 1   Antibacterial activities 
of compounds 4a–4y 

Average of three replicates
BT bismerthiazol, TC thidiazole-copper
b The commercial antibacterial agents bismerthiazol and thiodiazole-copper was used as positive control

Compounds Xoo Xac Rs

100 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL

4a 74 ± 4 52 ± 4 55 ± 3 31 ± 2 27 ± 3 25 ± 2
4b 25 ± 4 24 ± 1 55 ± 6 27 ± 1 93 ± 4 66 ± 3
4c 77 ± 7 53 ± 2 47 ± 2 33 ± 0 34 ± 4 10 ± 4
4d 75 ± 6 43 ± 5 53 ± 1 36 ± 2 63 ± 2 51 ± 5
4e 41 ± 1 26 ± 1 57 ± 2 31 ± 3 38 ± 5 28 ± 2
4f 26 ± 3 20 ± 2 42 ± 2 33 ± 2 – –
4g 46 ± 5 33 ± 3 40 ± 3 39 ± 2 80 ± 5 39 ± 3
4h 41 ± 1 33 ± 5 74 ± 2 42 ± 1 – –
4i 38 ± 5 33 ± 5 33 ± 3 11 ± 5 69 ± 4 51 ± 3
4j 40 ± 2 36 ± 2 54 ± 2 40 ± 3 73 ± 6 39 ± 1
4k 57 ± 3 25 ± 6 46 ± 6 23 ± 4 100 ± 2 96 ± 5
4l 24 ± 2 21 ± 3 55 ± 3 29 ± 3 68 ± 1 37 ± 5
4m 28 ± 5 25 ± 3 26 ± 3 25 ± 1 100 ± 3 86 ± 5
4n 22 ± 2 21 ± 5 48 ± 1 37 ± 3 48 ± 2 17 ± 2
4o 22 ± 4 13 ± 2 38 ± 4 23 ± 2 98 ± 1 90 ± 3
4p 57 ± 1 29 ± 6 87 ± 2 41 ± 1 100 ± 4 90 ± 2
4q 12 ± 5 7 ± 1 33 ± 4 28 ± 1 51 ± 4 19 ± 2
4r 42 ± 1 19 ± 7 36 ± 2 33 ± 3 57 ± 3 55 ± 1
4s 28 ± 9 3 ± 3 36 ± 3 26 ± 2 16 ± 2 10 ± 1
4t 60 ± 1 7 ± 0 37 ± 7 16 ± 4 36 ± 3 29 ± 3
4u 29 ± 6 17 ± 5 32 ± 3 26 ± 3 86 ± 0 80 ± 3
4v 35 ± 5 5 ± 2 25 ± 1 26 ± 3 69 ± 3 30 ± 5
4w 19 ± 6 8 ± 6 22 ± 0 11 ± 4 75 ± 1 73 ± 3
4x 14 ± 2 9 ± 4 32 ± 6 17 ± 2 41 ± 1 22 ± 6
4y 33 ± 2 15 ± 2 37 ± 6 26 ± 7 82 ± 3 77 ± 3
Myricetin 11 ± 4 9 ± 5 – – 21 ± 2 8 ± 5
BTb 55 ± 2 39 ± 2 63 ± 1 19 ± 6 60 ± 6 52 ± 0
TCb 62 ± 5 36 ± 4 51 ± 2 19 ± 2 38 ± 4 21 ± 2
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(19%). In addition, compounds 4b, 4k, 4m, 4o, 4p, 4u and 
4y exhibited better antibacterial activities against Rs at 100 
and 50 μg/mL, with the inhibition rates of 93 and 66%, 100 
and 96%, 100 and 86, 98 and 90%, 100 and 90%, 86 and 
80%, 82 and 77%, respectively, which were over the control 

agents bismerthiazol (60 and 52%) and thiodiazole-copper 
(38 and 20%).

According to the preliminary screening results of anti-
bacterial activity, EC50 values of some of the compounds 
showed excellent antibacterial activities against Xoo, Xac 
and Rs, as shown in Table 2. We can know from Table 2, the 
compounds 4a, 4c and 4d exerted distinct activity against 
Xoo with the EC50 values were 36, 38 and 40 μg/mL, respec-
tively, which preceded that of bismerthiazol (89 μg/mL) and 
thiodiazole-copper (68 μg/mL). Compound 4p revealed pref-
erable antibacterial activity against Xac with EC50 values of 
41 μg/mL, which was superior to bismerthiazol (93 μg/mL) 
and thiodiazole-copper (70 μg/mL). Compounds 4k, 4m, 4o, 
4p, 4u and 4y against Rs with EC50 values of 6, 4, 10, 4, 5 
and 5 μg/mL, respectively, which prevailed over that of bis-
merthiazol (13 μg/mL) and thiodiazole-copper (185 μg/mL) 
signally. We can clearly observe the difference in activity 
against Rs between compound 4p, myricetin, control drugs 
bismerthiazol and thiodiazole-copper in Fig. 2. 

Structure–activity relationship analysis 
of antibacterial activities

Table 1 revealed that the antibacterial activities of the title 
compounds were considerably affected by the length of the 
carbon chain and different substituents on sulfonyl groups. 
For instance, When n = 3 and R were substituted with phe-
nyl, 4–CH3–Ph, 4–NO2–Ph, thienyl or 2–NO2–Ph, these 
compounds exhibited significant Rs inhibitory activity with 
the inhibition rates of 100, 98, 100 and 82% at 100 µg/mL, 
respectively, which were better than the compounds with 
n = 4 on the same substituent group with the inhibition rates 
of 27, 34, 63 and 68%. When n = 4 and R were substituted 
with 4–F–Ph or pyridyl, these compounds performed better 
Rs inhibitory activity with the inhibition rates of 93 and 
100% at 100 µg/mL, which were exceeded than the com-
pounds with n = 3 on the same substituent group with the 

Table 2   EC50 values of some compounds against Xoo, Xac and Rs

Average of three replicates
BT bismerthiazol, TC thidiazole-copper
a The commercial antibacterial agents bismerthiazol and thidiazole-
copper was used as positive control

Tested Compounds Regression equation r EC50 (µg/mL)

Xoo 4a y = 1.0037x + 3.4383 0.9627 36
4c y = 1.3975x + 2.7873 0.9754 38
4d y = 1.2546x + 2.9887 0.9715 40
TCa y = 1.8570x + 1.5964 0.9910 68
BTa y = 1.2079x + 2.6426 0.9844 89

Xac 4h y = 1.2056x + 2.7741 0.9589 70
4p y = 2.0575x + 1.6741 0.9550 41
TCa y = 1.2141x + 2.7624 0.9752 70
BTa y = 1.1147x + 2.8064 0.9878 93

Rs 4b y = 2.3189x + 1.6664 0.9921 27
4d y = 0.8746x + 3.9683 0.9632 15
4i y = 0.6887x + 3.9954 0.9585 29
4j y = 1.5022x + 2.8776 0.9636 26
4k y = 1.8641x + 3.5488 0.9507 6
4m y = 1.3204x + 4.2077 0.9633 4
4o y = 1.9801x + 3.0192 0.9934 10
4p y = 1.3149x + 4.2120 0.9617 4
4r y = 0.6145x + 4.1342 0.9938 26
4u y = 0.8169x + 4.2210 0.9904 5
4w y = 1.3517x + 3.1764 0.9582 22
4y y = 1.0833 + 4.2902 0.9604 5
TCa y = 0.6931x + 3.4289 0.9773 185
BTa y = 0.8701x + 4.0372 0.9747 13

Fig. 2   Antibacterial activities of compound 4p (a), myricetin (b), thiodiazole-copper (c) and bismerthiazol (d) against Rs test in vitro at 100, 50, 
25, 12.5 and 6.25 μg/mL
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inhibition rates of 48 and 41%. When R was substituted with 
4–NO2–Ph, compounds 4d and 4p showed certain inhibi-
tory activity against Xoo, Xac and Rs at 100 µg/mL. The 
inhibitory activity of compound 4d against Xoo is better 
when n = 4. Similarly, the inhibitory activity of compound 
4p against Xac and Rs is best when n = 3. Compared with 
the previous work of research group, this article introduced 
sulfonylpiperazine to the structure of myricetin, and some 
compounds show better inhibitory activity against Rs with 
EC50 values between 4 and 10 μg/mL, which is superior to 
the myricetin derivatives containing thiadiazole sulfide with 
EC50 values between 28 and 39 μg/mL (Ruan et al. 2018a, 
b). And the antibacterial activity of these compounds were 
verified by SEM.

Scanning electron microscopy (SEM) studies

To further explore the mechanism of antibacterial action 
against Rs, scanning electron microscopy (SEM) studies 
were carried out using the designated compound 4p and 
the observed SEM micrographs are shown in Fig. 3. Obvi-
ously, when there is no drug action, the form of the strain 
is plump and short and thick. However, the surface of the 
bacteria began to appear wrinkle at 50 µg/mL, which became 
more pronounced as the concentration of the drug increased 
to 100 µg/mL. It was obtained by SEM, the bacteriostatic 
mechanism of compound 4p is to act on the surface of bac-
teria by drugs, thus causing the bacteria to fold and shrink, 
resulting in incomplete bacterial structure, so as to achieve 
the goal of bacteriostasis.

Conclusion

In summary, 25 myricetin derivatives containing sulfonyl-
piperazine were designed and synthesized. And test their 
in vitro activity on the three strains Xoo, Xac and Rs. Some 
compounds showed excellent inhibitory activity against Rs 
with EC50 values between 4 and 10 μg/mL. Among them, 

compound 4p against Xac and Rs with EC50 value of 41 
and 4 μg/mL, which far exceeded that of bismerthiazol (93 
and 13 μg/mL, respectively) and thiodiazole-copper (67 and 
185 μg/mL), respectively. Meanwhile, the inhibitory rate 
of compound 4p on Xoo is 57% at 100 μg/mL, which was 
slightly better than the control drug bismerthiazol (55 μg/
mL). Meanwhile, compound 4m against Rs with EC50 value 
of 4 μg/mL, which better than the control drug bismerthiazol 
(13 μg/mL) and thiodiazole-copper (185 μg/mL). Scanning 
electron microscopy analysis further confirmed that the title 
compounds caused the bacteria to shrink by acting on the 
surface of the bacteria, so as to achieve antibacterial effect. 
Therefore, the designed compounds can be used as potential 
antibacterial drugs for further research to find new antibacte-
rial drugs.
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