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Abstract—A facile synthesis of fused imidazo azepine derivatives by a van Leusen/intramolecular enyne metathesis synthetic
sequence is reported. The two-step reaction sequence generates compounds of significant molecular complexity from simple starting
materials in an expedient fashion with good overall yields.
� 2005 Elsevier Ltd. All rights reserved.
Multicomponent reactions (MCRs) are widely em-
ployed for the construction of diversely functionalized
molecules via simple one-step transformations.1

Recently, isocyanide-based MCRs like the Passerini
three-component and the Ugi four-component reactions
have been combined with secondary transformations to
produce even more functionalized and specialized het-
erocyclic molecules. Some examples of post-condensa-
tion reactions include Diels–Alder reactions, amino-
cyclizations, nucleophilic aromatic substitutions, lacton-
izations and ring-closing metathesis.2 As part of our
group�s efforts to develop short and versatile routes to
access novel heterocyclic structures, we have recently
reported sequential Ugi/Heck,3 Ugi/intramolecular nitrile
oxide cycloaddition,4 Ugi/intramolecular alkyne-azide
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Figure 1. General strategy.
cycloaddition5 and Ugi/carbonylation intramolecular
amidation6 sequences.

The imidazole nucleus is present in a variety of natural
products and medicinally relevant heterocycles7 includ-
ing antiviral and antibacterial agents.8 It is in this context
that we became interested in the van Leusen imidazole
synthesis9 as part of a program to identify and synthesize
novel heterocyclic skeletons. We have recently reported
on sequential van Leusen/ring-closing metathesis strate-
gies to access novel bicyclic imidazoles.10

Herein, we report on our efforts on post-modifications of
the van Leusen reaction using an enyne metathesis11 as
the ultimate step in our reaction sequence (Fig. 1). The
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use of an alkene functionality on the aldehyde and an al-
kyne functionality on the amine provides bifunctional
starting materials for the van Leusen reaction resulting
in substrate 1. Subsequent cyclization via the intramolec-
ular enyne metathesis results in the formation of the cyc-
lized product 2 containing a diene functionality.

The condensation of 4-pentenal with but-2-yn-1-amine
in DMF at room temperature generates the imine
Table 1. Products obtained from the van Leusen/enyne metathesis reaction
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Scheme 1. General synthetic routes for the preparation of the starting mate
in situ, which is followed by the addition of phenyl
TosMIC and base (K2CO3) to afford the van Leusen
imidazole product 1 in 92% yield. As with the alkene
metathesis post-modification, the imidazole was pre-
treated with an equivalent of p-TsOH before subjecting
it to the enyne ring closure.12 The subsequent reaction
catalyzed by the second-generation Grubbs catalyst
(10 mol %) in refluxing CH2Cl2 gave the fused bicyclic
imidazole 2 in 82% yield.13
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Aldehyde and amine components of varying chain
length were used in the van Leusen reaction to provide
the corresponding C1/C5-substituted metathesis pre-
cursors. These were subjected to the intramolecular
enyne metathesis sequence to provide products of var-
ied ring size (Table 1). A diverse set of 5,6- 5,7- and
5,8-fused bicyclic functionalized imidazoles was gener-
ated via this reaction sequence. With terminal alkynes
low yields of the metathesis product was observed
(Table 1, entry 1).14 In addition to simple primary
amines and aldehydes, secondary amino aldehydes
and amino esters were used as building blocks to pro-
vide another functional group for further elaboration
of the skeleton (Table 1, entries 4–6). The requisite
building blocks were purchased from commercial
sources or prepared according to known procedures
as illustrated in Scheme 1.15 Finally, the availability
of efficient routes to synthesize substituted TosMIC
reagents provides another site of diversity in the
three-component reaction.16 In conclusion, we have
demonstrated that by incorporating alkene–alkyne
inputs in the van Leusen reaction, followed by an
enyne metathesis reaction a variety of fused bicyclic
imidazoles can be readily generated. Each of the bicy-
clic scaffolds generated by this reaction sequence had
the diene functionality, which could then serve as a site
for further diversification. Elaboration of the bicyclic
dienes via cycloaddition reactions and other van Leu-
sen post-modification reactions are currently in pro-
gress and will be reported in due course.
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