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ABSTRACT: A general and efficient copper-catalyzed alkylation
of silyl enol ethers with functionalized alkyl bromides has been
developed for the synthesis of the sterically hindered γ-ketoesters.
The transformation was induced through C(sp3)-halogen
activation of commercially available sterically hindered alkyl
bromides under mild conditions in good results. The strategy
could be used for the synthesis of biologically active histamine H3 receptor (H3R) antagonist for medicinal purposes.

■ INTRODUCTION

The γ-ketoester moieties are arguably the most important and
versatile building blocks in organic synthesis. For example, they
are useful synthetic precursors in many fundamental trans-
formations, such as the Paal−Knorr reaction for the
construction of five-membered heterocyclic compounds.1

Meanwhile, they exist in a variety of bioactive compounds,
such as the matrix metalloproteinases inhibitor (A),2a

bioavailable tankyrase inhibitor (B),2b or cannabinoid receptor
1 inhibitor (C)2c (Figure 1). In this context, γ-ketoesters with
sterically hindered groups, such as the geminal dimethyl centers,
are prevalent intermediates in medicinal chemistry, due to their
excellent biological properties.3 For example, these scaffolds
have been found in the histamine H3 receptor antagonist (D)

3a

and inhibitors of 17β-HSD1 (E)3b (Figure 1). Thus, the
development of diverse synthetic approaches for the con-
struction of these compounds in organic synthesis andmedicinal
chemistry has been a hot topic.4,5

Generally, these functional products could be obtained by
treating 2,2-dimethylsuccinic anhydride as a substrate in the
presence of a copper-catalytic system with Grignard reagents or
a stoichiometric amount of aluminum chloride in the reactions
with substituted benzenes4,3d (a, Scheme 1). However, it is still
quite limited in the substrate scope; moreover, the acid group
(−CO2H) needs further diversification.4 In recent years, the
utilization of alkyl halides, especially with the bench stable and
commercially available alkyl α-bromocarboxylates, has been
studied as one as the most efficient strategies for the
construction of these compounds5 (Scheme 1b). For example,
in 2014, the Zhang group developed an efficient visible-light-
induced reaction with sterically hindered alkyl a-bromocarbox-
ylates and enamines by Ru-photoredox catalysis to afford γ-
ketoesters in generally good yields.5a Later on, the same type of
products were accessed with different Ir-based phtocatalysts
with vinylarenes.5b In 2016, Loh and Xu developed a palladium-

catalyzed alkylation reaction of enamides with α-bromo-
substituted carbonyls. In the reaction, a stoichiometric amount
of silver salt was also required. Further applications of the
corresponding products could be transformed into γ-ketoesters
(Scheme 1b).5c Despite these significant advances,5 limitations
of these strategies, such as the use of noble Ru and Ir
photocatalysts5a,b or Pd/Ag salts in the system,5c make the
development of new practical routes highly desirable. It has been
well-known that the alkyl radical could be induced by a cheap
and earth abundant copper catalyst6−8 and continued the author
interest in functionalized alkyl halides in organic chemistry;9

herein, the author wish to develop a general and efficient copper-
catalyzed alkylation of silyl enol ethers with functionalized alkyl
bromides for the synthesis of the sterically hindered γ-ketoesters
(Scheme 1c).

■ RESULTS AND DISCUSSION

Initially, the investigation was studied with tert-butyldimethyl-
((1-phenylvinyl)oxy)silane (1a) and ethyl 2-bromo-2-methyl-
propanoate (2a) as the model substrates to test the possibility.6

The desired product 3a could be obtained in 21% yield, when
the reaction was conduct with CuI (3.0 mol %) and PMDTA
(1.5 equiv) in EtOH (entry 1, Table 1). Delightedly, when
PMDTA (5.0 mol %) and NaHCO3 (1.5 equiv) were used, a
remarkable 51% yield was obtained (entry 2, Table 1). The
control experiments showed that the copper salt, ligand, and
base were all inevitable (entries 3−5). Other ligands or bases
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were screened (entries 11−15), such as Na2CO3 (45%), K2CO3
(10%), and NaOAc (22%), or copper species (entries 16−20)
were proven less effective. Interesting, other solvents, such as
DCE (63%, entry 21) or dioxane (78%, entry 23), were used;
product 3a-1 was obtained as the only side product in a good
yield, and no obvious product 3a could be identified. At last,
reducing the amount of the copper catalyst (1.0 mol %) gave a
similar result of 3a-1 (84%, entry 29). Since the step of 3a-1 was
high-yielding and clean, the direct hydrolysis for product 3a
could proceed in a 75% total yield in a one-pot two-step protocol
as the best reaction condition (entry 29).
Then, the scope of silyl enol ethers and ethyl 2-bromo-2-

methylpropanoate (2a) was investigated to illustrate the
possibility of the reaction (Scheme 2). It showed that silyl
enol ether derivatives have a good functional group tolerance in
this protocol. Different substituent groups, such as, electron-
donating (e.g., Me−, OMe−) or electron-withdrawing (F−,
Cl−, Br−, or CF3−), even the strong electron-withdrawing
(NO2−), at different positions of the aromatic rings, could
generate the desired products 3a−3n in generally good yields
(36−78%). It should be noted that the starting material could

not be consumed completely in the formation of 3f, 3g, 3m, and
3o, due to the steric or electronic effects. Importantly, when
EtOH was used as the solvent, a significant beneficial effect on
the reaction outcome was observed,7d affording 3f (49%), 3g
(36%), 3m (45%), and 3o (52%) in moderate yields. Furan- or
thiophene-fused silyl enol ethers could be converted to the
desired products 3k−3l in 52−78% yields. In addition, silyl enol
ethers with alkene or alkyne groups could also be used as the
coupling partners to give the corresponding products 3p−3r in
moderate yields (46−64%). Unfortunately, alkyl enol ether
derivatives were unsuitable substrates for transformations when
the starting materials were decomposed in the reaction.
Encouraged by the above results, a range of alkyl bromides

were studied for further examination of the substrate scope6,10,11

(Scheme 3). The alkyl bromides with different substituents, such
as methyl, benzyl, or ethyl groups, all could be used in the
transformation smoothly, giving the desired products 4a−4h in
good yields (30−74%).
It is noteworthy that the pyridazin-3-one derivatives are

versatile building blocks and have been extensively studied due
to the unique biological properties.12 Meanwhile, the γ-ketoester
compounds are versatile synthetic precursors to these hetero-
cycles.2,3 Since the step of products 3 or 4 was high-yielding and
clean, the direct one-pot three-step protocol reaction conditions
for the synthesis of pyridazin-3-one derivatives have been
conducted (Scheme 4). A 1.0 mmol scale reaction in the
formation of pyridazin-3-one derivatives 5a−5f could be
achieved in good results successfully.
It has been known that the histamine H3 receptor (H3R) is

localized primarily presynaptically in the brain and as an
inhibitory heteroreceptor regulating the release of multiple
neurotransmitters.13 The identification of compound (R)-4,4-
dimethyl-6-(4-(3-(2-methylpyrrolidin-1-yl)propoxy)phenyl)-
4,5-dihydropyridazin-3(2H)-one 6e as a lead candidate for
potential use in the treatment of cognitive disorders has been
well studied.3a To further explore the synthetic utility of the
strategies, the important biologically active histamine H3
receptor (H3R) antagonist 6e could be accessed with the
present copper-catalyzed alkylation of silyl enol ethers as the key
strategy for medicinal purposes (Scheme 5).
Some control experiments were examined in order to

investigate the mechanism of the reaction. For example,
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or BHT (buty-

Figure 1. Bioactive compounds derived from γ-ketoesters.

Scheme 1. Strategies to Sterically Hindered γ-Ketoesters with
Geminal Dimethyl Groups
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lated hydroxytoluene) was used as the radical scavengers.6,10

The reaction was completely inhibited, and no desired product
3awas obtained (Scheme 6a,b). Excitedly, the alkyl radical could
be trapped by 1,1-diphenylethylene10 (Scheme 6c,d), indicating
that the radical species were involved in the reaction.6,10

On the basis of the control experiments and reported
literature,6,10 a plausible mechanism was proposed (Scheme
7). First, functionalized alkyl bromide 2a was reduced by the
Cu(I) catalyst to give Cu(II) species A and the alkyl radical B.6

Then, radical addition of B to the terminal CC bond of the
silyl enol ether (1a) affords intermediate C. Subsequently,
single-electron transfer (SET) oxidation by A affords D, which
then undergoes deprotonation in the aid of the base, giving
product 3a-1, with regeneration of the Cu(I) catalyst
concurrently. Finally, hydrolysis of 3a-1 affords the target
product 3a.

■ CONCLUSIONS
In summary, a general and efficient copper-catalyzed alkylation
of silyl enol ethers with functionalized alkyl bromides has been
developed for the synthesis of the sterically hindered γ-
ketoesters. The transformation was induced through C(sp3)−
halogen activation of commercially available sterically hindered
alkyl bromides under mild conditions with a wide functional
group and substrate scope tolerance in good results. The strategy
could be used for the synthesis of the biologically active
histamine H3 receptor (H3R) antagonist in medicinal chemistry.

■ EXPERIMENTAL SECTION
General Information. Unless otherwise noted, all commercially

available reagents were obtained from commercial suppliers and used
directly without further purification. 1H NMR, 13C{1H} NMR, or 19F
NMR spectra were recorded on a 400 MHz Bruker FT-NMR
spectrometer. All chemical shifts are given as δ values (ppm) with
tetramethylsilane (TMS) as the internal standard; the peak patterns are
indicated as follows: singlet (s), doublet (d), triplet (t), quartet (q), and

Table 1. Examination of the Reaction Conditionsa

entry catalyst (mol %) ligand (mol %) base (equiv) solvent yield 3ab yield 3a-1b

1 CuI (3.0) PMDTA (1.5) EtOH 21
2 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 51
3 PMDTA (5.0) NaHCO3 (1.5) EtOH
4 CuI (3.0) NaHCO3 (1.5) EtOH
5 CuI (3.0) PMDTA (5.0) EtOH
6 CuI (3.0) DIPEA (5.0) NaHCO3 (1.5) EtOH 13
7 CuI (3.0) bipy (5.0) NaHCO3 (1.5) EtOH 26
8 CuI (3.0) phen (5.0) NaHCO3 (1.5) EtOH 20
9 CuI (3.0) L-proline (5.0) NaHCO3 (1.5) EtOH 18
10 CuI (3.0) TMEDA (5.0) NaHCO3 (1.5) EtOH 17
11 CuI (3.0) PMDTA (5.0) Na2CO3 (1.5) EtOH 45
12 CuI (3.0) PMDTA (5.0) K2CO3 (1.5) EtOH 10
13 CuI (3.0) PMDTA (5.0) KOAc (1.5) EtOH <5
14 CuI (3.0) PMDTA (5.0) NaOAc (1.5) EtOH 22
15 CuI (3.0) PMDTA (5.0) Cs2CO3 (1.5) EtOH <5
16 CuCl (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 39
17 CuBr (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 41
18 CuCl2 (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 47
19 CuBr2 (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 47
20 Cu(OAc)2 (3.0) PMDTA (5.0) NaHCO3 (1.5) EtOH 45
21 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) DCE 63
22 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) MeCN 34 30
23 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) dioxane <5 78
24 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) THF 54
25 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) toluene 45
26 CuI (3.0) PMDTA (5.0) NaHCO3 (1.5) dioxane <5c

27 CuI (1.0) PMDTA (3.0) NaHCO3 (1.2) EtOH 56e

28 CuI (1.5) PMDTA (5.0) NaHCO3 (1.5) dioxane (76)d 84
29 CuI (1.0) PMDTA (3.0) NaHCO3 (1.2) dioxane (75)d,e 84
30 CuI (1.5) PMDTA (5.0) NaHCO3 (1.5) dioxane <5f

31 CuI (1.5) PMDTA (5.0) NaHCO3 (1.5) EtOH <5f

aUnless otherwise noted, PMDTA = pentamethyldiethylenetriamine; DIPEA = N,N-diisopropylethylamine; bipy = 2,2′-bipyridine; phen = 1,10-
phenanthroline; TMEDA = N,N,N′,N′-tetramethylethanediamine. Reaction conditions: in N2, 1a (1.0 equiv, 0.40 mmol), 2a (2.0 equiv, 0.80
mmol), [Cu] (1.0−3.0 mol %), ligand (3.0−5.0 mol %), base (1.2−1.5 equiv) in solvent (2.0 mL), 85 °C, 30 h. bIsolated yield. cAt 65 °C. dFor the
product requiring acid hydrolysis, aqueous HCl (2 M, 30 equiv) was used and stirred at rt for 24 h. e1a (1.0 equiv, 0.60 mmol) and 2a (1.5 equiv,
0.90 mmol) were used. fTrimethyl((1-phenylvinyl)oxy)silane was used.
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multiplet (m). The coupling constants, J, are reported in hertz (Hz). All
high-resolution mass (HRMS) analysis was detected on a LC/MSD
TOF spectrometer system with electrospray ionization (ESI). All
melting points were detected on a Mel-Temp apparatus, and the results
were uncorrected. All IR data was obtained on an ATR-FTIR
spectrometer. All reactions were monitored by thin-layer chromatog-
raphy (TLC) with commercially available silica gel plates (GF254)
under UV light (254 or 365 nm). Flash chromatography was performed
on silica gel (200−300 mesh, Qindao, China).
Preparation of the Starting Materials. Preparation of the Silyl

Enol Ethers. The silyl enol ethers 1a−1u were prepared according to
the reported literature procedures,14 and all were known compounds.
Preparation of the Alkyl Bromides.The alkyl bromides 2a−2hwere

obtained from commercial sources and used directly without further
purification.
General Procedures. General Procedures for the Preparation of

3 or 4. (Step 1) Under air, alkyl bromide 2 (1.5 equiv, 0.90 mmol) was
added to the mixture of 1 (1.0 equiv, 0.60 mmol), CuI (1.0 mol %, 1.1
mg), PMDTA (Pentamethyldiethylenetriamine, 3.0 mol %, 3.1 mg),
and NaHCO3 (1.2 equiv, 0.72 mmol, 60.5 mg) in 1,4-dioxane (2.0 mL)

in a dry 35 mL Schlenk tube. Then the mixture was degassed with N2
and heated at 85 °C (oil bath) for 30 h. After completion of the reaction,
it was cooled to room temperature for the next step.

(Step 2) For product requiring acid hydrolysis, aqueous HCl (2 M,
20−30 equiv) was added and stirred at rt for 20−36 h. The mixture was

Scheme 2. Scope of the Silyl Enol Ethersa

aReaction conditions: (1) in N2, 1 (1.0 equiv, 0.60 mmol), 2a (1.5
equiv, 0.90 mmol), CuI (1.0 mol %), PMDTA (3.0 mol %), NaHCO3
(1.2 equiv, 0.72 mmol) in dioxane (2.0 mL), 85 °C, 30 h; (2) for
product requiring acid hydrolysis, aqueous HCl (2 M, 20−30 equiv)
was added and stirred at rt for 20−36 h. bIn EtOH (2.0 mL), 65 °C,
45 h (without acid hydrolysis). cIn EtOH (2.0 mL), 85 °C, 45 h
(without acid hydrolysis).

Scheme 3. Scope of the Alkyl Bromidesa

aReaction conditions: (1) in N2, 1 (1.0 equiv, 0.60 mmol), 2 (1.5
equiv, 0.90 mmol), CuI (1.0 mol %), PMDTA (3.0 mol %), NaHCO3
(1.2 equiv, 0.72 mmol) in dioxane (2.0 mL), 85 °C, 30 h; (2) for
product requiring acid hydrolysis, aqueous HCl (2 M, 20−30 equiv)
was added and stirred at rt for 20−36 h. bIn EtOH (2.0 mL), 65 °C,
30 h (without acid hydrolysis).

Scheme 4. Synthetic Scope of Pyridazin-3-one Derivativesa

aReaction conditions: (1) in N2, 1 (1.0 equiv, 1.0 mmol), 2 (1.5
equiv, 1.5 mmol), CuI (1.0 mol %), PMDTA (3.0 mol %), NaHCO3
(1.2 equiv, 1.2 mmol) in dioxane (3.0 mL), 85 °C, 34 h; (2) for
product requiring acid hydrolysis, aqueous HCl (2 M, 20−30 equiv)
was added and stirred, rt, 20−36 h; (3) in N2, hydrazine monohydrate
(80% aq, 1.5 equiv, 1.5 mmol), EtOH (2.0 mL), 85 °C, 8 h; all yields
were isolated by recrystallization.
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quenched with saturated Na2CO3 (aq) and then extracted with ethyl
acetate, and the organic layer was dried over Na2SO4. The resulting
solution was concentrated under reduced pressure and purified by flash
chromatography on silica gel (eluent: ethyl acetate/petroleum ether) to
give the desired products 3 or 4.
General Procedures for the Preparation of 5. (Step 1) Under air,

alkyl bromide 2 (1.5 equiv, 1.5 mmol) was added to the mixture of 1
(1.0 equiv, 1.0 mmol), CuI (1.0 mol %, 1.9 mg), PMDTA

(pentamethyldiethylenetriamine, 3.0 mol %, 5.2 mg), and NaHCO3
(1.2 equiv, 1.2 mmol, 100.8 mg) in 1,4-dioxane (3.0 mL) in a dry 35mL
Schlenk tube. Then the mixture was degassed with N2 and heated at 85
°C (oil bath) for 34 h. After completion of the reaction, it was cooled to
room temperature for the next step.

Scheme 5. Application in the Synthesis of the Histamine H3 Receptor Antagonist

Scheme 6. Control Experiments Scheme 7. Plausible Mechanism
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(Step 2) For product requiring acid hydrolysis, aqueous HCl (2 M,
20−30 equiv) was added and stirred at rt for 20−36 h. The mixture was
quenched with saturated Na2CO3 (aq) and then extracted with ethyl
acetate, and the organic layer was dried with Na2SO4. The resulting
solution was concentrated under reduced pressure. The residue was
used without any purification for the next step.
(Step 3) In a N2 atmosphere, hydrazine monohydrate (80% aq, 1.5

equiv, 1.5 mmol, 94.0 mg) in EtOH (2.0 mL) was added to the above
mixture and heated at 85 °C (oil bath) for 8 h. After completion of the
reaction, it was cooled to room temperature and quenched with water
and then extracted with ethyl acetate, and the organic layer was dried
with Na2SO4. The resulting solution was concentrated under reduced
pressure and purified by recrystallization with petroleum ether to give
the desired products 5.
Preparation of the Histamine H3 Receptor Antagonist 6e.

(Step 1) Under air, ethyl 2-bromo-2-methylpropanoate (2a, 1.5 equiv,
3.0 mmol, 585.2 mg) was added to amixture of 6a (1.0 equiv, 2.0 mmol,
729.4 mg), CuI (1.0 mol %, 3.8 mg), PMDTA (pentamethyldiethy-
lenetriamine, 3.0 mol %, 10.4 mg), and NaHCO3 (1.2 equiv, 2.4 mmol,
201.6 mg) in 1,4-dioxane (8.0 mL) in a dry 50 mL Schlenk tube. Then
the mixture was degassed with N2 and heated at 85 °C (oil bath) for 36
h. After completion of the reaction, it was cooled to room temperature.
(Step 2) In N2, TBAF (tetrabutylammonium fluoride, 1.0M in THF,

2.5 equiv, 5.0 mmol, 5.0 mL) was added to the above mixture and
stirred at rt for 12 h. The mixture was quenched with water and then
extracted with ethyl acetate, and the organic layer was dried with
Na2SO4. The resulting solution was concentrated under reduced
pressure to give the desired crude product 6b. The residue was used
directly without any purified for the next step.
(Step 3) Under air, 1-bromo-3-chloropropane (1.1 equiv, 2.2 mmol,

346.4 mg) and K2CO3 (1.1 equiv, 2.2 mmol, 303.6 mg) were added to
the crude 6b in MeCN (8.0 mL) in a dry 50 mL Schlenk tube. Then the
mixture was degassed with N2 and heated at 65 °C (oil bath) for 20 h.
After completion of the reaction, it was cooled to room temperature.
The mixture was quenched with water and then extracted with ethyl
acetate, and the organic layer was dried with Na2SO4. The resulting
solution was concentrated under reduced pressure to give the desired
crude product 6c. The residue was used directly without any purified for
the next step.
(Step 4) InN2, (R)-2-methyl-pyrrolidine (1.2 equiv, 2.4 mmol, 204.4

mg) was added to the mixture of KI (0.5 equiv, 1.0 mmol, 166.0 mg),
K2CO3 (2.0 equiv, 4.0 mmol, 552.0 mg), and crude 6c in MeCN (6.0
mL) in a dry 35 mL Schlenk tube. The mixture was heated at 80 °C (oil
bath) for 48 h. The mixture was quenched with water and then
extracted with ethyl acetate, and the organic layer was dried with
Na2SO4. The resulting solution was concentrated under reduced
pressure. The residue was purified by flash chromatography on silica gel
(eluent:MeOH/DCM= 1:10, Rf = 0.45) to give the desired product 6d
(pale yellow oil, 287.0 mg, 38% yield from 2.0 mmol scale of 6a).
(Step 5) In N2, hydrazine monohydrate (80% aq, 2.0 equiv, 1.4

mmol, 88.0 mg) in EtOH (2.0 mL) was added to 6d (1.0 equiv, 0.7
mmol, 263.0 mg) in a dry 15 mL Schlenk tube; then the mixture was
heated at 85 °C (oil bath) for 20 h. After completion of the reaction, it
was cooled to room temperature and quenched with water and then
extracted with ethyl acetate, and the organic layer was dried with
Na2SO4. The resulting solution was concentrated under reduced
pressure and purified by recrystallization with petroleum ether to give
the desired product 6e (white solid, 194.7 mg, 81% yield).
Characterization Data. Ethyl 4-((tert-Butyldimethylsilyl)oxy)-

2,2-dimethyl-4-phenylbut-3-enoate (3a-1): yellow oil; Rf = 0.65
(ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 176.0 mg, 84%
yield; isomer mixtures were isolated in E/Z = 10:1, detected by 1H
NMR) ATR-FTIR (cm−1) 2956, 2930, 2858, 1731, 1650, 1253, 1137,
1075, 836, 809, 779, 699; 1H NMR (400 MHz, CDCl3) δ 7.36−7.33
(m, 2H), 7.32−7.27 (m, 4H), 5.16 (s, 0.1H), 4.83 (s, 1H), 4.17 (q, J =
7.2 Hz, 2H), 3.67 (q, J = 7.2 Hz, 0.2H), 1.42 (s, 6.6H), 1.28 (t, J = 7.2
Hz, 3.3H), 0.92 (s, 9.9H), −0.15 (s, 6.6H); 13C{1H} NMR (100 MHz,
CDCl3) δ 177.2, 176.8, 150.6, 140.6, 128.6, 128.1, 127.8, 127.6, 127.5,
117.2, 115.8, 60.3, 41.7, 28.2, 26.7, 26.0, 25.6, 18.3, 14.2, 13.9, −3.4,

−4.6; HRMS (ESI) m/z [M + H]+ calcd for C20H33O3Si
+ 349.2193,

found 349.2185.
Ethyl 2,2-Dimethyl-4-oxo-4-phenylbutanoate (3a):5a yellow oil;

Rf = 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 105.4
mg, 75% yield) ATR-FTIR (cm−1) 2976, 1725, 1686, 1189, 1124, 752,
690; 1H NMR (400 MHz, CDCl3) δ 7.95−7.93 (m, 2H), 7.57−7.53
(m, 1H), 7.47−7.43 (m, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.29 (s, 2H),
1.32 (s, 6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 197.6, 177.3, 137.0, 133.0, 128.5, 127.9, 60.5, 48.4, 40.0, 25.7,
14.1.

Ethyl 2,2-Dimethyl-4-oxo-4-(p-tolyl)butanoate (3b):11e yellow oil;
Rf = 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 113.0
mg, 76% yield) ATR-FTIR (cm−1) 2974, 2932, 1726, 1683, 1606, 1181,
1124, 807; 1H NMR (400 MHz, CDCl3) δ 7.84−7.82 (m, 2H), 7.25−
7.23 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 3.26 (s, 2H), 2.40 (s, 3H), 1.30
(s, 6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
197.2, 177.4, 143.8, 134.5, 129.2, 128.0, 60.4, 48.3, 39.9, 25.7, 21.6,
14.0; HRMS (ESI)m/z [M +H]+ calcd for C15H21O3

+ 249.1485, found
249.1486; HRMS (ESI) m/z [M + Na]+ calcd for C15H20NaO3

+

271.1305, found 271.1303.
Ethyl 4-(4-Fluorophenyl)-2,2-dimethyl-4-oxobutanoate (3c): yel-

low oil; Rf = 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol
scale, 104.8 mg, 69% yield) ATR-FTIR (cm−1) 2976, 1724, 1686, 1597,
1228, 1189, 1154, 827; 1H NMR (400 MHz, CDCl3) δ 7.99−7.94 (m,
2H), 7.14−7.09 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.26 (s, 2H), 1.31 (s,
6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
196.0, 177.3, 165.7 (d, 1JC−F = 253.0 Hz), 133.4 (d, 4JC−F = 2.9 Hz),
130.5 (d, 3JC−F = 9.3 Hz), 115.6 (d, 2JC−F = 21.7 Hz), 60.5, 48.3, 40.0,
25.7, 14.1; 19F NMR (376 MHz, CDCl3) δ −105.26 to −105.33 (m,
1F); HRMS (ESI) m/z [M + Na]+ calcd for C14H17FNaO3

+ 275.1054,
found 275.1055.

Ethyl 4-(4-Chlorophenyl)-2,2-dimethyl-4-oxobutanoate (3d):15

yellow oil; Rf = 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 115.2mg, 71% yield) ATR-FTIR (cm−1) 2976, 1725, 1686,
1588, 1474, 1189, 1090, 1006, 815; 1H NMR (400 MHz, CDCl3) δ
7.89−7.85 (m, 2H), 7.43−7.40 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 3.24
(s, 2H), 1.31 (s, 6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 196.4, 177.2, 139.4, 135.2, 129.3, 128.8, 60.5, 48.3,
40.0, 25.7, 14.0.

Ethyl 4-(4-Bromophenyl)-2,2-dimethyl-4-oxobutanoate (3e):16

yellow solid; Rf = 0.35 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 134.8 mg, 72% yield); mp 44−46 °C; ATR-FTIR (cm−1)
2976, 1725, 1686, 1588, 1474, 1189, 1090, 1006, 815; 1H NMR (400
MHz, CDCl3) δ 7.81−7.78 (m, 2H), 7.60−7.57 (m, 2H), 4.12 (q, J =
7.2 Hz, 2H), 3.24 (s, 2H), 1.31 (s, 6H), 1.20 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 196.6, 177.2, 135.7, 131.8, 129.4,
128.2, 60.6, 48.3, 40.0, 25.7, 14.0.

Ethyl 2,2-Dimethyl-4-oxo-4-(4-(trifluoromethyl)phenyl)-
butanoate (3f): pale yellow oil; Rf = 0.35 (ethyl acetate/petroleum
ether = 1:15) (0.6 mmol scale, 89.0 mg, 49% yield) ATR-FTIR (cm−1)
2979, 1727, 1694, 1322, 1167, 1124, 1064, 1009, 827, 770, 603; 1H
NMR (400 MHz, CDCl3) δ 8.05−8.03 (m, 2H), 7.73−7.71 (m, 2H),
4.13 (q, J = 7.2 Hz, 2H), 3.29 (s, 2H), 1.33 (s, 6H), 1.20 (t, J = 7.2 Hz,
3H); 13C{1H} NMR (100 MHz, CDCl3) δ 196.7, 177.1, 139.6, 134.3
(q, 2JC−F= 32.6 Hz), 128.2, 125.6 (q, 3JC−F = 3.7 Hz), 123.5 (q, 1JC−F =
271.1 Hz), 60.6, 48.6, 40.1, 25.7, 14.0; 19F NMR (376 MHz, CDCl3) δ
−63.09 (s, 3F); HRMS (ESI)m/z [M +Na]+ calcd for C15H17F3NaO3

+

325.1022, found 325.1024.
Ethyl 2,2-Dimethyl-4-oxo-4-(o-tolyl)butanoate (3g): yellow oil; Rf

= 0.40 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 53.0
mg, 36% yield) ATR-FTIR (cm−1) 2975, 1726, 1686, 1185, 1119, 755;
1H NMR (400 MHz, CDCl3) δ 7.61−7.59 (m, 1H), 7.37−7.33 (m,
1H), 7.24−7.22 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.20 (s, 2H), 2.46 (s,
3H), 1.30 (s, 6H), 1.22 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 202.0, 177.3, 138.1, 137.8, 131.8, 131.1, 128.1, 125.5, 60.5,
51.4, 40.2, 25.7, 21.1, 14.1; HRMS (ESI) m/z [M + H]+ calcd for
C15H21O3

+ 249.1485, found 249.1486; HRMS (ESI) m/z [M + Na]+

calcd for C15H20NaO3
+ 271.1305, found 271.1301.

Ethyl 2,2-Dimethyl-4-oxo-4-(m-tolyl)butanoate (3h): yellow oil; Rf
= 0.40 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 104.6
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mg, 70% yield) ATR-FTIR (cm−1) 2975, 1726, 1684, 1171, 1124, 1026,
775, 690; 1H NMR (400 MHz, CDCl3) δ 7.75−7.72 (m, 2H), 7.38−
7.31 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.28 (s, 2H), 2.40 (s, 3H), 1.31
(s, 6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
197.8, 177.4, 138.3, 137.0, 133.8, 128.4, 128.3, 125.1, 60.4, 48.5, 40.0,
25.7, 21.3, 14.1; HRMS (ESI) m/z [M + H]+ calcd for C15H21O3

+

249.1485, found 249.1484; HRMS (ESI) m/z [M + Na]+ calcd for
C15H20NaO3

+ 271.1305, found 271.1300.
Ethyl 4-(3-Chlorophenyl)-2,2-dimethyl-4-oxobutanoate (3i): pale

yellow oil; Rf = 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol
scale, 101.4 mg, 63% yield) ATR-FTIR (cm−1) 2976, 1725, 1690, 1571,
1350, 1301, 1187, 1125, 1027, 783, 717, 680; 1H NMR (400 MHz,
CDCl3) δ 7.90−7.89 (m, 1H), 7.82−7.79 (m, 1H), 7.53−7.51 (m, 1H),
7.41−7.37 (m, 1H), 4.12 (q, J = 7.2 Hz, 2H), 3.25 (s, 2H), 1.31 (s, 6H),
1.20 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 196.4,
177.1, 138.4, 134.8, 132.9, 129.9, 128.0, 126.0, 60.6, 48.5, 40.0, 25.7,
14.1; HRMS (ESI) m/z [M + H]+ calcd for C14H18ClO3

+ 269.0939,
found 269.0940; HRMS (ESI) m/z [M + Na]+ calcd for
C14H17ClNaO3

+ 291.0758, found 291.0753.
Ethyl 2,2-Dimethyl-4-(naphthalen-1-yl)-4-oxobutanoate (3j): yel-

low oil; Rf = 0.35 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol
scale, 74.1 mg, 43% yield) ATR-FTIR (cm−1) 2975, 1724, 1680, 1176,
1089, 1026, 801, 773; 1H NMR (400 MHz, CDCl3) δ 8.55−8.53 (m,
1H), 7.98−7.96 (m, 1H), 7.88−7.83 (m, 2H), 7.59−7.52 (m, 2H),
7.51−7.47 (m, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.37 (s, 2H), 1.37 (s, 6H),
1.23 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 202.3,
177.3, 136.1, 133.8, 132.4, 129.9, 128.3, 127.8, 127.1, 126.4, 125.6,
124.3, 60.6, 51.9, 40.4, 25.7, 14.1; HRMS (ESI)m/z [M +H]+ calcd for
C18H21O3

+ 285.1485, found 285.1480; HRMS (ESI) m/z [M + Na]+

calcd for C18H20NaO3
+ 307.1305, found 307.1300.

Ethyl 4-(Furan-2-yl)-2,2-dimethyl-4-oxobutanoate (3k): yellow
oil; Rf = 0.35 (ethyl acetate/petroleum ether = 1:7) (0.6 mmol scale,
70.0 mg, 52% yield) ATR-FTIR (cm−1) 2977, 1723, 1675, 1568, 1468,
1301, 1151, 1126, 1027, 763, 595; 1H NMR (400 MHz, CDCl3) δ
7.55−7.54 (m, 1H), 7.15−7.14 (m, 1H), 6.51−6.50 (m, 1H), 4.11 (q, J
= 7.2 Hz, 2H), 3.12 (s, 2H), 1.29 (s, 6H), 1.19 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 187.0, 177.0, 152.7, 146.1, 116.7,
112.2, 60.5, 47.7, 40.1, 25.6, 14.0; HRMS (ESI)m/z [M +H]+ calcd for
C12H17O4

+ 225.1121, found 225.1122; HRMS (ESI) m/z [M + Na]+

calcd for C12H16NaO4
+ 247.0941, found 247.0936.

Ethyl 4-(Benzo[b]thiophen-2-yl)-2,2-dimethyl-4-oxobutanoate
(3l): yellow solid; Rf = 0.30 (ethyl acetate/petroleum ether = 1:15)
(0.6 mmol scale, 136.2 mg, 78% yield); mp 65−66 °C; ATR-FTIR
(cm−1) 2979, 1717, 1656, 1514, 1195, 1119, 739, 723, 581; 1H NMR
(400 MHz, CDCl3) δ 7.95 (s, 1H), 7.90−7.85 (m, 2H), 7.48−7.38 (m,
2H), 4.14 (q, J = 7.2 Hz, 2H), 3.32 (s, 2H), 1.35 (s, 6H), 1.22 (t, J = 7.2
Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 192.3, 177.0, 143.8,
142.4, 139.0, 128.9, 127.4, 125.9, 125.0, 123.0, 60.7, 48.6, 40.4, 25.7,
14.1; HRMS (ESI) m/z [M + H]+ calcd for C16H19O3S

+ 291.1049,
found 291.1044; HRMS (ESI)m/z [M+Na]+ calcd for C16H18NaO3S

+

313.0869, found 313.0864.
Ethyl 2,2-Dimethyl-4-(4-nitrophenyl)-4-oxobutanoate (3m): pale

yellow solid; Rf = 0.25 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 75.0 mg, 45% yield); mp 65−67 °C; ATR-FTIR (cm−1)
2979, 1721, 1687, 1600, 1518, 1344, 1193, 854, 743, 685; 1H NMR
(400MHz, CDCl3) δ 8.31−8.28 (m, 2H), 8.10−8.07 (m, 2H), 4.13 (q,
J = 7.2 Hz, 2H), 3.30 (s, 2H), 1.34 (s, 6H), 1.21 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 196.2, 176.9, 150.2, 141.3, 128.9,
123.8, 60.7, 48.8, 40.2, 25.7, 14.1; HRMS (ESI)m/z [M +H]+ calcd for
C14H18NO5

+ 280.1179, found 280.1183; HRMS (ESI)m/z [M + Na]+

calcd for C14H17NNaO5
+ 302.0999, found 302.1000.

Ethyl 4-(4-Methoxyphenyl)-2,2-dimethyl-4-oxobutanoate (3n):
yellow oil; Rf = 0.20 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 101.7mg, 64% yield) ATR-FTIR (cm−1) 2979, 1720, 1686,
1600, 1517, 1344, 1193, 1123, 853, 743; 1HNMR (400MHz, CDCl3) δ
7.93−7.90 (m, 2H), 6.93−6.90 (m, 2H), 4.12 (q, J = 7.2 Hz, 2H), 3.86
(s, 3H), 3.24 (s, 2H), 1.30 (s, 6H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 196.1, 177.5, 163.4, 130.2, 130.1, 113.6,
60.4, 55.4, 48.1, 40.0, 25.7, 14.1; HRMS (ESI) m/z [M + H]+ calcd for

C15H21O4
+ 265.1434, found 265.1427; HRMS (ESI) m/z [M + Na]+

calcd for C15H20NaO4
+ 287.1254, found 287.1245.

Ethyl 2-Methyl-2-(1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)-
propanoate (3o): pale yellow oil; Rf = 0.25 (ethyl acetate/petroleum
ether = 1:15) (0.6 mmol scale, 82.0 mg, 52% yield) ATR-FTIR (cm−1)
2978, 1726, 1681, 1599, 1456, 1125, 1028, 745; 1H NMR (400 MHz,
CDCl3) δ 8.01−7.99 (m, 1H), 7.48−7.45 (m, 1H), 7.31−7.24 (m, 2H),
4.23−4.17 (m, 2H), 3.17−3.03 (m, 3H), 2.27−2.22 (m, 1H), 1.97−
1.86 (m, 1H), 1.28−1.24 (m, 6H), 1.18 (s, 3H); 13C{1H} NMR (100
MHz, CDCl3) δ 197.8, 178.2, 143.7, 133.2, 132.8, 128.5, 127.4, 126.6,
60.4, 55.1, 42.6, 29.8, 25.4, 24.1, 18.9, 14.1; HRMS (ESI)m/z [M+H]+

calcd for C16H21O3
+ 261.1485, found 261.1481; HRMS (ESI) m/z [M

+ Na]+ calcd for C16H20NaO3
+ 283.1305, found 283.1299.

Ethyl 2,2,6-Trimethyl-4-oxohept-5-enoate (3p): pale yellow oil; Rf
= 0.35 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 58.4
mg, 46% yield) ATR-FTIR (cm−1) 2975, 1727, 1688, 1621, 1445, 1299,
1189, 1154, 1125, 770; 1H NMR (400 MHz, CDCl3) δ 5.99 (t, J = 1.0
Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 2.71 (s, 2H), 2.10 (d, J = 1.0 Hz, 3H),
1.85 (d, J = 1.0 Hz, 3H), 1.21 (s, 6H), 1.21 (t, J = 7.2 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 198.2, 177.4, 155.2, 123.7, 60.3, 53.7, 40.0,
27.6, 25.5, 20.7, 14.1; HRMS (ESI)m/z [M +H]+ calcd for C12H21O3

+

213.1485, found 213.1481; HRMS (ESI) m/z [M + Na]+ calcd for
C12H20NaO3

+ 235.1305, found 235.1298.
Ethyl (E)-2,2-Dimethyl-4-oxo-6-phenylhex-5-enoate (3q): pale

yellow oil; Rf = 0.25 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 100.4mg, 64% yield) ATR-FTIR (cm−1) 2975, 1724, 1692,
1660, 1611, 1354, 1300, 1181, 1124, 1073, 1027, 977, 747, 689; 1H
NMR (400 MHz, CDCl3) δ 7.54−7.50 (m, 3H), 7.39−7.38 (m, 3H),
6.70 (d, J = 16.0 Hz, 1H), 4.14 (q, J = 7.2 Hz, 2H), 2.98 (s, 2H), 1.28 (s,
6H), 1.23 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ
197.7, 177.2, 142.4, 134.4, 130.4, 128.9, 128.2, 126.2, 60.5, 50.5, 40.1,
25.6, 14.1; HRMS (ESI) m/z [M + H]+ calcd for C16H21O3

+ 261.1485,
found 261.1480; HRMS (ESI) m/z [M + Na]+ calcd for C16H20NaO3

+

283.1305, found 283.1300.
Ethyl 2,2-Dimethyl-4-oxo-6-phenylhex-5-ynoate (3r): yellow oil;

Rf = 0.40 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 82.0
mg, 53% yield) ATR-FTIR (cm−1) 2977, 2199, 1726, 1670, 1300, 1192,
1154, 1128, 1073, 1026, 758, 688; 1H NMR (400 MHz, CDCl3) δ
7.57−7.55 (m, 2H), 7.47−7.43 (m, 1H), 7.39−7.36 (m, 2H), 4.14 (q, J
= 7.2 Hz, 2H), 3.00 (s, 2H), 1.29 (s, 6H), 1.23 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 185.1, 176.6, 133.0, 130.7, 128.6,
119.8, 90.4, 87.9, 60.7, 54.7, 40.3, 25.5, 14.0; HRMS (ESI) m/z [M +
H]+ calcd for C16H19O3

+ 259.1329, found 259.1326; HRMS (ESI)m/z
[M + Na]+ calcd for C16H18NaO3

+ 281.1148, found 281.1144.
Ethyl 1-(2-Oxo-2-phenylethyl)cyclobutane-1-carboxylate (4a):

yellow oil; Rf = 0.35 (ethyl acetate/petroleum ether = 1:15) (0.6
mmol scale, 99.2 mg, 67% yield) ATR-FTIR (cm−1) 2979, 2939, 1720,
1683, 1448, 1352, 1319, 1176, 1094, 750, 689, 569; 1H NMR (400
MHz, CDCl3) δ 7.98−7.95 (m, 2H), 7.58−7.54 (m, 1H), 7.48−7.44
(m, 2H), 4.14 (q, J = 7.2 Hz, 2H), 3.58 (s, 2H), 2.67−2.60 (m, 2H),
2.08−1.94 (m, 4H), 1.20 (t, J = 7.2 Hz, 3H); 13C{1H}NMR (100MHz,
CDCl3) δ 197.8, 176.1, 136.7, 133.1, 128.5, 127.9, 60.5, 46.2, 44.4, 30.1,
16.2, 14.1; HRMS (ESI) m/z [M + H]+ calcd for C15H19O3

+ 247.1329,
found 247.1326; HRMS (ESI) m/z [M + Na]+ calcd for C15H18NaO3

+

269.1148, found 269.1141.
Methyl 2-Methyl-4-oxo-4-phenylbutanoate (4b):5a yellow oil; Rf =

0.35 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 85.2 mg,
69% yield) ATR-FTIR (cm−1) 2975, 2951, 1731, 1683, 1449, 1274,
1212, 1167, 1002, 754, 689; 1H NMR (400 MHz, CDCl3) δ 7.97−7.95
(m, 2H), 7.58−7.54 (m, 1H), 7.47−7.43 (m, 2H), 3.69 (s, 2H), 3.48
(dd, J = 7.8 Hz, 17.6 Hz, 1H), 3.17−3.08 (m, 1H), 3.02 (dd, J = 5.4 Hz,
17.6 Hz, 1H), 1.27 (d, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 198.0, 176.5, 136.5, 133.2, 128.5, 128.0, 51.9, 41.9, 34.8, 17.3.

Benzyl 2-Methyl-4-oxo-4-phenylbutanoate (4c): yellow oil; Rf =
0.40 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 118.4 mg,
70% yield) ATR-FTIR (cm−1) 2973, 1730, 1683, 1450, 1122, 1160,
1002, 751, 690; 1H NMR (400 MHz, CDCl3) δ 7.98−7.95 (m, 2H),
7.59−7.55 (m, 1H), 7.48−7.44 (m, 2H), 7.38−7.30 (m, 5H), 5.15 (dd,
J = 12.4Hz, 19.6Hz, 2H), 3.51 (dd, J = 8.0Hz, 17.7Hz, 1H), 3.25−3.16
(m, 1H), 3.05 (dd, J = 5.4 Hz, 17.7 Hz, 1H), 1.30 (d, J = 7.0 Hz, 3H);
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13C{1H} NMR (100 MHz, CDCl3) δ 198.0, 175.8, 136.5, 136.0, 133.2,
128.6, 128.5, 128.1, 128.0, 127.9, 66.4, 41.8, 34.9, 17.3; HRMS (ESI)
m/z [M + H]+ calcd for C18H19O3

+ 283.1329, found 283.1327; HRMS
(ESI) m/z [M + Na]+ calcd for C18H18NaO3

+ 305.1148, found
305.1142.
Ethyl 2-Methyl-4-oxo-4-phenylbutanoate (4d):.5a,11e yellow oil; Rf

= 0.30 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 91.2
mg, 69% yield) ATR-FTIR (cm−1) 2978, 1728, 1684, 1449, 1212, 1172,
754, 690; 1H NMR (400 MHz, CDCl3) δ 7.98−7.95 (m, 2H), 7.58−
7.54 (m, 1H), 7.48−7.44 (m, 2H), 4.14 (q, J = 7.2Hz, 2H), 3.48 (dd, J =
7.8Hz, 17.5 Hz, 1H), 3.15−3.06 (m, 1H), 3.01 (dd, J = 5.4Hz, 17.5 Hz,
1H), 1.26 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H); 13C{1H} NMR
(100 MHz, CDCl3) δ 198.1, 176.0, 136.6, 133.1, 128.5, 128.0, 60.6,
41.9, 35.0, 17.3, 14.1.
Ethyl 2-Ethyl-4-oxo-4-phenylbutanoate (4e): yellow oil; Rf = 0.30

(ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 104.0 mg, 74%
yield) ATR-FTIR (cm−1) 2967, 1726, 1684, 1448, 1210, 1163, 1028,
755, 689; 1H NMR (400 MHz, CDCl3) δ 7.98−7.95 (m, 2H), 7.58−
7.54 (m, 1H), 7.47−7.43 (m, 2H), 4.21−4.09 (m, 2H), 3.49−3.42 (m,
1H), 3.06−2.94 (m, 2H), 1.76−1.62 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H),
0.97 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 198.3,
175.3, 136.6, 133.1, 128.5, 128.0, 60.4, 41.7, 39.9, 25.2, 14.2, 11.5;
HRMS (ESI) m/z [M + H]+ calcd for C14H19O3

+ 235.1329, found
235.1330; HRMS (ESI) m/z [M + Na]+ calcd for C14H18NaO3

+

257.1148, found 257.1143.
Ethyl 2-(2-Oxo-2-phenylethyl)pentanoate (4f): yellow oil; Rf = 0.30

(ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale, 106.5 mg, 72%
yield) ATR-FTIR (cm−1) 2959, 2933, 1728, 1686, 1448, 1213, 1170,
754, 690; 1H NMR (400 MHz, CDCl3) δ 7.98−7.95 (m, 2H), 7.57−
7.53 (m, 1H), 7.47−7.43 (m, 2H), 4.20−4.09 (m, 2H), 3.49−3.42 (m,
1H), 3.07−3.00 (m, 2H), 1.73−1.64 (m, 1H), 1.60−1.51 (m, 1H),
1.43−1.33 (m, 2H), 1.25 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H);
13C{1H} NMR (100 MHz, CDCl3) δ 198.3, 175.7, 136.6, 133.1, 128.5,
128.0, 60.4, 40.4, 40.1, 34.3, 20.3, 14.2, 13.9; HRMS (ESI) m/z [M +
H]+ calcd for C15H21O3

+ 249.1485, found 249.1481; HRMS (ESI)m/z
[M + Na]+ calcd for C15H20NaO3

+ 271.1305, found 271.1292.
Ethyl 2-Isopropyl-4-oxo-4-phenylbutanoate (4g):17 pale yellow

oil; Rf = 0.40 (ethyl acetate/petroleum ether = 1:15) (0.6 mmol scale,
44.6 mg, 30% yield) ATR-FTIR (cm−1) 2963, 1724, 1685, 1173, 756,
690, 560; 1H NMR (400 MHz, CDCl3) δ 7.99−7.96 (m, 2H), 7.58−
7.54 (m, 1H), 7.48−7.44 (m, 2H), 4.21−4.09 (m, 2H), 3.54−3.46 (m,
1H), 3.01−2.91 (m, 2H), 2.11−2.02 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H),
0.99 (d, J = 7.0 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 198.8,
174.8, 136.8, 133.1, 128.5, 128.0, 60.4, 46.5, 37.3, 30.1, 20.2, 19.9, 14.2.
Ethyl 2-(1-Oxo-1,2,3,4-tetrahydronaphthalen-2-yl)propanoate

(4h): pale yellow oil; Rf = 0.35 (ethyl acetate/petroleum ether =
1:15) (0.6 mmol scale, 104.2 mg, 71% yield; dr = 1.2:0.8) ATR-FTIR
(cm−1) 2979, 2938, 1727, 1680, 1599, 1455, 1184, 741; 1H NMR (400
MHz, CDCl3) δ 8.02−8.00 (m, 1H), 7.48−7.43 (m, 1H), 7.31−7.27
(m, 1H), 7.24−7.22 (m, 1H), 4.18 (qd, J = 7.2 Hz, 1.0 Hz, 1.2H), 4.11
(q, J = 7.2 Hz, 0.8H), 3.21−2.96 (m, 3.6H), 2.90−2.85 (m, 0.4H),
2.20−2.05 (m, 1.4H), 1.98−1.87 (m, 0.6H), 1.30−1.24 (m, 3H), 1.20−
1.15 (m, 3H); 13C{1H}NMR (100MHz, CDCl3) δ 198.1, 197.9, 176.1,
174.6, 143.9, 143.7, 133.3, 133.2, 132.5, 132.3, 128.6, 128.5, 127.4,
126.6, 126.5, 60.5, 60.4, 50.5, 50.2, 39.2, 38.7, 29.3, 29.0, 25.8, 25.2,
14.2, 14.1, 13.3, 13.1; HRMS (ESI)m/z [M +H]+ calcd for C15H19O3

+

247.1329, found 247.1329; HRMS (ESI) m/z [M + Na]+ calcd for
C15H18NaO3

+ 269.1148, found 269.1142.
4,4-Dimethyl-6-phenyl-4,5-dihydropyridazin-3(2H)-one (5a):12

white solid; Rf = 0.30 (ethyl acetate/petroleum ether = 1:5) (1.0
mmol scale, 136.0 mg, 67% yield); mp 144−146 °C; ATR-FTIR
(cm−1) 3213, 3093, 2919, 1657, 1612, 1341, 1241, 763, 694, 578; 1H
NMR (400MHz, CDCl3) δ 8.60 (br, s, 1H), 7.73−7.70 (m, 2H), 7.44−
7.40 (m, 3H), 2.81 (s, 2H), 1.25 (s, 6H); 13C{1H} NMR (100 MHz,
CDCl3) δ 173.3, 150.8, 136.0, 129.8, 128.6, 125.8, 37.1, 34.0, 23.9.
4,4-Dimethyl-6-(p-tolyl)-4,5-dihydropyridazin-3(2H)-one (5b):

white solid; Rf = 0.30 (ethyl acetate/petroleum ether = 1:5) (1.0
mmol scale, 138.0 mg, 64% yield); mp 142−146 °C; ATR-FTIR
(cm−1) 3208, 3093, 2922, 1658, 1613, 1332, 1238, 809, 657, 562; 1H
NMR (400MHz, CDCl3) δ 8.52 (br, s, 1H), 7.62−7.60 (m, 2H), 7.24−

7.21 (m, 2H), 2.78 (s, 2H), 2.39 (s, 3H), 1.24 (s, 6H); 13C{1H} NMR
(100 MHz, CDCl3) δ 173.4, 150.9, 140.0, 133.2, 129.3, 125.7, 37.1,
34.0, 23.9, 21.3; HRMS (ESI) m/z [M + H]+ calcd for C13H17N2O

+

217.1335, found 217.1332.
6-(4-Fluorophenyl)-4,4-dimethyl-4,5-dihydropyridazin-3(2H)-

one (5c): white solid; Rf = 0.30 (ethyl acetate/petroleum ether = 1:5)
(1.0 mmol scale, 128.0 mg, 58% yield); mp 145−147 °C; ATR-FTIR
(cm−1) 3223, 3096, 2968, 2920, 1655, 1611, 1507, 1336, 840, 776, 564;
1H NMR (400 MHz, CDCl3) δ 8.66 (br, s, 1H), 7.73−7.68 (m, 2H),
7.13−7.07 (m, 2H), 2.77 (s, 2H), 1.24 (s, 6H); 13C{1H} NMR (100
MHz, CDCl3) δ 173.2, 163.6 (d, 1JC−F = 248.7 Hz), 149.7, 132.2 (d,
4JC−F = 3.4 Hz), 127.7 (d, 3JC−F = 8.6 Hz), 115.7 (d, 2JC−F = 21.8 Hz),
37.1, 34.0, 23.9; 19F NMR (376 MHz, CDCl3) δ −110.87 to −110.94
(m, 1F); HRMS (ESI) m/z [M + H]+ calcd for C12H14FN2O

+

221.1085, found 221.1083.
6-(4-Chlorophenyl)-4,4-dimethyl-4,5-dihydropyridazin-3(2H)-

one (5d): white solid; Rf = 0.35 (ethyl acetate/petroleum ether = 1:5)
(1.0 mmol scale, 157.0 mg, 66% yield); mp 146−148 °C; ATR-FTIR
(cm−1) 3205, 3087, 2966, 2928, 1667, 1610, 1330, 1237, 1092, 828,
805, 753, 623, 584, 552; 1H NMR (400 MHz, CDCl3) δ 8.66 (br, s,
1H), 7.67−7.64 (m, 2H), 7.40−7.37 (m, 2H), 2.77 (s, 2H), 1.24 (s,
6H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.2, 149.6, 135.8, 134.4,
128.8, 127.0, 36.9, 34.0, 23.9; HRMS (ESI) m/z [M + H]+ calcd for
C12H14ClN2O

+ 237.0789, found 237.0786.
6-(4-Methoxyphenyl)-4,4-dimethyl-4,5-dihydropyridazin-3(2H)-

one (5e): white solid; Rf = 0.20 (ethyl acetate/petroleum ether = 1:5)
(1.0 mmol scale, 130.0 mg, 56% yield); mp 161−164 °C; ATR-FTIR
(cm−1) 3203, 3092, 2930, 1672, 1614, 1600, 1510, 1460, 1333, 1251,
1170, 819, 797, 559, 543; 1H NMR (400 MHz, CDCl3) δ 8.65 (br, s,
1H), 7.69−7.65 (m, 2H), 6.95−6.91 (m, 2H), 3.84 (s, 3H), 2.76 (s,
2H), 1.23 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.4, 160.9,
150.6, 128.6, 127.3, 113.9, 55.4, 37.0, 34.0, 23.9; HRMS (ESI)m/z [M
+ H]+ calcd for C13H17N2O2

+ 233.1285, found 233.1278.
8-Phenyl-6,7-diazaspiro[3.5]non-7-en-5-one (5f): white solid; Rf =

0.35 (ethyl acetate/petroleum ether = 1:5) (1.0 mmol scale, 118.2 mg,
55% yield); mp 155−157 °C; ATR-FTIR (cm−1) 3222, 3094, 2950,
2923, 1660, 1336, 1241, 753, 682; 1H NMR (400 MHz, CDCl3) δ 8.62
(br, s, 1H), 7.75−7.71 (m, 2H), 7.46−7.40 (m, 3H), 3.09 (s, 2H),
2.62−2.55 (m, 2H), 2.10−2.00 (m, 2H), 1.91−1.84 (m, 2H); 13C{1H}
NMR (100 MHz, CDCl3) δ 172.1, 150.7, 136.1, 129.8, 128.6, 125.7,
38.8, 34.4, 28.7, 15.2; HRMS (ESI) m/z [M + H]+ calcd for
C13H15N2O

+ 215.1179, found 215.1173.
tert-Butyl((1-(4-((tert-butyldimethylsilyl)oxy)phenyl)vinyl)oxy)-

dimethylsilane (6a): pale yellow oil; Rf = 0.50 (NEt3/petroleum ether
= 1:50) (10 mmol scale, 3.06 g, 84% yield) ATR-FTIR (cm−1) 2955,
2930, 2857, 1604, 1506, 1253, 1004, 912, 830, 777, 682; 1H NMR (400
MHz, CDCl3) δ 7.50−7.46 (m, 2H), 6.80−6.77 (m, 2H), 4.77 (d, J =
1.6 Hz, 1H), 4.31 (d, J = 1.6Hz, 1H), 1.00 (s, 9H), 0.98 (s, 9H), 0.20 (s,
6H), 0.19 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 155.8, 155.7,
130.9, 126.5, 119.5, 89.2, 25.8, 25.6, 18.3, 18.2, −4.4, −4.7; HRMS
(ESI)m/z [M+H]+ calcd for C20H37O2Si2

+ 365.2327, found 365.2316.
Ethyl (R)-2,2-Dimethyl-4-(4-(3-(2-methylpyrrolidin-1-yl)propoxy)-

phenyl)-4-oxobutanoate (6d):3a pale yellow oil; Rf = 0.45 (MeOH/
DCM = 1:10) (2.0 mmol scale, 287.0 mg, 38% yield) ATR-FTIR
(cm−1) 2963, 1723, 1675, 1598, 1234, 1170, 1125, 827, 732; 1H NMR
(400MHz, CDCl3) δ 7.90−7.86 (m, 2H), 6.91−6.87 (m, 2H), 4.10 (q,
J = 7.2 Hz, 2H), 4.09−4.05 (m, 2H), 3.30−3.24 (m, 1H), 3.22 (s, 2H),
3.08−3.01 (m, 1H), 2.53−2.44 (m, 1H), 2.36−2.30 (m, 1H), 2.28−
2.21 (m, 1H), 2.13−2.02 (m, 2H), 2.01−1.92 (m, 1H), 1.90−1.69 (m,
2H), 1.55−1.45 (m, 1H), 1.28 (s, 6H), 1.18 (t, J = 7.2 Hz, 3H), 1.15 (d,
J = 6.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 196.1, 177.4,
162.7, 130.1, 130.0, 114.0, 66.3, 60.9, 60.4, 53.8, 50.6, 48.0, 39.9, 32.4,
27.8, 25.7, 21.4, 18.3, 14.0.

(R)-4,4-Dimethyl-6-(4-(3-(2-methylpyrrolidin-1-yl)propoxy)-
phenyl)-4,5-dihydropyridazin-3(2H)-one (6e):3awhite solid; Rf = 0.40
(MeOH/DCM = 1:10) (0.7 mmol scale, 194.7 mg, 81% yield); mp
117−121 °C; ATR-FTIR (cm−1) 3202, 3094, 2959, 2919, 1664, 1606,
1510, 1331, 1247, 1175, 830, 573, 550; 1H NMR (400 MHz, CDCl3) δ
8.59 (br, s, 1H), 7.66−7.64 (m, 2H), 6.93−6.91 (m, 2H), 4.09−4.04
(m, 2H), 3.25−3.20 (m, 1H), 3.05−2.98 (m, 1H), 2.75 (s, 2H), 2.40−
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2.35 (m, 1H), 2.28−2.13 (m, 2H), 2.07−2.00 (m, 2H), 1.99−1.90 (m,
1H), 1.85−1.69 (m, 2H), 1.51−1.42 (m, 1H), 1.23 (s, 6H), 1.13 (d, J =
6.1 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 173.3, 160.3, 150.6,
128.4, 127.2, 114.5, 66.5, 60.4, 53.9, 50.7, 37.0, 34.0, 32.6, 28.3, 23.9,
21.6, 18.8; HRMS (ESI) m/z [M + H]+ calcd for C20H30N3O2

+

344.2333, found 344.2318.
Ethyl 2,2-Dimethyl-4,4-diphenylbut-3-enoate (7a):10a pale yellow

oil; Rf = 0.30 (ethyl acetate/petroleum ether = 1:50) (0.6 mmol scale,
85.2 mg, 48% yield) ATR-FTIR (cm−1) 2971, 1728, 1239, 1133, 1029,
760, 698; 1H NMR (400 MHz, CDCl3) δ 7.36−7.29 (m, 3H), 7.28−
7.19 (m, 5H), 7.15−7.13 (m, 2H), 6.10 (s, 1H), 3.71 (q, J = 7.2 Hz,
2H), 1.31 (s, 6H), 1.13 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz,
CDCl3) δ 176.3, 143.2, 141.4, 139.2, 134.1, 130.0, 128.0, 127.8, 127.2,
127.1, 127.0, 60.4, 43.9, 27.8, 13.9.
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