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Optimization of imidazole amide derivatives as cannabinoid-1
receptor antagonists for the treatment of obesity
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Abstract—Several imidazole-based cyclohexyl amides were identified as potent CB-1 antagonists, but they exhibited poor oral expo-
sure in rodents. Incorporation of a hydroxyl moiety on the cyclohexyl ring provided a dramatic improvement in oral exposure,
together with a ca. 10-fold decrease in potency. Further optimization provided the imidazole 2-hydroxy-cyclohexyl amide 45, which
exhibited hCB-1 Ki = 3.7 nM, and caused significant appetite suppression and robust, dose-dependent reduction of body weight gain
in industry-standard rat models.
� 2007 Elsevier Ltd. All rights reserved.
Obesity and excessive body weight are now recognized
as serious health concerns, as these conditions are
associated with decreased life span and several medical
complications such as diabetes, hyperlipidemia, coro-
nary artery disease, osteoarthritis, and some cancers.1

Furthermore, with the prevalence of obesity increasing
rapidly and current therapies being considered largely
inadequate,2 obesity has been declared one of the
most significant health problems faced by mankind.3

During the last decade, antagonism of the cannabi-
noid type 1 receptor (CB-1) has been pursued as
a highly promising strategy for the treatment of
obesity.4 To date, one CB-1 antagonist, the 1,5-diaryl-
pyrazole hydrazide rimonabant (1, SR-141716, Sanofi-
Aventis), has been approved in the European Union
for the treatment of obese or overweight patients with
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associated risk factors, such as type 2 diabetes or
dyslipidemia.5

Of the various structure classes reported as CB-1 antago-
nists, the majority incorporate a central core fragment
substituted by two aromatic rings and a hydrogen bond
donor/acceptor functionality such as a carboxamide
group.4 Indeed, the pyrazole core exemplified in 1 has
been effectively replaced with other 5-membered hetero-
cycles such as dihydropyrazole,6 triazole,7–9 thiazole,8,10

pyrrole,11,12 and imidazole.7,8,13–15 For example, the 1,2-
diaryl-imidazole hydrazide 2 was reported by researchers
at Neurocrine Biosciences7 and Solvay8 to exhibit human
CB-1 Ki values of 85 and 23 nM, respectively. In our
assay, hCB-1 Ki = 7.8 nM was determined for 2.14 The
related cyclohexyl amide 3 was investigated as an isosteric
analog by Neurocrine Biosciences and was found to have
somewhat superior potency7 (hCB-1 Ki = 3.9 nM was
obtained for 3 in our assay). In this report, we describe
our investigation and optimization of 1,2-diaryl-imida-
zole amides related to 3 as effective CB-1 antagonists.
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The 1,2-diaryl-imidazole amides such as 3 were
efficiently synthesized by the route summarized in
Scheme 1, which is similar to the methods described
previously.7,8 In our protocol,14 an aniline was reacted
with an aromatic nitrile in the presence of ethylmagne-
sium bromide to give the amidine intermediate 4, that
was then condensed with a bromopyruvate.16 The
resulting imidazole ester 5 was hydrolyzed to the corre-
sponding carboxylic acid 6, which was then coupled
with an amine building block through the use of any of
a variety of coupling agents, such as EDCI (N-ethyl-N 0-
dimethylaminoethyl-carbodiimide). For effective and
versatile parallel syntheses, the carboxylic acid 6 was
converted to the corresponding acyl fluoride by
treatment with TFFH (fluoro-N,N,N 0,N 0-tetramethyl-
formamidinium hexafluorophosphate)17 in the presence
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Scheme 1. Synthesis of 1,2-diaryl-imidazole amides 7.
of PS-DIEA (polystyrene-supported tertiary amine),
followed by reaction in situ with an amine R4NH2 to
provide the desired product 7 generally in high purity.18

In our in vitro hCB-1 (human CB-1) binding assay,19

the imidazole amide 3 was determined to have hCB-1
Ki = 3.9 nM; for comparison, the binding affinity ob-
served in our assay for 1 was Ki = 1.1 nM. Amide 3
was also found to function as an antagonist,21 with
hCB-1 Kb = 18 nM, and to be selective for CB-1 over
CB-2 (hCB-2 Ki = 240 nM). A variety of additional
imidazole cyclohexyl amides were investigated, and
several were found to exhibit hCB-1 Ki val-
ues < 10 nM (Table 1). Some of the observed struc-
ture–activity relationships (SAR) were similar to
those reported for pyrazole hydrazides related to 1,23

imidazole hydrazides related to 2,7,8 and constrained
pyrrolopyridinone analogs.24 The chlorine atom of
the 4-chlorophenyl group in 3 (R1 in Table 1) could
be replaced with other small substituents without sub-
stantial loss in potency (8–10). In contrast, replace-
ment of the 2,4-dichlorophenyl substituent in 3 (R2

in Table 1) with 2,5-dichlorophenyl caused a signifi-
cant decrease in binding affinity (11), and replacement
with unsubstituted phenyl resulted in a further marked
decrease in potency (12). The 2,4-dichlorophenyl
group could be effectively replaced with a 2,4-dimeth-
ylphenyl group (13), but not with a 2,4-difluorophenyl
group (14), presumably due to insufficient steric bulk
at the 2-position. Similar to the SAR reported for
constrained pyrrolopyridinone analogs,24 removal of
the para-chloro substituent in 3 to provide 15 resulted
in comparable or slightly improved CB-1 binding
affinity. Replacement of the ortho-chloro in 15 with
other substituents caused a decrease in potency (19–
21). Finally, replacement of the phenyl ring at R1 in
16 with a cyclohexyl ring as in 22, substitution on
the amide nitrogen in 15 with a methyl group (23),
and replacement of the R1 substituent in 15 with a
3-pyridinyl group (24) all resulted in significant de-
creases in binding affinity (Table 1).

The most potent imidazole cyclohexyl amide com-
pounds were evaluated by pharmacokinetics screening
in male Wistar rats,25 and unfortunately all of these
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Table 1. Binding affinities of imidazole cyclohexyl amides to the human CB-1 and CB-2 receptors

N N

O
N

R1

R2

R3

Compound R1 R2 R3 hCB-1 Ki
a (nM)

3 4-Cl–Ph 2,4-Cl2–Ph H 3.9b

8 4-CH3–Ph 2,4-Cl2–Ph H 1.9

9 4-CH3O–Ph 2,4-Cl2–Ph H 4.9

10 4-F–Ph 2,4-Cl2–Ph H 8.2

11 4-Cl–Ph 2,5-Cl2–Ph H 25

12 4-Cl–Ph Ph H 130

13 4-Cl–Ph 2,4-Me2–Ph H 7.2

14 4-Cl–Ph 2,4-F2–Ph H 36

15 4-Cl–Ph 2-Cl–Ph H 2.2c

16 4-CH3–Ph 2-Cl–Ph H 4.6

17 4-CH3O–Ph 2-Cl–Ph H 9.0

18 4-F–Ph 2-Cl–Ph H 20

19 4-Cl–Ph 2-Me–Ph H 21d

20 4-Cl–Ph 2-Et–Ph H 39

21 4-Cl–Ph 2-MeO–Ph H 95

22 4-Me-cyHex 2-Cl–Ph H 17

23 4-Cl–Ph 2-Cl–Ph CH3 34

24 3-Pyridinyl 2-Cl–Ph H 1100

a hCB-1 = 1.1 nM was determined for 1 in our assay.
b hCB-1 Kb = 18 nM; hCB-2 Ki = 240 nM.
c hCB-1 Kb = 11 nM; hCB-2 Ki = 2300 nM.
d hCB-1 Kb = 7.3 nM; hCB-2 Ki > 1000 nM.

Table 2. Binding affinities of imidazole amino- and hydroxyl-substituted cyclohexyl amides to the human CB-1 and CB-2 receptors

N N

O
N
H

R1

R2

Cl

Compound R1 R2 Cyclohexane isomer hCB-1 Ki (nM)

25 2,4-Cl2–Ph NH2 S,S-trans 270

26 2,4-Cl2–Ph NH2 R,R-trans 940

27 2,4-Cl2–Ph NHCH3 S,S-trans 620

28 2,4-Cl2–Ph NHCH3 R,R-trans 920

29 2,4-Cl2–Ph OH trans–rac 22a

30 2-Cl–Ph OH S,S-trans 29b

31 2-Cl–Ph OH R,R-trans 97c

a hCB-1 Kb = 4.4 nM; hCB-2 Ki = 1100 nM.
b hCB-1 Kb = 7.1 nM; hCB-2 Ki = 5300 nM.
c hCB-1 Kb = 22 nM.
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compounds were found to provide quite poor plasma
exposure from oral dosing (10 mg/kg po, typically in
30% cyclodextrin suspension). For example, imidazole
amide 3 exhibited Cmax � 50 nM. Consistent with this
finding, 3 was also inactive in the fasted–refed rat
model for appetite suppression26 (10 mg/kg po, 30%
CD). In contrast, the corresponding imidazole hydra-
zide 2 exhibited plasma Cmax = 210 nM and caused
50 to 70% reduction in food intake at 0.5–4.0 h time
points in the fasted–refed rat model (10 mg/kg po,
30% CD).

We considered that the introduction of a basic nitro-
gen or polar moiety such as a hydroxyl group to the
cyclohexyl ring might improve the plasma exposure
of this series of compounds. However, incorporation
of either an amino or methylamino moiety was found
to give a substantial reduction in CB-1 binding affinity
(25–28, Table 2). Incorporation of a hydroxyl group
was less detrimental, causing approximately a 10-fold
decrease in potency (29 vs 3, 30 vs 15). The (S,S)-trans
isomers of these derivatives were found to be some-
what more potent than the (R,R)-trans isomers (Table
2). From Wistar rat pharmacokinetics screening, the
2-hydroxy-cyclohexyl amide 30 was found to provide
dramatically improved plasma exposure levels, with
Cmax = 1.64 lM (10 mg/kg po, PEG400/25 mM
methanesulfonic acid (80:20) suspension (PEG/MSA)).
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Brain exposure levels for 30 at 2 h were determined to
be 110 nM. Consistent with these results, compound 30
was found to have a significant effect in the fasted–re-
fed rat model, providing 34–62% reduction in food in-
take measured at 0.5–4.0 h time points (10 mg/kg po).
Likewise, 29 was active in this model, causing 21–
29% reduction in food intake at 0.5–4.0 h time points
(10 mg/kg po).

A diverse variety of additional hydroxyl-substituted
amides was therefore explored,14 with the goal of achiev-
ing greater CB-1 binding affinity while maintaining sig-
nificant plasma (and brain) exposure. Selected
examples of these derivatives are listed in Table 3. The
2-hydroxy-cyclopentyl amide 32 was found to be equi-
potent to the related cyclohexyl analog 30, it exhibited
similar exposure levels (plasma Cmax = 2.11 lM, brain
C(2h) = 330 nM; 10 mg/kg po in PEG/MSA) in PK
screening studies, and it caused a significant reduction
Table 3. Binding affinities of imidazole hydroxyl-substituted alkyl and

arylalkyl amides to the human CB-1 and CB-2 receptors

N N

O
N
H

R

Cl Cl

Compound –NHR Cyclopentane isomer hCB-1

Ki (nM)

32 N
H OH

S,S-trans 29a

33 N
H OH

R,R-trans 75

34

N
H OH

trans–rac 22

35

N
H OH

S,R-cis 6.3b

36

N
H OH

R,S-cis 18c

37
N
H OH

trans–rac 41

38
N
H OH

cis–rac 17

a hCB-1 Kb = 9.7 nM; hCB-2 Ki = 6300 nM.
b hCB-1 Kb = 2.2 nM; hCB-2 Ki = 1200 nM.
c hCB-1 Kb = 9.2 nM; hCB-2 Ki = 5100 nM.
(26–56%) in food intake in the fasted–refed rat model.
Fusion of an aryl ring to the cyclopentyl group resulted
in significantly improved CB-1 binding affinity for ana-
log 35; however, this compound and other promising
aryl alkyl compounds were found to exhibit low plasma
exposure and/or insufficient activity in the fasted–refed
rat model to warrant further study.

Finally, alkyl substitutions were incorporated at the
imidazole 5-position. Introduction of methyl to n-pro-
pyl groups provided single-digit nanomolar hCB-1 Ki

values (39–41), while larger substituents were less effec-
tive (Table 4). Finally, replacement of the 4-chlorophenyl
group with a 4-bromophenyl group provided an appar-
ent further improvement in potency (45, hCB-1 Ki =
3.7 nM).

While compound 45 was found to be equipotent in the
hCB-1 binding assay to the cyclohexyl amide lead 3, it
exhibited considerably greater rat plasma exposure
(Cmax = 2.10 lM, 10 mg/kg po in PEG/MSA) and ro-
bust activity in the fasted–refed Wistar rat model. In this
study, the percent reduction in food intake caused by 45
(10 mg/kg po in PEG/MSA) at 0.5, 1.0, 1.5, 3.0, and
4.0 h time points was 63, 64, 62, 52, and 35%,
respectively.26

The genetically obese Zucker fa/fa rat has been used for
evaluating compound efficacy for the reduction of body
weight, including compounds such as rimonabant (1)
that have been shown to be effective in the management
of body weight in obese humans.27 Following the deter-
mination that 45 causes a significant suppression of
appetite, we also investigated its effect in this Zucker
rat model.28

In the Zucker rat model, imidazole amide 45 was dosed
at 1, 5, and 10 mg/kg qd po, and was observed to cause a
significant and dose-dependent reduction in body weight
gain as compared to vehicle-treated rats (Fig. 1). The
effect on day 13 was �1.9% (not statistically significant),
�6.1%, and �10.6% at 1, 5, and 10 mg/kg, respectively.
Table 4. Binding affinities of imidazole 2-hydroxy-cyclohexyl amides

to the human CB-1 and CB-2 receptors

N N

O
N
H

X Cl

OH
R

(S,S)

Compound R X hCB-1 Ki (nM)

39 Me Cl 6.9

40 Et Cl 5.0a

41 nPr Cl 5.7b

42 nBu Cl 10

43 iPr Cl 18

44 Br Cl 19

45 Et Br 3.7c

a hCB-1 Kb = 0.9 nM; hCB-2 Ki = 2300 nM.
b hCB-1 Kb = 1.4 nM; hCB-2 Ki = 2700 nM.
c hCB-1 Kb = 13 nM; hCB-2 Ki = 2700 nM.
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Figure 1. Effect of the imidazole 2-hydroxycyclohexyl amide 45 on
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In a separate study, 45 and rimonabant (1) were both
dosed at 10 mg/kg qd po for eight days, and the com-
pounds were observed to cause 5.6% and 6.5% reduction
in body weight gain, respectively. The difference in the
effects observed for 45 and 1 in this study was not statis-
tically significant.

In summary, imidazole amides were investigated and
optimized as CB-1 antagonists. SAR studies for a series
of cyclohexyl amides highlighted the importance of an
ortho substituent such as chloro or methyl on the phenyl
group at the imidazole 2-position. Although several very
potent examples of these analogs could be identified, they
lacked sufficient plasma exposure from oral dosing to
enable in vivo efficacy. Incorporation of a hydroxyl moi-
ety on the cyclohexyl ring provided a dramatic improve-
ment in oral exposure, together with a ca. 10-fold
decrease in in vitro potency. However, further optimiza-
tion of substituents provided the imidazole 2-hydroxy-
cyclohexyl amide 45, which exhibited hCB-1 Ki = 3.7 nM,
a significant anorexigenic effect in the fasted–refed Wistar
rat model, and robust, dose-dependent reduction in body
weight gain in the chronic Zucker rat model.
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ence in 150 cm2 flasks were washed with 10 mL PBS.
Sigma cell dissociation solution (5 mL; Cat# C5914) was
added to flasks and the cells collected in Ham’s F12 media
and centrifuged for 5 min at 500g. The cell pellet was
resuspended in assay buffer (Dulbecco’s PBS containing
0.1 mM 3-isobutyl-1-methylxanthine and 0.1 mM Ro20-
17241). The cells (110,000/well) were incubated (250 lL,
final volume) for 20 min at 37 �C with various concentra-
tions of cannabinoid receptor agonist and forskolin
(3 lM, final concentration) in the presence or absence of
a fixed concentration of CB-1 receptor antagonist. The cell
suspension was centrifuged at 1000g for 5 min in a table
top centrifuge (4 �C). The supernatant was aspirated and
100 lL of cell lysis buffer added to each well. The cyclic
AMP content of the supernatant was measured by
scintillation proximity assay (cAMP SPA Biotrak Direct
Screening Assay System, Amersham Biosciences, UK)
according to the manufacturer’s instructions. Apparent
dissociation constants of antagonists (Kb values) were
calculated by using the formula pKb = log10(CR-
1) � log10B, where B is the concentration of antagonist
used and CR (concentration ratio) is the ratio of agonist
EC50 measured in the presence of antagonist over that
measured in the absence of antagonist.22
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body weight at start of study) were kept in standard
animal rooms under controlled temperature and humidity,
and a reversed 12-h/12-h light/dark cycle. Water and food
were continuously available. Rats were single-housed in
large rat shoeboxes containing grid floor. Animals were
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treatment group.
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