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ABSTRACT

Me //Me
16 Dichroanal B Dichroanone

A simple synthesis of the 4a-methyltetrahydrofluorene diterpenoids (+)-dichroanal B and (+)-dichroanone has been achieved through a common
hexahydrofluorenone intermediate obtained via Pd(0)-catalyzed reductive cyclization of a substituted 2-(2-bromobenzyl) methylene cyclohexane.

Recently, three rearranged diterpenoids that possessed th8uorenone intermediat22, obtained by a simple and flexible
uncommon 4-methyl tetra- (or -hexa)hydrofluorene skeleton convergent route suitable for the preparation of other
were isolated fronSabkia dichroantha They were designated members of this family.

dichroanals A 1) and B @) and dichroanone3j (Figure There are several methods available for the preparation
1).t Several structurally related diterpenoids have also beenof 4a-methylhydrofluorene. These include acid-catalyzed
isolated that include standishinal) (from Thuja standishfi cyclization of substituted benzyl cyclohexanbdister- and

and taiwaniaquinols A5) and B @) from Taiwania cryp- intramolecular (3+ 2) cycloaddition] and the cyclization

tomerioides® Although not much is known about their
bioactivities, preliminary studies ahindicated its promising _
tumor-inhibiting potentiaf.> No synthesis of this rare group
of six-five-six tricyclic ring natural products has appeared
so far.

We report herein the first total synthesis of twa-4
methyltetrahydrofluorene diterpenoids)tdichroanal B 2)
and @)-dichroanone ) employing a common hexahydro-
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of an arylpalladiun®, arylradical? or aryllithium'® tethered
to methylene cyclohexane. Very recently, an efficient method
for constituting this skeleton by intramolecular Friedel
Crafts cyclization of 1,3-bis-exocyclic diene has been
reported! We selected the strategy based on palladium-
catalyzed reductive cyclizatiérof a substituted 2-(2-bro-

mobenzyl) methylene cyclohexane, which appeared to be the

most attractive.

The synthesis began with the preparation of the appropriate
benzyl bromidell from vanillin using a standard sequence
of reactions that proceeded through the kn&atdehyde7
(Scheme 1). We sought to prepare tleebfomobenzyl)-

Scheme 1. Synthesis of Aromatic Bromidél
OH OH

OMe OMe

Ref. 12
NH,

CHO
7

OMe K,CO,, MeOH,

CHO

1. NaNO,, HBr (48%)
0-5°C, 1h
2. CuBr, 80 °C, 1h,
88%

Nal, BnCl,
reflux, 6h, 89%

Br

Scheme 2. Synthesis of Phend8a

(0] (0] Br
KO'Bu, 'BuOH OMe
R G OO
Me Nal, reflux, 6h Me OBn
CO,R R = Et, 75% CO,R
R = Me, 92%

13a, R = Et; 13b, R=Me

( } , -~

OMe

Me Br
14
NaH, DMSO,
. OBN  Mepphyl
Y e

OMe THF, -10to 10 °C OMe

Me Me Br 1.5h, 92% Mé Me 16 Br
15 OBn

12a, R = Et; 12b, R = Me

1. LIOH, MeOH, H,0
rtash o2 Me,CuLi, BF 4 Et,0
Et,0, -30t0 0°C

1h, 94%

13b
2. SiO,, 80 °C, 4h,
64%

OBn

MeO
Me
Pd/C (10%), H,

12h, 95%

Pd(PPh,),, HCOONa
—_—

DMF, 95 -100 °C

30h, 60% H

MeMe
17a, b

a= cis, b= trans

cis:trans::85:15

MeO OH MeO
e ; /> Me ;:3
MeMe

M
18a 18b

CHO

8 OBn
NaBH4 OMe
MeOH CH,Cl, (1: 1) Br
0
CHO 0°C, 1h, 97% o
OBn 10
PBr,,Et,0 OMe

0°C. 1h, 94% Br

Br
1

cyclohexanonelb, a key intermediate for the olefid6
(Scheme 2), from the cyclohexenofhé by an established
route® involving conjugate addition of a methyl group. While
alkylation of Hagemann's estet2a gave the alkylated
producf®!® 13a in 75% vyield, its attempted hydrolytic
decarboxylation under the usual condifidtt of refluxing
with aqueous ethanolic KOH gave a complex mixture of
products presumably due to oxidative side reactions involving
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the heavily oxygenated aromatic ring. To our satisfaction,
however, the alkylated methyl estéBb, obtained in 92%
yield from the methyl ester analogd€b** of Hagemann's
ester, underwent smooth hydrolysis with aqueous methanolic
LiOH, and the resulting crude acid on heating with a slurry
of silica gel in CHCI, produced the desired cyclohexenone
14 through decarboxylation. Wittig olefination df5 pro-
ceeded uneventfully, producing the alkeriin good overall
yield.

Conversion of the bicyclic intermediate to a tricyclic
product was next accomplished via Pd(0)-catalyzed cycliza-
tion in the presence of a hydride dorfdf. This gave an
inseparable mixture of the epimeric hydrofluored&sand
17bin a ratio of ca. 85:15 in 60% yield. A separation of the
epimers could, however, be realized after deprotection of
the O-benzyl ether mixture and recrystallization of the
resulting product, which afforded the major epini&a(mp
94°C), assigned cis stereochemistry by anal®g@ire minor
epimer18b could not be isolated in pure form.

With the tricyclic productl8ain hand as a single epimer,
our next task was to introduce an isopropyl group in the
aromatic ring and to convert the benzylic methylene group
to a ketone. This was best achieved via the sequence of
reactions described in Scheme 3. Thus, acetylatioh8af
followed by Fries rearrangeméfiof the acetatd 9 furnished
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fluorene 24. Introduction of the aldehyde group &% was
realized by bromination followed by formylatidhand the
resulting dimethyl ethe26 was smoothly convertégto (4)-

Scheme 3. Synthesis of Hexahydrofluoreno22
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the 2-acetylphenat0. This, after condensation with MeLi,
dehydration with silica gel, and acetylation afforded the
acetate21 in good yield after hydrogenation. Benzylic smoothly transformed to the bromo derivat®& which on
oxidation of 21 with PCC-Celite in benzene at refldk heating with NaOMe in MeOH and DMF in the presence of
provided the keton@2 (mp 78°C). Cul® produced the dimethoxy phenol intermedia& On
Following the same sequence of reactions, the epimericdirect oxidation with CAN?* 28 afforded )-dichroanone
mixture of the cyclized product$7aand17b (ca. 85:15)  (3) in good yield, identified by spectral comparison with the
was conveniently converted &2 without separation of the  natural product.
epimeric intermediates. The cis ring fusion &%, assumed In conclusion, the first synthesis of tha-fnethyltetrahy-
on the basis of analody;'® received support from the  drofluorene diterpenoidsH)-dichronal B and£)-dichroanone
NOESY spectrum also. Thus, the singlet for the ring juncture has been realized through a simple and convergent route.
methine proton showed NOESY cross-peaks with two methyl Extension of this methodology to the other members of the
singlets, as reportédor dichroanal A. group is in progress.
Finally, the ketone2 was converted to the desiresdt)-
dichroanal B 2) as follows (Scheme 4). The reduction of Acknowledgment. Authors are grateful to Prof. U. R.
Ghatak of the Indian Institute of Chemical Biology for his
excellent suggestions and criticism and CSIR for the award
of Research Fellowship to M.B.

Scheme 4. Synthesis of Dichroanal B2}
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