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Site-Selective Alkoxylation of Benzylic C–H Bonds via 
Photoredox Catalysis 
Byung Joo Lee, Kimberly S. DeGlopper, and Tehshik P. Yoon* 
Abstract: Methods that enable the direct C–H alkoxylation of complex 
organic molecules are significantly underdeveloped, particularly in 
comparison to analogous strategies for C–N and C–C bond formation. 
In particular, almost all methods for the incorporation of alcohols via 
C–H oxidation require the use of the alcohol component as solvent. 
This limits the practical scope of these reactions to simple, 
inexpensive alcohols. We report a photocatalytic protocol for the 
functionalization of benzylic C–H bonds with a wide range of oxygen 
nucleophiles. Our strategy merges the photoredox activation of 
arenes with copper(II)-mediated oxidation of the resulting benzylic 
radicals, which enables the introduction of benzylic C–O bonds with 
high site selectivity, chemoselectivity, and functional group tolerance 
using only two equivalents of the alcohol coupling partners. This 
method enables the late-stage introduction of complex alkoxy groups 
into bioactive molecules, providing a practical new tool with potential 
applications in synthesis and medicinal chemistry. 

The development of methods for the site-selective 
functionalization of sp3-hybridized C–H bonds has profoundly 
influenced the way that organic chemists approach complex 
molecule synthesis.1 Late-stage functionalization strategies that 
enable one-step incorporation of new functional groups are 
particularly important because they can provide an efficient 
strategy to rapidly assess structural analogues of pharmaceutical 
candidates for new chemical and biological properties.2 Much of 
the recent activity in this field has centered on cross-coupling 
reactions that enable the site-selective incorporation of complex 
carbon- and nitrogen-centered fragments at aliphatic positions.3   

Dialkyl ether linkages are ubiquitous in pharmaceuticals, 
natural products, and other bioactive compounds. 4  There are 
numerous established methods for the oxidative functionalization 
of aliphatic C–H bonds in complex organic molecules using 
structurally simple alcohols, including electrochemical 
oxidations,5 chemical oxidations,6 and transition metal catalyzed 
C–H alkoxylation protocols.7 With a few notable exceptions,7ef 
however, none of these strategies are appropriate for couplings 
involving structurally complex alcohols. This is because in these 
methods, solvent quantities of the alcohol coupling partner are 
typically required for optimal reactivity, which limits the practical 
scope of these alkoxylation reactions to inexpensive simple 
alcohols that are produced on commodity chemical scales.8 A 
more synthetically useful method for C–H alkoxylation that would 
enable couplings with structurally much more complex alcohols, 
therefore, requires a new approach that operates at a more 
reasonable stoichiometry.  

Recently, our laboratory has become interested in the 
design of photocatalytic oxidative functionalization reactions. We 
were inspired by the facility with which photoredox catalysis 
generates organoradical intermediates from readily available 
feedstocks.9 We proposed that Cu(II) salts could be ideal terminal 
oxidants for net-oxidative transformations whose use has been 
underexplored in photoredox reactions.10,11 Seminal studies by 
Kochi demonstrated that a variety of organic radicals undergo 
oxidation by Cu(II) at diffusion-controlled rates.12 Moreover, the 
use of Cu(II) oxidants avoids the intermediacy of reactive oxygen 
intermediates (e.g., oxygen-centered radicals, superoxide, singlet 
oxygen) that can be incompatible with organoradical 
intermediates or with highly functionalized complex organic 
molecules. 

  

Scheme 1. Design Strategy for Photocatalytic Etherification of Benzylic C–H 
Bonds. 

We imagined a strategy exploiting a photoredox catalyst in 
combination with a Cu(II) oxidant would enable the direct 
incorporation of a wide range of simple nucleophilic alcohols into 
Csp3–H bonds. A brief outline of our design strategy is 
summarized in Scheme 1. Photoinduced one-electron oxidation 
of an electron-rich arene (A) would afford a radical cation (B) 
whose benzylic C–H bonds are significantly acidified; 13  facile 
deprotonation would afford benzylic radical intermediate C.  
Radicalophilic Cu(II) could transform C into the corresponding 
carbocation (D), which could be trapped by a nucleophilic alcohol. 
An analogous oxidation–deprotonation–oxidation sequence was 
proposed in the electrochemical benzylic methoxylation of 
estrone.5a This method, however, requires the use of an alcohol 
solvent because proton reduction at the counterelectrode drives 
this net-oxidative process. More recently, Pandey14 and Hong15 
adopted an analogous oxidation-deprotonation-oxidation 
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sequence in photoredox protocols for benzylic ether formation 
using oxygen as a terminal oxidant. These photocatalytic 
methods, however, are limited to intramolecular bond formations 
and thus cannot be applied to intermolecular cross-coupling 
reactions. 

 
Table 1. Optimization Studies for Methoxylation of Benzylic C–H Bonds. 

 
Entry[a] Photocatalyst Terminal oxidant Yield[b] 

1 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 Cu(OAc)2•H2O 8% 

2 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 Cu(TFA)2•H2O 61% 

3 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 Cu(TFA)2•MeCN 73% 

4 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 Air, PhI(OAc)2, TEMPO, 
MnO2, FeCl3, t-BuOOH,  
or benzoquinone 

<10% 

5 [Ir(dF(CF3)ppy)2(bpy)]PF6 Cu(TFA)2•MeCN 23% 

6 Fukuzumi acridinium (5.0 mol%) Cu(TFA)2•MeCN 10% 

7 Triphenylpyrylium (2.5 mol%) Cu(TFA)2•MeCN 5% 

8 none Cu(TFA)2•MeCN 0% 

9 [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 none 0% 

10[c] [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 Cu(TFA)2•MeCN 0% 

[a] Unless otherwise noted, all reactions were conducted using 0.3 mmol of 1 in 
degassed MeCN and irradiated with a 427 nm Kessil lamp for 6 h. [b] Yields 
determined by 1H NMR analysis of the crude reaction mixtures using 
phenanthrene as an internal standard. [c] Reaction was conducted in the dark. 

 
We reasoned that a combination of photoredox catalyst and 

Cu(II) oxidant might provide a highly effective method for 
performing benzylic C–H alkoxylation reactions without the need 
for solvent-quantity alcohol donors. To test this hypothesis, we 
examined the reaction of 4-ethylanisole (1) with 2 equiv of 
methanol (Table 1). [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 was 
selected as a photocatlyst because its excited-state reduction 
potential (+1.68 V vs SCE) 16 should be sufficiently positive to 
oxidize 1 (+1.52 V). The use of Cu(OAc)2 as a terminal oxidant 
indeed produced the desired product 2, but in only 8% yield (entry 
1). Acetoxylation was the major oxidation pathway in this 
experiment. We hypothesized that less nucleophilic ligands on 
Cu(II) might decrease the formation of this undesired product. 
Indeed, Cu(TFA)2 provided a higher yield and no observable ester 
product (entry 2); however, benzylic alcohol was a significant 
byproduct, which we attributed to the presence of water in the 
hydrate form of the commercial salt. We thus prepared the 
anhydrous acetonitrile complex Cu(TFA)2(MeCN),17 the use of 
which prevented formation of the hydroxylated product and 
afforded the desired methanol adduct in 73% yield (entry 3). Cu(II) 
salts were unique in their ability to promote this alkoxylation: we 
screened a wide range of other common terminal oxidants, and 

none produced significant yields of 1 (entry 4), consistent with our 
guiding hypothesis. Alternate photocatalysts also afforded 
diminished reaction efficiency.  Both less-oxidizing Ir 
photocatalysts 18  (entry 5) and more-oxidizing organic 
photocatalysts 19  (entry 6 and 7) afforded diminished yields. 
Finally, control experiments validated the photocatalytic nature of 
this reaction and the necessity of Cu(II) co-oxidant; no product 
was observed in the absence of photocatalyst, Cu(II) terminal 
oxidant, or light (entries 8–10). 

The scope of this benzylic alkoxylation protocol is 
summarized in Table 2. The reaction is most efficient at 
secondary benzylic positions; primary C–H bonds undergo 
competitive overoxidation that diminishes the yield of 
monoalkoxylation products somewhat (3), and tertiary sites 
undergo functionalization at significantly slower rates (4). The 
latter can be addressed by diluting the reaction to increase photon 
flux and by increasing the amount of MeOH to 8 equiv. The 
presence of alkoxy substituents on the arene that could stabilize 
the putative quinone methide intermediate is strictly required, but 
a variety of such groups along with additional substituents are well 
tolerated (5–9, 17–21). The functional group compatibility of this 
method is high and includes acidic heteroatoms (10 and 14), basic 
heterocycles (20), base-sensitive moieties (11 and 12), and 
boronate ester or azide groups that provide handles for further 
synthetic manipulation (13 and 15). In general, this reaction 
displayed a remarkable degree of site selectivity consistent with 
the predicted stability of the quinone methide intermediate (17–
19). Thus functionalization of p-alkoxy-activated benzylic 
positions is highly selective even in the presence of weaker 
benzylic C–H bonds (20–22). Finally, the benzylic positions of a 
variety of electron-rich heterocycles that are also readily oxidized 
by the photocatalyst can also be functionalized using this protocol 
(23–25). 

The scope of the reaction with respect to the heteroatomic 
nucleophile was also explored.  Water, unfortunately, is not a 
suitable nucleophile, and overoxidation to the ketone was the 
major product of this reaction (26). Alcohols of increased steric 
bulk react more slowly, although the yields of these reactions can 
be increased using 8 equiv of alcohol (27–29). A variety of diverse 
functional groups were readily tolerated (30–40), including those 
containing easily oxidizable moieties (30–33, and 37) and 
potentially base-sensitive groups (36, 38, and 39). An 
unsymmetrical 1,3-diol reacted exclusively through the less-
sterically-bulky primary alcohol (40). Carboxylic acids were also 
readily incorporated, including both simple aliphatic and more 
functionalized acids (41–45). Nucleophiles that are more readily 
oxidized than the anisole unit (47) or that bear strongly 
coordinating heterocycles (48) were unfortunately not suitable 
reaction partners. Finally, although N-Boc carbamate reacted with 
reasonable efficiency (46), other nitrogen nucleophiles were 
generally not effective (49), suggesting that alternate conditions 
will be required for the general introduction of C–N bonds using 
this photocatalytic strategy. 

The combination of high site selectivity and significant 
functional group compatibility suggested to us that this method 
might be applicable to the diversification of highly complex 
bioactive organic compounds. Table 3 outlines the 
functionalization of a range of commercially available natural 
product scaffolds, all of which are selectively functionalized at the 
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unique activated benzylic C–H position. No diastereoselectivity is 
observed when the substrate lacks significant stereochemical 
bias (50), but six-membered rings with a strong preference for a 

single chair conformation undergo highly selective 
functionalization of the axial C–H bond (51 and 52).   

 

Table 2. Scope of C–H Oxygenation via Photoredox Catalysisa 

 

[a] Reaction condition: substrate (0.6 mmol, 1 equiv.), [Ir(dF(CF3)ppy)2(5,5’-dCF3bpy)]PF6 (1 mol%), K2HPO4 (3 equiv), Cu(TFA)2(MeCN) (1.2 equiv), methanol 
(2 equiv), MeCN (0.2 M) unless otherwise noted. Yields represent the averaged isolated yields from two experiments. [b] Yield determined by 1H NMR analysis 
of the crude reaction mixtures using phenanthrene as an internal standard. [c] Reaction conducted at 0.1 M using 8 equiv methanol. [d] Reaction conducted 
using 8 equiv alcohol.  
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The observation that synthetically useful yields can be 
obtained using only two equivalents of the alcohol nucleophile 
also suggests that this intermolecular C–H functionalization might 
operate as a method to couple two high-value reaction partners. 
Thus, the ability to conjugate O-methylpodocarpate with a variety 
of structurally complex nucleophilic partners was explored.  The 
alcohol moiety of a protected serine can readily be installed in 
good yield (53) without competitive attack of the Boc carbamate. 
The reaction also incorporates protected hexose and pentose 
moieties (54 and 55) as well as primary and secondary terpene 
alcohols (56 and 57) in synthetically useful yields. 

To better understand the mechanism of this transformation, 
we first examined the nature of the initial photoinduced electron-
transfer step.  The excited-state reduction and oxidation 
potentials of the optimal photocatalyst (+1.68 V and –0.43 V vs 
SCE, respectively) are sufficient to either oxidize arene substrate 
1 (Ep/2 = +1.52 V) or reduce Cu(II) (E1/2 = +0.38 V). Indeed, a 
Stern–Volmer analysis indicates that both can quench the 
photocatalyst excited state at similar rates (Scheme 2A). Thus the 
arene radical cation might be generated either by the excited 
Ir*(III) photocatalyst or the Ir(IV) complex (E1/2 = +1.94 V vs SCE) 
resulting from oxidative quenching by Cu(II). Both mechanisms 
might be operative. Consistent with this hypothesis, a less 
strongly oxidizing photocatalyst ([Ir(dF(CF3)ppy)2(bpy)]PF6, *E1/2 
= +1.31 V) that is not capable of directly oxidizing 1 nevertheless 
provides the methoxylation product, albeit in diminished yield 
(Table 1, entry 4). We also examined the photocatalytic reaction 
of 1 with CD3OD, which resulted in the formation of d-2 in 83% 
yield with no incorporation of deuterium at the benzylic position. 
This result indicates that the deprotonation step is essentially 
irreversible under the optimized conditions, as might be expected 
from Kochi’s observation that the oxidation of electron-rich 
organoradicals by Cu(II) occurs at diffusion-controlled rates.12 

 

 

Scheme 2. Development of a Mechanistic Hypothesis. 
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Table 3. Late-Stage Functionalization via Oxidative Photoredox Catalysis[a] 

 
[a] Reaction condition: substrate (0.3 mmol, 1 equiv), Ir[dF(CF3)ppy]2(5,5’-dCF3bpy)]PF6 (1 mol%), K2HPO4 (3 equiv.), Cu(TFA)2(MeCN)  (1.2 equiv.), alcohol 
(2 equiv.), MeCN (0.2 M), 9.5 h–10 h unless otherwise noted. Yields represent the averaged isolated yields from two experiments. [b] Reaction conducted at 
0.05 M MeCN:CH2Cl2 using 8 equiv methanol. RSM yield is provided in parentheses. [c] Reaction conducted at 0.05 M using 8 equiv methanol.  
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A mechanistic proposal consistent with these data is 
outlined in Scheme 2C.  Photoexcitation of the Ir(III) catalyst 
affords a triplet excited state that is oxidatively quenched by Cu(II) 
to afford a strongly oxidizing Ir(IV) complex. Subsequent oxidation 
of the arene affords an arene radical cation that undergoes 
benzylic deprotonation and rapid oxidation by Cu(II). The resulting 
quinone methide undergoes nucleophilic attack by the alcohol 
coupling partner to afford the observed benzylic ether products. 
The reaction proceeds to completion with only 1.2 equiv of Cu(II). 
Thus both oxidizing equivalents of Cu(II) are consumed in this 
reaction, which could be attributed to the disproportionation of the 
Cu(I) byproduct of either oxidation step to Cu(II) and Cu(0), the 
latter of which we observe precipitating from solution during the 
reaction.  

In summary, we have developed a new photocatalytic 
strategy to introduce diverse alkoxide functionalities into complex 
organic molecules by functionalization of benzylic C–H bonds. 
The site selectivity and broad functional group compatibility of this 
method renders it amenable to the late-stage functionalization of 
complex bioactive compounds. Importantly, the efficiency of the 
reaction provides synthetically useful yields using only a two-fold 

[1]  a) L. McMurray, F. O’Hara, M J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885–
1898. b) W. R. Gutekunst, P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976–
1991. c) J. Yamaguchi, A. D. Yamaguchi, K. Itami, K. Angew. Chem. Int. 
Ed. 2012, 51, 8960–9009; Angew. Chem. 2012,124, 9092–9142. 

[2]  a) J. Wencel-Delord, F. Glorius, Nature Chem. 2013, 5, 369–375. b) T. 
Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska, Chem. 
Soc. Rev. 2016, 45, 546–576. 

[3]  a) J. Ma, S. Li, Org. Chem. Front. 2014, 1, 712–715. b) J.-Q. Yu, Z. Shi, 
Eds. CH Activation: Topics in Current Chemistry, Vol. 292; Springer-
Verlag: Berlin, 2010. 

[4]  S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479. 
[5] a) N. L. Weinberg, E. A. Brown, J. Org. Chem. 1966, 31, 4058–4061. b) 

K. Ponsold, H. Kasch, Tetrahedron Lett. 1977, 46, 4463–4464. c) T. 
Shono, Y. Matsumura, O. Onomura, Y. Yamada, Synthesis 1987, 1099–
1100. d) K.-D. Ginzel, E. Steckhan, D. Degner, Tetrahedron 1987, 43, 
5797–5805. e) K. J. Frankowski, R. Liu, G. L. Milligan, K. D. Moeller, J. 
Aubé, Angew. Chemie Int. Ed. 2015, 54, 10555–10558; Angew. Chem. 
2015, 127, 10701–10704. 

[6]  a) R. M. Moriarty, H. Hu, Tetrahedron Lett. 1981, 22, 2747–2750. b)  R. 
M. Moriarty, R. K. Vaid, V. T. Ravikumar, B. K. Vaid, T. E. Hopkins, 
Tetrahedron 1988, 44, 1603–1607. c) C. Zhu, Y. Zhang, H. Zhao, S. 
Huang, M. Zhang, W. Su, Adv. Synth. Catal. 2015, 357, 331–338. d) H. 
Yu, Y. Xu, Y. Fang, R. Dong, Eur. J. Org. Chem. 2016, 5257–5262. c) R. 
Kotagiri, R. Adepu, Eur. J. Org. Chem. 2018, 4556–4564. 

[7]  a) A. R. Dick, K. L. Hull, M. S. Sandford, J. Am. Chem. Soc. 2004, 126, 
2300–2301. b) S. Y. Zhang, H. Gang, Y. Zhao, K. Wright, W. A. Nack, G. 
Chen, J. Am. Chem. Soc. 2012, 134, 7313–7316. c) F.-J.Chen, S. Zhao, 
F. Hu, K. Chen, Q. Zhang, S.-Q. Zhang, B.-F. Shi, Chem. Sci. 2013, 4, 
4187–4192. d) G. Shan, X. Yang, Y. Zong, Y. Rao, Angew. Chemie Int. 
Ed. 2013, 52, 13606–13610; Angew. Chem. 2013, 125, 13851–13855. 
e) T. A. F. Nelson, S. B. Blakey, Angew. Chem. Int. Ed. 2018, 57, 14911–
14915; Angew. Chem. 2018, 130, 15127–15131. f) H. Hu, S.-J. Chen, S. 
Krska, S. Stahl ChemRxiv 2019, DOI 10.26434/chemrxiv.8159645.v1. 

excess of the alcohol reaction partner, which enables the 
formation of new benzylic ether compounds from the coupling of 
two structurally complex units.  From a broader perspective, these 
results are intriguing because they demonstrate that the 
organoradical intermediates that are readily generated by 
photoredox activation can be diverted towards cationic reactivity 
via in situ oxidation by Cu(II). This combination thus provides a 
promising new platform to design new bond-forming oxidative 
functionalization reactions with broad utility in synthetic and 
medicinal chemistry. 
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