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Discovery of a series of azepine sulfonamides as potent inhibitors of 11b-hydroxysteroid dehydrogenase
type 1 (11b-HSD1) is described. SAR studies at the 4-position of the azepane ring have resulted in the dis-
covery of a very potent compound 30 which has an 11b-HSD1 IC50 of 3.0 nM.
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Glucocorticoids are involved in many physiological functions
from fetal development to carbohydrate metabolism and anti-
inflammatory responses.1 Cortisol is the most prevalent glucocorti-
coid in human, and in rodent, the equivalent of cortisol is cortico-
sterone.2 Under physiologic conditions, 11b-HSD1 (11b-
hydroxysteroid dehydrogenase type 1) functions as a reductase
that converts inactive cortisone to active cortisol.3 11b-HSD2,4 on
the other hand, catalyzes the dehydrogenase reaction of converting
cortisol to cortisone, a process essential for protecting mineralo-
corticoid receptors from excess cortisol. Although 11b-HSD1 and
11b-HSD2 are isozymes in terms of their biologic functions, they
share only 16% sequence homology.5 This structural diversity
should provide potential to develop 11b-HSD1 selective inhibitors.

11b-HSD1 is a 288 amino acid single transmembrane domain
protein which localizes to the endoplasmic reticulum.6 It has been
shown that genetic deletion of 11b-HSD1 lowers plasma glucose
levels in mice fed on high-fat diets and attenuates the activation
of enzymes involved in hepatic gluconeogenesis,7 suggesting that
inhibitors of this enzyme may be of therapeutic use in various met-
abolic disorders such as diabetes, obesity and hypertension.8

In the last several years, considerable interest has been gener-
ated by the pharmaceutical industry on 11b-HSD1 as a therapeutic
target for diabetes and obesity.9 This can be witnessed by a multi-
tude of patents that have been published recently in this area.10 In
ll rights reserved.
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this Letter we describe our efforts to develop potent and selective
11b-HSD1 inhibitors for the treatment of diabetes, obesity and
other metabolic disorders.

Our efforts in this program started with the identification of
compound 1 (human 11b-HSD1 IC50 = 111 nM) from a high
throughput screening of our internal compound collection. This
was an attractive lead, and other laboratories have also explored
related benzamides as 11b-HSD1 inhibitors.11 Thus we decided
to investigate the potential of sulfonamides as possible amide sur-
rogates with the azepane core of lead 1 (Fig. 1). We also introduced
a double bond at the 4-position to examine whether reduced rota-
tion of the phenyl group would improve upon activity. The synthe-
sis of this series of targets is summarized in Scheme 1.

The reaction of commercially available ethyl 4-oxopiperidine-1-
carboxylate (2) with BF3�Et2O and ethyl diazoacetate resulted in a
facile ring expansion to provide the azepane ring b-keto ester
(3).12 This was then decarboxylated under standard conditions fol-
lowed by the addition of phenyl lithium at �78 �C to give the ter-
tiary alcohol 5. The ethyl carbamate protecting group was
1 O

h 11β-HSD1 IC50 = 111 nM
m 11β-HSD1 IC50 = 9 μM

Figure 1. Lead compound 4-phenylazepane amide 1.
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Scheme 1. Synthesis of phenyl-tetrahydroazepine sulfonamides. Reagents and
conditions: (a) N2CH2CO2Et, BF3�Et2O, Et2O, �25 �C to rt, 82%; (b) 4 N KOH, EtOH,
56%; (c) R1Li, THF, �78 �C to rt; (d) N2H4, 50% KOH, EtOH, reflux; (e) AcOH, concd
HCl, 120 �C, 4 h; (f) R2SO2Cl, DIEA, CH2Cl2, rt.
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Scheme 2. Synthesis of 4-alkoxy substituted azepane sulfonamides. Reagents and
conditions: (a) R3SO2Cl, DIEA, CH2Cl2, rt; (b) R1Li, THF, 0 �C to rt; (c) NaH, R2I, DMF,
rt.
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reductively removed by refluxing with hydrazine in the presence of
50% KOH to provide the free amine 6.13 It was observed that excess
phenyl lithium could also result in the removal of the ethyl
carbamate.

Compound 6 was then subjected to refluxing conditions with
concentrated HCl and glacial acetic acid to provide olefins 7 and
8 as an inseparable mixture. This mixture of olefins was taken di-
rectly and treated with various para-substituted aryl sulfonamides
to give 9 (major isomer) and 10 (minor isomer). Gratifyingly the
major and minor isomers could be separated after this reaction.14

The SAR of the promising sulfonamides obtained are shown in Ta-
bles 1 and 2.

Compound 11 with a 4-methoxyphenyl sulfonamide was the
best inhibitor in this series and was twofold more potent than
the azepane lead 1. However the mouse IC50 of this compound
was �32-fold lower. The p-(t-butyl)-phenylsulfonamide 12
had improved affinity for the human 11b-HSD1 receptor with
comparatively less separation of affinity for the mouse receptor
(�13-fold). We also noticed that sulfonamides derived from the
Table 1
11b-HSD1 inhibition for 4-phenyl-tetrahydroazepine sulfonamides

N SO2
R

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

11 4-MeO–Ph 58 1876
12 4-t-Bu–Ph 68 905
13 4-Me–Ph 76 1551
14 4-Et–Ph 97 1242
15 2,4-Dichloro-Ph 994 1277

a hIC50 = human IC50, mIC50 = mouse IC50.15

Table 2
11b-HSD1 inhibition for 5-phenyl-tetrahydroazepine sulfonamides

N SO2
R

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

16 4-Me–Ph 124 1511
17 4-MeO–Ph 178 1553
18 4-t-Bu–Ph 358 1648

a hIC50 = human IC50, mIC50 = mouse IC50.15
major olefin isomer 9 were more active than those from the minor
isomer 10 (13 vs 16, 11 vs 17, 12 vs 18; Tables 1 and 2).

It is to be noted that the difference between human and mouse
IC50 values for our compounds is consistent with the fact that the
mouse shares only �80% homology with the human enzyme.5,16

Another key issue that we encountered in the above series was a
lack of good solubility. This was a major concern in getting reliable
pharmacokinetic data on these compounds.

To address the solubility concerns we decided to explore com-
pounds with a hydroxy group at the 4-position of the azepane
ring which were precursors to the olefins described above. Thus
azepan-4-one 19 was treated with the appropriate sulfonyl
chloride in the presence of base, followed by the addition of alkyl
or aryl lithium at �78 �C to provide the tertiary alcohols 21
(Scheme 2).

The effects of aryl substitution in the sulfonamide region of the
4-hydroxy azepine compounds are shown in Table 3. We had ob-
served previously that para-substitution was optimal and thus
confined our SAR efforts in this series to several para-substituted
aryl sulfonamides. Limited examples from this SAR study are
shown in Table 3. p-(t-Butyl)-phenylsulfonamide (23) was the best
substituent in this series and was found to be a preferred group in
all other series.

Next we explored substituent effects at the 4-position of aze-
pan-4-ol p-(t-butyl)-phenylsulfonamides (Table 4). Towards this
Table 3
11b-HSD1 inhibition for 4-phenylazepan-4-ol sulfonamides

N SO2
R

HO

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

23 4-t-Bu–Ph 307 860
24 4-Et–Ph 493 1406
25 4-Cl–Ph 1069 2721
26 4-MeO–Ph 1315 1981

a hIC50 = human IC50, mIC50 = mouse IC50.15

Table 4
11b-HSD1 inhibition for azepan-4-ol sulfonamides

N SO2

R
HO

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

27 Me 5 35
28 Cyclopropyl 12 115
23 Ph 307 860
29 H 466 629

a hIC50 = human IC50, mIC50 = mouse IC50.15



Table 5
11b-HSD1 inhibition for 4-methoxyazepane sulfonamides

N SO2

R
MeO

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

30 Me 3 57
31 H 7 165
32 Cyclopropyl 43 328
33 Ph 110 210

a hIC50 = human IC50, mIC50 = mouse IC50.15

Table 6
11b-HSD1 inhibition for 4-methoxy-4-methylazepane sulfonamides

N SO2
R

MeO

Compounds R 11b-HSD1 hIC50
a (nM) 11b-HSD1 mIC50

a (nM)

30 4-t-Bu–Ph 3 57

34
MeO

20 229

35
HO

113 656

a hIC50 = human IC50, mIC50 = mouse IC50.15
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end, we introduced different alkyl and aryl groups at the 4-position
of the azepane ring.

We were very pleased to identify compound 27 which had a hu-
man 11b-HSD1 IC50 of 5 nM (Table 4).17 We quickly realized that
there was only a very small window for the R group in this struc-
ture, as simple H (29) or a bulkier phenyl group (23) resulted in
significant loss in potency. A small change from methyl (27) to
cyclopropyl (28) led to a twofold loss in potency.

To further examine the contribution from the hydroxy group to
potency, we alkylated the tertiary alcohol at the 4-position with
methyl iodide and several R groups were again explored. As shown
in Table 5 the SAR data showed that the free (27) as well as meth-
ylated (30) tertiary hydroxy groups had comparable potency,
which seems to indicate the absence of a hydrogen bond donation
to binding. It is also interesting to note that methylating the sec-
ondary hydroxyl compound 29 resulted in compound 31 which
had a significantly increased potency.

We were pleased that our SAR efforts at the 4-position resulted
in the discovery of a compound 30 which was �35 times more po-
tent than our initial lead 1. Importantly the compounds shown in
Tables 4 and 5 also were 10–20 times more soluble than our earlier
compounds (Tables 1 and 2) based on kinetic solubility measure-
ments.18 Finally, to incorporate additional solubility elements on
30, we introduced hydroxy groups at the t-butyl site and synthe-
sized compounds 34 and 35. However this resulted in a significant
loss in potency as shown in Table 6.

In conclusion, SAR studies of several novel azepane sulfona-
mides have resulted in the identification of several potent inhibi-
tors of 11b-HSD1. The most potent compound 30 has a human
IC50 of 3 nM. p-(t-Butyl)-phenylsulfonamide has been found to be
a preferred group in a wide array of compounds. We believe that
these compounds which are more potent and have increased solu-
bility compared to our initial series have the potential for good
pharmacokinetics and in vivo activity in 11b-HSD1 models. Further
optimization of this series and SAR of structurally related com-
pounds will be reported in due course.
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